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Chapter 1

Introduction

The problem of empirical data modelling is germane to many engineering applications.
In empirical data modelling a process of induction is used to build up a model of the
system, from which it is hoped to deduce responses of the system that have yet to be ob-
served. Ultimately the quantity and quality of the observations govern the performance
of this empirical model. By its observational nature data obtained is finite and sampled;
typically this sampling is non-uniform and due to the high dimensional nature of the
problem the data will form only a sparse distribution in the input space. Consequently
the problem is nearly always ill posed (Poggio et al., 1985) in the sense of Hadamard
(Hadamard, 1923). Traditional neural network approaches have suffered difficulties with
generalisation, producing models that can overfit the data. This is a consequence of the
optimisation algorithms used for parameter selection and the statistical measures used
to select the ’best’ model. The foundations of Support Vector Machines (SVM) have
been developed by Vapnik (1995) and are gaining popularity due to many attractive
features, and promising empirical performance. The formulation embodies the Struc-
tural Risk Minimisation (SRM) principle, which has been shown to be superior, (Gunn
et al., 1997), to traditional Empirical Risk Minimisation (ERM) principle, employed by
conventional neural networks. SRM minimises an upper bound on the expected risk,
as opposed to ERM that minimises the error on the training data. It is this difference
which equips SVM with a greater ability to generalise, which is the goal in statistical
learning. SVMs were developed to solve the classification problem, but recently they
have been extended to the domain of regression problems (Vapnik et al., 1997). In the
literature the terminology for SVMs can be slightly confusing. The term SVM is typ-
ically used to describe classification with support vector methods and support vector
regression is used to describe regression with support vector methods. In this report
the term SVM will refer to both classification and regression methods, and the terms
Support Vector Classification (SVC) and Support Vector Regression (SVR) will be used
for specification. This section continues with a brief introduction to the structural risk
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2 Chapter 1 Introduction

minimisation principle. In Chapter 2 the SVM is introduced in the setting of classifica-
tion, being both historical and more accessible. This leads onto mapping the input into
a higher dimensional feature space by a suitable choice of kernel function. The report
then considers the problem of regression. Illustrative examples re given to show the
properties of the techniques.

1.1 Statistical Learning Theory

This section is a very brief introduction to statistical learning theory. For a much more
in depth look at statistical learning theory, see (Vapnik, 1998).

Figure 1.1: Modelling Errors

The goal in modelling is to choose a model from the hypothesis space, which is closest
(with respect to some error measure) to the underlying function in the target space.
Errors in doing this arise from two cases:

Approximation Error is a consequence of the hypothesis space being smaller than
the target space, and hence the underlying function may lie outside the hypothesis
space. A poor choice of the model space will result in a large approximation error,
and is referred to as model mismatch.

Estimation Error is the error due to the learning procedure which results in a tech-
nique selecting the non-optimal model from the hypothesis space.
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Together these errors form the generalisation error. Ultimately we would like to find the
function, f , which minimises the risk,

R[f ] =
∫

X×Y
L (y, f(x)) P (x, y)dxdy (1.1)

However, P (x, y) is unknown. It is possible to find an approximation according to the
empirical risk minimisation principle,

Remp[f ] =
1
l

l∑
i=1

L
(
yi, f

(
xi

))
(1.2)

which minimises the empirical risk,

ˆfn,l(x) = arg min
f∈Hn

Remp[f ] (1.3)

Empirical risk minimisation makes sense only if,

lim
l→∞

Remp[f ] = R[f ] (1.4)

which is true from the law of large numbers. However, it must also satisfy,

lim
l→∞

min
f∈Hn

Remp[f ] = min
f∈Hn

R[f ] (1.5)

which is only valid when Hn is ’small’ enough. This condition is less intuitive and
requires that the minima also converge. The following bound holds with probability
1− δ,

R[f ] ≤ Remp[f ] +

√
h ln

(
2l
h + 1

)
− ln

(
δ
4

)
l

(1.6)

Remarkably, this expression for the expected risk is independent of the probability dis-
tribution.

1.1.1 VC Dimension

The VC dimension is a scalar value that measures the capacity of a set of functions.

Figure 1.2: VC Dimension Illustration
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Definition 1.1 (Vapnik–Chervonenkis). The VC dimension of a set of functions is p

if and only if there exists a set of points {xi}p
i=1 such that these points can be separated

in all 2p possible configurations, and that no set {xi}q
i=1 exists where q > p satisfying

this property.

Figure 1.2 illustrates how three points in the plane can be shattered by the set of linear
indicator functions whereas four points cannot. In this case the VC dimension is equal
to the number of free parameters, but in general that is not the case; e.g. the function
A sin(bx) has an infinite VC dimension (Vapnik, 1995). The set of linear indicator
functions in n dimensional space has a VC dimension equal to n + 1.

1.1.2 Structural Risk Minimisation

Create a structure such that Sh is a hypothesis space of VC dimension h then,

S1 ⊂ S2 ⊂ . . . ⊂ S∞ (1.7)

SRM consists in solving the following problem

min
Sh

Remp[f ] +

√
h ln

(
2l
h + 1

)
− ln

(
δ
4

)
l

(1.8)

If the underlying process being modelled is not deterministic the modelling problem
becomes more exacting and consequently this chapter is restricted to deterministic pro-
cesses. Multiple output problems can usually be reduced to a set of single output prob-
lems that may be considered independent. Hence it is appropriate to consider processes
with multiple inputs from which it is desired to predict a single output.



Chapter 2

Support Vector Classification

The classification problem can be restricted to consideration of the two-class problem
without loss of generality. In this problem the goal is to separate the two classes by a
function which is induced from available examples. The goal is to produce a classifier
that will work well on unseen examples, i.e. it generalises well. Consider the example
in Figure 2.1. Here there are many possible linear classifiers that can separate the data,
but there is only one that maximises the margin (maximises the distance between it
and the nearest data point of each class). This linear classifier is termed the optimal
separating hyperplane. Intuitively, we would expect this boundary to generalise well as
opposed to the other possible boundaries.

Figure 2.1: Optimal Separating Hyperplane

2.1 The Optimal Separating Hyperplane

Consider the problem of separating the set of training vectors belonging to two separate
classes,

D =
{

(x1, y1), . . . , (xl, yl)
}

, x ∈ Rn, y ∈ {−1, 1}, (2.1)

5



6 Chapter 2 Support Vector Classification

with a hyperplane,
〈w, x〉+ b = 0. (2.2)

The set of vectors is said to be optimally separated by the hyperplane if it is separated
without error and the distance between the closest vector to the hyperplane is maximal.
There is some redundancy in Equation 2.2, and without loss of generality it is appropri-
ate to consider a canonical hyperplane (Vapnik, 1995), where the parameters w, b are
constrained by,

min
i

∣∣〈w, xi〉+ b
∣∣ = 1. (2.3)

This incisive constraint on the parameterisation is preferable to alternatives in simpli-
fying the formulation of the problem. In words it states that: the norm of the weight
vector should be equal to the inverse of the distance, of the nearest point in the data set
to the hyperplane. The idea is illustrated in Figure 2.2, where the distance from the
nearest point to each hyperplane is shown.

Figure 2.2: Canonical Hyperplanes

A separating hyperplane in canonical form must satisfy the following constraints,

yi
[
〈w, xi〉+ b

]
≥ 1, i = 1, . . . , l. (2.4)

The distance d(w, b;x) of a point x from the hyperplane (w, b) is,

d(w, b;x) =

∣∣〈w, xi〉+ b
∣∣

‖w‖
. (2.5)
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The optimal hyperplane is given by maximising the margin, ρ, subject to the constraints
of Equation 2.4. The margin is given by,

ρ(w, b) = min
xi:yi=−1

d(w, b;xi) + min
xi:yi=1

d(w, b;xi)

= min
xi:yi=−1

∣∣〈w, xi〉+ b
∣∣

‖w‖
+ min

xi:yi=1

∣∣〈w, xi〉+ b
∣∣

‖w‖

=
1
‖w‖

(
min

xi:yi=−1

∣∣〈w, xi〉+ b
∣∣ + min

xi:yi=1

∣∣〈w, xi〉+ b
∣∣)

=
2
‖w‖

(2.6)

Hence the hyperplane that optimally separates the data is the one that minimises

Φ(w) =
1
2
‖w‖2. (2.7)

It is independent of b because provided Equation 2.4 is satisfied (i.e. it is a separating
hyperplane) changing b will move it in the normal direction to itself. Accordingly the
margin remains unchanged but the hyperplane is no longer optimal in that it will be
nearer to one class than the other. To consider how minimising Equation 2.7 is equivalent
to implementing the SRM principle, suppose that the following bound holds,

‖w‖ < A. (2.8)

Then from Equation 2.4 and 2.5,

d(w, b;x) ≥ 1
A

. (2.9)

Accordingly the hyperplanes cannot be nearer than 1
A to any of the data points and

intuitively it can be seen in Figure 2.3 how this reduces the possible hyperplanes, and
hence the capacity.

Figure 2.3: Constraining the Canonical Hyperplanes
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The VC dimension, h, of the set of canonical hyperplanes in n dimensional space is
bounded by,

h ≤ min[R2A2, n] + 1, (2.10)

where R is the radius of a hypersphere enclosing all the data points. Hence minimising
Equation 2.7 is equivalent to minimising an upper bound on the VC dimension. The
solution to the optimisation problem of Equation 2.7 under the constraints of Equation
2.4 is given by the saddle point of the Lagrange functional (Lagrangian) (Minoux, 1986),

Φ(w, b, α) = 1
2‖w‖

2 −
l∑

i=1

αi

(
yi

[
〈w, xi〉+ b

]
− 1

)
, (2.11)

where α are the Lagrange multipliers. The Lagrangian has to be minimised with respect
to w, b and maximised with respect to α ≥ 0. Classical Lagrangian duality enables the
primal problem, Equation 2.11, to be transformed to its dual problem, which is easier
to solve. The dual problem is given by,

max
α

W (α) = max
α

(
min
w,b

Φ(w, b, α)
)

. (2.12)

The minimum with respect to w and b of the Lagrangian, Φ, is given by,

∂Φ
∂b

= 0 ⇒
l∑

i=1

αiyi = 0

∂Φ
∂w

= 0 ⇒ w =
l∑

i=1

αiyixi. (2.13)

Hence from Equations 2.11, 2.12 and 2.13, the dual problem is,

max
α

W (α) = max
α

−1
2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi, xj〉+
l∑

k=1

αk, (2.14)

and hence the solution to the problem is given by,

α∗ = arg min
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi, xj〉 −
l∑

k=1

αk, (2.15)

with constraints,

αi ≥ 0 i = 1, . . . , l
l∑

j=1

αjyj = 0. (2.16)
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Solving Equation 2.15 with constraints Equation 2.16 determines the Lagrange multi-
pliers, and the optimal separating hyperplane is given by,

w∗ =
l∑

i=1

αiyixi

b∗ = −1
2
〈w∗, xr + xs〉. (2.17)

where xr and xs are any support vector from each class satisfying,

αr, αs > 0, yr = −1, ys = 1. (2.18)

The hard classifier is then,
f(x) = sgn(〈w∗, x〉+ b) (2.19)

Alternatively, a soft classifier may be used which linearly interpolates the margin,

f(x) = h(〈w∗, x〉+ b) where h(z) =


−1 : z < −1

z : −1 ≤ z ≤ 1
+1 : z > 1

(2.20)

This may be more appropriate than the hard classifier of Equation 2.19, because it
produces a real valued output between −1 and 1 when the classifier is queried within
the margin, where no training data resides. From the Kuhn-Tucker conditions,

αi

(
yi

[
〈w, xi〉+ b

]
− 1

)
= 0, i = 1, . . . , l, (2.21)

and hence only the points xi which satisfy,

yi
[
〈w, xi〉+ b

]
= 1 (2.22)

will have non-zero Lagrange multipliers. These points are termed Support Vectors (SV).
If the data is linearly separable all the SV will lie on the margin and hence the number of
SV can be very small. Consequently the hyperplane is determined by a small subset of
the training set; the other points could be removed from the training set and recalculating
the hyperplane would produce the same answer. Hence SVM can be used to summarise
the information contained in a data set by the SV produced. If the data is linearly
separable the following equality will hold,

‖w‖2 =
l∑

i=1

αi =
∑

i∈SV s

αi =
∑

i∈SV s

∑
j∈SV s

αiαjyiyj〈xi, xj〉. (2.23)

Hence from Equation 2.10 the VC dimension of the classifier is bounded by,

h ≤ min[R2
∑

i∈SV s

, n] + 1, (2.24)
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x1 x2 y

1 1 -1
3 3 1
1 3 1
3 1 -1
2 2.5 1
3 2.5 -1
4 3 -1

Table 2.1: Linearly Separable Classification Data

and if the training data, x, is normalised to lie in the unit hypersphere,

h ≤ 1 + min[
∑

i∈SV s

, n], (2.25)

2.1.1 Linearly Separable Example

To illustrate the method consider the training set in Table 2.1.

The SVC solution is shown in Figure 2.4, where the dotted lines describe the locus of
the margin and the circled data points represent the SV, which all lie on the margin.

Figure 2.4: Optimal Separating Hyperplane

2.2 The Generalised Optimal Separating Hyperplane

So far the discussion has been restricted to the case where the training data is linearly
separable. However, in general this will not be the case, Figure 2.5. There are two
approaches to generalising the problem, which are dependent upon prior knowledge of
the problem and an estimate of the noise on the data. In the case where it is expected
(or possibly even known) that a hyperplane can correctly separate the data, a method of
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Figure 2.5: Generalised Optimal Separating Hyperplane

introducing an additional cost function associated with misclassification is appropriate.
Alternatively a more complex function can be used to describe the boundary, as discussed
in Chapter 2.1. To enable the optimal separating hyperplane method to be generalised,
Cortes and Vapnik (1995) introduced non-negative variables, ξi ≥ 0, and a penalty
function,

Fσ(ξ) =
∑

i

ξσ
i σ > 0, (2.26)

where the ξi are a measure of the misclassification errors. The optimisation problem is
now posed so as to minimise the classification error as well as minimising the bound on
the VC dimension of the classifier. The constraints of Equation 2.4 are modified for the
non-separable case to,

yi
[
〈w, xi〉+ b

]
≥ 1− ξi, i = 1, . . . , l. (2.27)

where ξi ≥ 0. The generalised optimal separating hyperplane is determined by the vector
w, that minimises the functional,

Φ(w, ξ) =
1
2
‖w‖2 + C

∑
i

ξi, (2.28)

(where C is a given value) subject to the constraints of Equation 2.27. The solution
to the optimisation problem of Equation 2.28 under the constraints of Equation 2.27 is
given by the saddle point of the Lagrangian (Minoux, 1986),

Φ(w, b, α, ξ, β) = 1
2‖w‖

2 + C
∑

i

ξi −
l∑

i=1

αi

(
yi

[
wT xi + b

]
− 1 + ξi

)
−

l∑
j=1

βiξi, (2.29)
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where α, β are the Lagrange multipliers. The Lagrangian has to be minimised with
respect to w, b, x and maximised with respect to α, β. As before, classical Lagrangian
duality enables the primal problem, Equation 2.29, to be transformed to its dual problem.
The dual problem is given by,

max
α

W (α, β) = max
α,β

(
min
w,b,ξ

Φ(w, b, α, ξ, β)
)

. (2.30)

The minimum with respect to w, b and ξ of the Lagrangian, Φ, is given by,

∂Φ
∂b

= 0 ⇒
l∑

i=1

αiyi = 0

∂Φ
∂w

= 0 ⇒ w =
l∑

i=1

αiyixi

∂Φ
∂ξ

= 0 ⇒ αi + βi = C. (2.31)

Hence from Equations 2.29, 2.30 and 2.31, the dual problem is,

max
α

W (α) = max
α

−1
2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi, xj〉+
l∑

k=1

αk, (2.32)

and hence the solution to the problem is given by,

α∗ = arg min
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi, xj〉 −
l∑

k=1

αk, (2.33)

with constraints,

0 ≤ αi ≤ C i = 1, . . . , l
l∑

j=1

αjyj = 0. (2.34)

The solution to this minimisation problem is identical to the separable case except for a
modification of the bounds of the Lagrange multipliers. The uncertain part of Cortes’s
approach is that the coefficient C has to be determined. This parameter introduces
additional capacity control within the classifier. C can be directly related to a regulari-
sation parameter (Girosi, 1997; Smola and Schölkopf, 1998). Blanz et al. (1996) uses a
value of C = 5, but ultimately C must be chosen to reflect the knowledge of the noise
on the data. This warrants further work, but a more practical discussion is given in
Chapter 4.
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x1 x2 y

1 1 -1
3 3 1
1 3 1
3 1 -1
2 2.5 1
3 2.5 -1
4 3 -1

1.5 1.5 1
1 2 -1

Table 2.2: Non-Linearly Separable Classification Data

2.2.1 Linearly Non-Separable Example

Two additional data points are added to the separable data of Table 2.1 to produce a
linearly non-separable data set, Table 2.2.

The resulting SVC is shown in Figure 2.6, for C = 1. The SV are no longer required to
lie on the margin, as in Figure 2.4, and the orientation of the hyperplane and the width
of the margin are different.

Figure 2.6: Generalised Optimal Separating Hyperplane Example (C = 1)

In the limit, limC→∞ the solution converges towards the solution obtained by the optimal
separating hyperplane (on this non-separable data), Figure 2.7.

In the limit, limC→0 the solution converges to one where the margin maximisation term
dominates, Figure 2.8. Beyond a certain point the Lagrange multipliers will all take on
the value of C. There is now less emphasis on minimising the misclassification error,
but purely on maximising the margin, producing a large width margin. Consequently
as C decreases the width of the margin increases.

The useful range of C lies between the point where all the Lagrange Multipliers are
equal to C and when only one of them is just bounded by C.
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Figure 2.7: Generalised Optimal Separating Hyperplane Example (C = 105)

Figure 2.8: Generalised Optimal Separating Hyperplane Example (C = 10−8)

2.3 Generalisation in High Dimensional Feature Space

In the case where a linear boundary is inappropriate the SVM can map the input vector,
x, into a high dimensional feature space, z. By choosing a non-linear mapping a priori,
the SVM constructs an optimal separating hyperplane in this higher dimensional space,
Figure 2.9. The idea exploits the method of Aizerman et al. (1964) which, enables the
curse of dimensionality (Bellman, 1961) to be addressed.

Figure 2.9: Mapping the Input Space into a High Dimensional Feature Space
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There are some restrictions on the non-linear mapping that can be employed, see Chap-
ter 3, but it turns out, surprisingly, that most commonly employed functions are accept-
able. Among acceptable mappings are polynomials, radial basis functions and certain
sigmoid functions. The optimisation problem of Equation 2.33 becomes,

α∗ = arg min
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi, xj)−
l∑

k=1

αk, (2.35)

where K(x, x′) is the kernel function performing the non-linear mapping into feature
space, and the constraints are unchanged,

0 ≤ αi ≤ C i = 1, . . . , l
l∑

j=1

αjyj = 0. (2.36)

Solving Equation 2.35 with constraints Equation 2.36 determines the Lagrange multipli-
ers, and a hard classifier implementing the optimal separating hyperplane in the feature
space is given by,

f(x) = sgn(
∑

i∈SV s

αiyiK(xi, x) + b) (2.37)

where

〈w∗, x〉 =
l∑

i=1

αiyiK(xi, x)

b∗ = −1
2

l∑
i=1

αiyi [K(xi, xr) + K(xi, xr)] . (2.38)

The bias is computed here using two support vectors, but can be computed using all the
SV on the margin for stability (Vapnik et al., 1997). If the Kernel contains a bias term,
the bias can be accommodated within the Kernel, and hence the classifier is simply,

f(x) = sgn(
∑

i∈SV s

αiK(xi, x)) (2.39)

Many employed kernels have a bias term and any finite Kernel can be made to have
one (Girosi, 1997). This simplifies the optimisation problem by removing the equality
constraint of Equation 2.36. Chapter 3 discusses the necessary conditions that must be
satisfied by valid kernel functions.
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2.3.1 Polynomial Mapping Example

Consider a polynomial kernel of the form,

K(x, x′) = (〈x, x′〉+ 1)2, (2.40)

which maps a two dimensional input vector into a six dimensional feature space. Apply-
ing the non-linear SVC to the linearly non-separable training data of Table 2.2, produces
the classification illustrated in Figure 2.10 (C = ∞). The margin is no longer of constant
width due to the non-linear projection into the input space. The solution is in contrast
to Figure 2.7, in that the training data is now classified correctly. However, even though
SVMs implement the SRM principle and hence can generalise well, a careful choice of
the kernel function is necessary to produce a classification boundary that is topologically
appropriate. It is always possible to map the input space into a dimension greater than
the number of training points and produce a classifier with no classification errors on
the training set. However, this will generalise badly.

Figure 2.10: Mapping input space into Polynomial Feature Space

2.4 Discussion

Typically the data will only be linearly separable in some, possibly very high dimensional
feature space. It may not make sense to try and separate the data exactly, particularly
when only a finite amount of training data is available which is potentially corrupted
by noise. Hence in practice it will be necessary to employ the non-separable approach
which places an upper bound on the Lagrange multipliers. This raises the question
of how to determine the parameter C. It is similar to the problem in regularisation
where the regularisation coefficient has to be determined, and it has been shown that
the parameter C can be directly related to a regularisation parameter for certain kernels
(Smola and Schölkopf, 1998). A process of cross-validation can be used to determine this
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parameter, although more efficient and potentially better methods are sought after. In
removing the training patterns that are not support vectors, the solution is unchanged
and hence a fast method for validation may be available when the support vectors are
sparse.





Chapter 3

Feature Space

This chapter discusses the method that can be used to construct a mapping into a high
dimensional feature space by the use of reproducing kernels. The idea of the kernel
function is to enable operations to be performed in the input space rather than the
potentially high dimensional feature space. Hence the inner product does not need
to be evaluated in the feature space. This provides a way of addressing the curse of
dimensionality. However, the computation is still critically dependent upon the number
of training patterns and to provide a good data distribution for a high dimensional
problem will generally require a large training set.

3.1 Kernel Functions

The following theory is based upon Reproducing Kernel Hilbert Spaces (RKHS) (Aron-
szajn, 1950; Girosi, 1997; Heckman, 1997; Wahba, 1990). An inner product in feature
space has an equivalent kernel in input space,

K(x, x′) = 〈φ(x), φ(x′)〉, (3.1)

provided certain conditions hold. If K is a symmetric positive definite function, which
satisfies Mercer’s Conditions,

K(x, x′) =
∞∑
m

amφm(x)φm(x′), am ≥ 0, (3.2)

∫∫
K(x, x′)g(x)g(x′)dxdx′ > 0, g ∈ L2, (3.3)

then the kernel represents a legitimate inner product in feature space. Valid functions
that satisfy Mercer’s conditions are now given, which unless stated are valid for all real
x and x′.

19
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3.1.1 Polynomial

A polynomial mapping is a popular method for non-linear modelling,

K(x, x′) = 〈x, x′〉d. (3.4)

K(x, x′) =
(
〈x, x′〉+ 1

)d
. (3.5)

The second kernel is usually preferable as it avoids problems with the hessian becoming
zero.

3.1.2 Gaussian Radial Basis Function

Radial basis functions have received significant attention, most commonly with a Gaus-
sian of the form,

K(x, x′) = exp
(
−‖x− x′‖2

2σ2

)
. (3.6)

Classical techniques utilising radial basis functions employ some method of determining
a subset of centres. Typically a method of clustering is first employed to select a subset
of centres. An attractive feature of the SVM is that this selection is implicit, with each
support vectors contributing one local Gaussian function, centred at that data point.
By further considerations it is possible to select the global basis function width, s, using
the SRM principle (Vapnik, 1995).

3.1.3 Exponential Radial Basis Function

A radial basis function of the form,

K(x, x′) = exp
(
−‖x− x′‖

2σ2

)
. (3.7)

produces a piecewise linear solution which can be attractive when discontinuities are
acceptable.

3.1.4 Multi-Layer Perceptron

The long established MLP, with a single hidden layer, also has a valid kernel represen-
tation,

K(x, x′) = tanh
(
ρ〈x, x′〉+ %

)
(3.8)

for certain values of the scale, ρ, and offset, %, parameters. Here the SV correspond to
the first layer and the Lagrange multipliers to the weights.



Chapter 3 Feature Space 21

3.1.5 Fourier Series

A Fourier series can be considered an expansion in the following 2N + 1 dimensional
feature space. The kernel is defined on the interval [−π

2 , π
2 ],

K(x, x′) =
sin(N + 1

2)(x− x′)
sin(1

2(x− x′))
. (3.9)

However, this kernel is probably not a good choice because its regularisation capability
is poor, which is evident by consideration of its Fourier transform (Smola and Schölkopf,
1998).

3.1.6 Splines

Splines are a popular choice for modelling due to their flexibility. A finite spline, of order
κ, with N knots located at τs is given by,

K(x, x′) =
κ∑

r=0

xrx′
r +

N∑
s=1

(x− τs)κ
+(x′ − τs)κ

+. (3.10)

An infinite spline is defined on the interval [0, 1) by,

K(x, x′) =
κ∑

r=0

xrx′
r +

∫ 1

0
(x− τs)κ

+(x′ − τs)κ
+dτ. (3.11)

In the case when κ = 1, (S∞1 ), the kernel is given by,

K(x, x′) = 1 + 〈x, x′〉+
1
2
〈x, x′〉min(x, x′)− 1

6
min(x, x′)3, (3.12)

where the solution is a piece-wise cubic.

3.1.7 B splines

Bsplines are another popular spline formulation. The kernel is defined on the interval
[−1, 1], and has an attractive closed form,

K(x, x′) = B2N+1(x− x′). (3.13)
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3.1.8 Additive Kernels

More complicated kernels can be obtained by forming summing kernels, since the sum
of two positive definite functions is positive definite.

K(x, x′) =
∑

i

Ki(x, x′) (3.14)

3.1.9 Tensor Product

Kernels Multidimensional kernels can be obtained by forming tensor products of kernels
(Aronszajn, 1950),

K(x, x′) =
∏

i

Ki(xi, x
′
i) (3.15)

This is particularly useful in the construction of multidimensional spline kernels, which
are simply obtained from the product of the univariate kernels.

3.2 Implicit vs. Explicit Bias

It was remarked in the previous chapter that kernels may or may not contain an implicit
bias. The inclusion of a bias within the kernel function can lead to a slightly more efficient
method of implementation. However, the solutions obtained with an implicit and explicit
bias are not the same, which may initially come as a surprise. This difference helps to
highlight the difficulties with the interpretation of generalisation in high dimensional
feature spaces. Figure 3.1 compares a linear kernel with explicit bias against polynomial
of degree 1 with implicit bias. It is evident that the solutions are different, although
both solutions would seem to offer good generalisation.

(a) Explicit (linear) (b) Implicit (polynomial degree 1)

Figure 3.1: Comparison between Implicit and Explicit bias for a linear kernel
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3.3 Data Normalisation

Data normalisation is required for particular kernels due to their restricted domain,
and may also be advantageous for unrestricted kernels. To determine if normalisation
(isotropic or non-isotropic) of the data is necessary requires the consideration of the
input features. Additionally, normalisation will improve the condition number of the
hessian in the optimisation problem.

3.4 Kernel Selection

The obvious question that arises is that with so many different mappings to choose from,
which is the best for a particular problem? This is not a new question, but with the
inclusion of many mappings within one framework it is easier to make a comparison.
The upper bound on the VC dimension, Equation 2.10, is a potential avenue to provide
a means of comparing the kernels. However, it requires the estimation of the radius of
the hypersphere enclosing the data in the non-linear feature space. As a final caution,
even if a strong theoretical method for selecting a kernel is developed, unless this can be
validated using independent test sets on a large number of problems, methods such as
bootstrapping and cross-validation will remain the preferred method for kernel selection.





Chapter 4

Classification Example: IRIS data

The iris data set is an established data set used for demonstrating the performance of
classification algorithms. The data set contains four attributes of an iris, and the goal
is to classify the class of iris based on these four attributes. To visualise the problem we
restrict ourselves to the two features that contain the most information about the class,
namely the petal length and the petal width. The distribution of the data is illustrated
in Figure 4.1.

Figure 4.1: Iris data set

The Setosa and Versilcolor classes are easily separated with a linear boundary and the
SVC solution using an inner product kernel is illustrated in Figure 4.2, with the two
support vectors circled.

The two support vectors contain the important information about the classification
boundary and hence illustrate the potential of SVC for data selection. The separation
of the class Viginica from the other two classes is not so trivial. In fact, two of the
examples are identical in petal length and width, but correspond to different classes.
Figure 4.3 illustrates the SVC solution obtained using a degree 2 polynomial and it is
clear that the area of input space where there is little data is classified as Viginica.

25
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Figure 4.2: Separating Setosa with a linear SVC (C = ∞)

Figure 4.3: Separating Viginica with a polynomial SVM (degree 2,C = ∞)

Figure 4.4 illustrates the use of a higher order polynomial to separate the Viginica, with
no additional capacity control. This SVC determines a hyperplane in a 55 dimensional
feature space. There is evidence of overfitting due to the high dimensional nature of the
kernel function, which is emphasised by the disjoint region in the top of the illustration.

Figure 4.4: Separating Viginica with a polynomial SVM (degree 10, C = ∞)
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Figure 4.5 illustrates a Gaussian radial basis function SVC using a pre-specified variance.
The result is similar to that of the degree 2 polynomial.

Figure 4.5: Separating Viginica with a Radial Basis Function SVM (σ = 1.0, C = ∞)

Figure 4.6 illustrates the SVC solution obtained using the degree 2 polynomial with
some tolerance to misclassification errors (C = 10). This can be seen to produce a
solution with good expected generalisation, emphasising the importance of tolerating
misclassification errors in this example. This is necessary due to the non-separable
nature of the data using just two input features.

Figure 4.6: Separating Viginica with a polynomial SVM (degree 2, C = 10)

To visualise the effect of the tolerance to misclassification errors on the topology of the
classifier boundary, Figure 4.7 shows the results of a linear spline SVC for various degrees
of misclassification tolerance.

Interestingly, the values of C = 1 and C = 100 seem to offer good solutions, depending
upon whether an open boundary, Figure 4.7(a) or a closed boundary, Figure 4.7(c)
is more appropriate. This demonstrates that the parameter C may have more than
one optimal value and prior knowledge about the problem under consideration may be
required to select the final solution.
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(a) C = ∞ (b) C = 1000

(c) C = 100 (d) C = 10

(e) C = 1 (f) C = 0.1

Figure 4.7: The effect of C on the separation of Versilcolor with a linear spline SVM

4.1 Applications

Larger and more complex classification problems have been attacked with SVC. Notably,
Osuna et al. (1997) has applied SVC to the exacting problem of face recognition, with
encouraging results. In conclusion, SVC provides a robust method for pattern classi-
fication by minimising overfitting problems by adopting the SRM principle. Use of a
kernel function enables the curse of dimensionality to be addressed, and the solution
implicitly contains support vectors that provide a description of the significant data for
classification.
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Support Vector Regression

SVMs can also be applied to regression problems by the introduction of an alternative
loss function, (Smola, 1996). The loss function must be modified to include a distance
measure. Figure 5.1 illustrates four possible loss functions.

(a) Quadratic (b) Laplace

(c) Huber (d) ε-insensitive

Figure 5.1: Loss Functions

The loss function in Figure 5.1(a) corresponds to the conventional least squares error
criterion. The loss function in Figure 5.1(b) is a Laplacian loss function that is less
sensitive to outliers than the quadratic loss function. Huber proposed the loss function
in Figure 5.1(c) as a robust loss function that has optimal properties when the underlying

29
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distribution of the data is unknown. These three loss functions will produce no sparseness
in the support vectors. To address this issue Vapnik proposed the loss function in
Figure 5.1(d) as an approximation to Huber’s loss function that enables a sparse set of
support vectors to be obtained.

5.1 Linear Regression

Consider the problem of approximating the set of data,

D =
{

(x1, y1), . . . , (xl, yl)
}

, x ∈ Rn, y ∈ R, (5.1)

with a linear function,
f(x) = 〈w, x〉+ b. (5.2)

the optimal regression function is given by the minimum of the functional,

Φ(w, ξ) =
1
2
‖w‖2 + C

∑
i

(ξ−i + ξ+
i ), (5.3)

where C is a pre-specified value, and ξ−, ξ+ are slack variables representing upper and
lower constraints on the outputs of the system.

5.1.1 ε-insensitive Loss Function

Using an ε-insensitive loss function, Figure 5.1(d),

Lε (y) =

{
0 for |f (x)− y| < ε

|f (x)− y| − ε otherwise
. (5.4)

the solution is given by,

max
α,α∗

W (α, α∗) = max
α,α∗

−1
2

l∑
i=1

l∑
j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi,xj〉+

l∑
i=1

αi (yi − ε)−α∗i (yi + ε)

(5.5)
or alternatively,

ᾱ, ᾱ∗ = arg min
α,α∗

1
2

l∑
i=1

l∑
j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi,xj〉 −

l∑
i=1

(αi − α∗i ) yi +
l∑

i=1

(αi + α∗i ) ε

(5.6)
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with constraints,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l (5.7)

l∑
i=1

(αi − α∗i ) = 0.

Solving Equation 5.5 with constraints Equation 5.7 determines the Lagrange multipliers,
α, α∗ , and the regression function is given by Equation 5.2, where

w̄ =
l∑

i=1

(αi − α∗i ) xi (5.8)

b̄ = −1
2
〈w̄, (xr + xs)〉.

The Karush-Kuhn-Tucker (KKT) conditions that are satisfied by the solution are,

ᾱiᾱ
∗
i = 0, i = 1, . . . , l. (5.9)

Therefore the support vectors are points where exactly one of the Lagrange multipliers
is greater than zero. When ε = 0, we get the L1 loss function and the optimisation
problem is simplified,

min
β

1
2

l∑
i=1

l∑
j=1

βiβj〈xi,xj〉 −
l∑

i=1

βiyi (5.10)

with constraints,

−C ≤ βi ≤ C, i = 1, . . . , l (5.11)
l∑

i=1

βi = 0,

and the regression function is given by Equation 5.2, where

w̄ =
l∑

i=1

βixi (5.12)

b̄ = −1
2
〈w̄, (xr + xs)〉.

5.1.2 Quadratic Loss Function

Using a quadratic loss function, Figure 5.1(a),

Lquad (f (x)− y) = (f (x)− y)2 . (5.13)
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the solution is given by,

max
α,α∗

W (α, α∗) = max
α,α∗

−1
2

l∑
i=1

l∑
j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi,xj〉

+
l∑

i=1

(αi − α∗i ) yi −
1

2C

l∑
i=1

(
α2

i + (α∗i )
2
)
. (5.14)

The corresponding optimisation can be simplified by exploiting the KKT conditions,
Equation 5.9 and noting that these imply β∗i = |βi|. The resultant optimisation problems
is,

min
β

1
2

l∑
i=1

l∑
j=1

βiβj〈xi,xj〉 −
l∑

i=1

βiyi +
1

2C

l∑
i=1

β2
i (5.15)

with constraints,
l∑

i=1

βi = 0. (5.16)

and the regression function is given by Equations 5.2 and 5.12.

5.1.3 Huber Loss Function

Using a Huber loss function, Figure 5.1(c),

Lhuber (f (x)− y) =

{
1
2 (f (x)− y)2 for |f (x)− y| < µ

µ|f (x)− y| − µ2

2 otherwise
(5.17)

, the solution is given by,

max
α,α∗

W (α, α∗) = max
α,α∗

−1
2

l∑
i=1

l∑
j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi,xj〉

+
l∑

i=1

(αi − α∗i ) yi −
1

2C

l∑
i=1

(
α2

i + (α∗i )
2
)
µ, (5.18)

The resultant optimisation problems is,

min
β

1
2

l∑
i=1

l∑
j=1

βiβj〈xi,xj〉 −
l∑

i=1

βiyi +
1

2C

l∑
i=1

β2
i µ (5.19)

with constraints,

−C ≤ βi ≤ C, i = 1, . . . , l (5.20)
l∑

i=1

βi = 0,
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x y

1.0 -1.6
3.0 -1.8
4.0 -1.0
5.6 1.2
7.8 2.2
10.2 6.8
11.0 10.0
11.5 10.0
12.7 10.0

Table 5.1: Regression Data

and the regression function is given by Equations (56) and (66).

5.1.4 Example

Consider the example data set in Table 5.1. The SVR solution for a laplace loss function
(Figure 5.1(b)) with no additional capacity control is shown in Figure 5.2.

Figure 5.2: Linear regression

5.2 Non Linear Regression

Similarly to classification problems, a non-linear model is usually required to adequately
model data. In the same manner as the non-linear SVC approach, a non-linear map-
ping can be used to map the data into a high dimensional feature space where linear
regression is performed. The kernel approach is again employed to address the curse
of dimensionality. The non-linear SVR solution, using an ε-insensitive loss function,
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Figure 5.1(d), is given by,

max
α,α∗

W (α, α∗) = max
α,α∗

l∑
i=1

α∗i (yi − ε)−αi (yi + ε)−1
2

l∑
i=1

l∑
j=1

(α∗i − αi)
(
α∗j − αj

)
K (xi,xj)

(5.21)
with constraints,

0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l (5.22)

l∑
i=1

(αi − α∗i ) = 0.

Solving Equation 5.21 with constraints Equation 5.22 determines the Lagrange multi-
pliers, αi, α

∗
i , and the regression function is given by,

f (x) =
∑
SVs

(ᾱi − ᾱ∗i ) K (xi,x) + b̄ (5.23)

where

〈w̄,x〉 =
l∑

i=1

(αi − α∗i ) K (xi,xj) (5.24)

b̄ = −1
2

l∑
i=1

(αi − α∗i ) (K (xi,xr) + K (xi,xs)) .

As with the SVC the equality constraint may be dropped if the Kernel contains a bias
term, b being accommodated within the Kernel function, and the regression function is
given by,

f (x) =
l∑

i=1

(ᾱi − ᾱ∗i ) K (xi,x) . (5.25)

The optimisation criteria for the other loss functions of Chapter 5.1 are similarly obtained
by replacing the dot product with a kernel function. The ε-insensitive loss function is
attractive because unlike the quadratic and Huber cost functions, where all the data
points will be support vectors, the SV solution can be sparse. The quadratic loss function
produces a solution which is equivalent to ridge regression, or zeroth order regularisation,
where the regularisation parameter λ = 1

2C .

5.2.1 Examples

To illustrate some of the non-linear SVR solutions, various kernel functions were used
to model the regression data in Table 5.1, with an ε-insensitive loss function (ε = 0.5)
and no additional capacity control. Figure 5.3 shows the SVR solution for a degree 2
polynomial, with the SV circled as before. The dotted line describes the ε-insensitive
region around the solution (N.B. if all the data points lie within this region there will be
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zero error associated with the loss function). The result demonstrates that there are no
support vectors within the ε-insensitive region. Figure 5.4 illustrates the SVR solution

Figure 5.3: Polynomial Regression

for a radial basis function with σ = 1.0. In this example the model is flexible enough to
model the function with zero error associated with the loss function, as is verified by the
fact that all the data points lie on, or within, the ε-insensitive zone. Figure 5.5 shows the

Figure 5.4: Radial Basis Function Regression

SVR solution for a linear spline kernel. The resulting model is a piecewise cubic spline,
and again due to the high capacity of this function it is able to model the data with
zero loss function error, but notice that overfitting is controlled. Figure 5.6 shows the
SVR solution for an infinite B-spline kernel, which has a similar solution to the spline
kernel except for the endpoints. Figure 5.7 shows the solution for an exponential RBF
kernel, which is a piecewise linear spline. Although this model has a high capacity it
shows sensible behaviour in the extremity regions.
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Figure 5.5: Spline Regression

Figure 5.6: B-spline Regression

Figure 5.7: Exponential RBF Regression

5.2.2 Comments

In the regression method it is necessary to select both a representative loss function
and any additional capacity control that may be required. These considerations must
be based on prior knowledge of the problem and the distribution of the noise. In the
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absence of such information Huber’s robust loss function, Figure 5.1(c), has been shown
to be a good alternative (Vapnik, 1995). Vapnik developed the ε-insensitive loss function
as a trade-off between the robust loss function of Huber and one that enables sparsity
within the SVs. However, its implementation is more computationally expensive and
the ε-insensitive region can have drawbacks, as will be demonstrated in the next section.





Chapter 6

Regression Example: Titanium

Data

The example given here considers the titanium data (Dierckx, 1993) as an illustrative
example of a one dimensional non-linear regression problem. There are three methods
for controlling the regression model, the loss function, the kernel, and additional capacity
control, C. The results shown in this chapter were obtained using an ε-insensitive loss
function (e=0.05), with different kernels and different degrees of capacity control. Figure
6.1 illustrates the solution for a linear spline kernel and no additional capacity control.
It is evident that the solution lies within the ε-insensitive region. Figure 6.2 illustrates

Figure 6.1: Titanium Linear Spline Regression (ε = 0.05, C = ∞)

the solution for a B-spline kernel with no additional capacity control. This particular
B-spline kernel would appear to be prone to oscillation when an ε-insensitive region is
used, and hence the linear spline kernel, or an alternative loss function is to be preferred.
Figure 6.3 illustrates the solution for a Gaussian RBF kernel (σ = 1.0) with no additional
capacity control. It can be seen that the RBF is too wide to accurately model the data.
Figure 6.4 illustrates the solution for a Gaussian RBF kernel (σ = 0.3) with no additional
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Figure 6.2: Titanium B-Spline Regression (ε = 0.05, C = ∞)

Figure 6.3: Titanium Gaussian RBF Regression (ε = 0.05, σ = 1.0, C = ∞)

capacity control. It can be seen that the RBF is now able to accurately model the data.
However, this is at the expense of the introduction of oscillation, which is not penalised
in the ε-insensitive region. Figure 6.5 illustrates the solution for an exponential RBF

Figure 6.4: Titanium Gaussian RBF Regression (ε = 0.05, σ = 0.3, C = ∞)

kernel (σ = 0.3) with no additional capacity control. The corresponding solution is a
piece-wise linear function and consequently oscillation is avoided. Figure 6.6 illustrates



Chapter 6 Regression Example: Titanium Data 41

Figure 6.5: Titanium Exponential RBF Regression (ε = 0.05, σ = 1.0, C = ∞)

the solution for a degree 3 Fourier kernel with no additional capacity control. The
solution suffers similar problems to the wide Gaussian RBF kernel in that the kernel
cannot accurately model the data. Figure 6.7 illustrates the solution for a linear spline

Figure 6.6: Titanium Fourier Regression (ε = 0.05, degree 3, C = ∞)

kernel, with additional capacity control, (C = 10). The extra capacity control renders
the solution incapable of accurately modelling the peak in the data, in contrast to
Figure 6.1. Figure 6.8 illustrates the solution for a B-spline kernel, with additional
capacity control, (C = 10). The extra capacity control renders the solution incapable of
accurately modelling the peak in the data, in contrast to Figure 6.2. The examples that
have been shown here are not a representative set. The ε-insensitive region has been
exaggerated for the purposes of illustration, and typically careful selection of additional
capacity control with methods such as cross validation will be required. The ε-insensitive
loss function may be an inappropriate choice for particular kernels causing the solution
to oscillate within the ε-insensitive region.
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Figure 6.7: Titanium Linear Spline Regression (ε = 0.05, C = 10)

Figure 6.8: Titanium B-Spline Regression (ε = 0.05, C = 10)

6.1 Applications

SVR has been applied to some time series modelling problems (Mukherjee et al., 1997).
Notably, (Müller et al., 1999) has achieved excellent results in applying SVR to one of
the data sets from the Santa Fe time series competition.



Chapter 7

Conclusions

Support Vector Machines are an attractive approach to data modelling. They combine
generalisation control with a technique to address the curse of dimensionality. The for-
mulation results in a global quadratic optimisation problem with box constraints, which
is readily solved by interior point methods. The kernel mapping provides a unifying
framework for most of the commonly employed model architectures, enabling compar-
isons to be performed. In classification problems generalisation control is obtained by
maximising the margin, which corresponds to minimisation of the weight vector in a
canonical framework. The solution is obtained as a set of support vectors that can be
sparse. These lie on the boundary and as such summarise the information required to
separate the data. The minimisation of the weight vector can be used as a criterion in
regression problems, with a modified loss function. Future directions include: A tech-
nique for choosing the kernel function and additional capacity control; Development of
kernels with invariances.
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Appendix A

Implementation Issues

The resulting optimisation problems are dependent upon the number of training exam-
ples. As such, when this data is large methods have been proposed for speeding up the
algorithm by decomposing the problem into smaller ones. Approximate (Stitson and
Weston, 1996) and exact (Osuna et al., 1997) methods have been proposed. MATLAB
implementations of the main support vector routines are shown below. Note that these
routines are not optimised in any sense! Typically the quadratic matrix, H, is badly
conditioned which can render quadratic program optimisers incapable of producing an
accurate solution. To address this, a quick fix of using zero order regularisation can be
used, but too large a value will perturb the solution significantly. (Note that this is the
capacity control used in some of the SVR routines.)

A.1 Support Vector Classification

The optimisation problem can be expressed in matrix notation as,

min
x

1
2
αT Hα + cT α (A.1)

where

H = ZZT , cT = (−1, . . . ,−1) (A.2)

with constraints

αT Y = 0, αi ≥ 0, i = 1, . . . , l. (A.3)

where

Z =


y1x1

...
ylxl

, Y =


y1

...
yl

 (A.4)

The MATLAB implementation is given below:
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function [nsv , alpha , b0] = svc(X,Y,ker ,C)

%SVC Support Vector Classification

%

% Usage : [ nsv alpha bias ] = svc(X,Y,ker ,C)

%

% Parameters : X - Training inputs

% Y - Training targets

% ker - kernel function

% C - upper bound (non - separable case)

% nsv - number of support vectors

% alpha - Lagrange Multipliers

% b0 - bias term

%

% Author : Steve Gunn ( srg@ecs.soton.ac.uk)

if ( nargin <2 | nargin >4) % check correct number of arguments

help svc

else

fprintf(’Support Vector Classification\n’)

fprintf(’_____________________________\n’)

n = size(X,1);

if (nargin <4) C=Inf;, end

if (nargin <3) ker=’linear ’;, end

% Construct the Kernel matrix

fprintf(’Constructing ...\n’);

H = zeros(n,n);

for i=1:n

for j=1:n

H(i,j) = Y(i)*Y(j)* svkernel(ker ,X(i,:),X(j,:));

end

end

c = -ones(n,1);

% Add small amount of zero order regularisation to

% avoid problems when Hessian is badly conditioned .

H = H+1e-10* eye(size(H));

% Set up the parameters for the Optimisation problem

vlb = zeros(n ,1); % Set the bounds : alphas >= 0

vub = C*ones(n ,1); % alphas <= C

x0 = zeros(n ,1); % The starting point is [0 0 0 0]

neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)

if neqcstr

A = Y’;, b = 0; % Set the constraint Ax = b

else

A = []; , b = [];

end

% Solve the Optimisation Problem

fprintf(’Optimising ...\n’);

st = cputime;

[ alpha lambda how ] = qp(H, c, A, b, vlb , vub , x0 , neqcstr );
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fprintf(’Execution time : %4.1f seconds\n’,cputime - st);

fprintf(’Status : %s\n’,how);

w2 = alpha ’*H*alpha;

fprintf(’|w0 |^2 : %f\n’,w2);

fprintf(’Margin : %f\n’ ,2/sqrt(w2));

fprintf(’Sum alpha : %f\n’,sum(alpha ));

% Compute the number of Support Vectors

epsilon = svtol(alpha );

svi = find( alpha > epsilon );

nsv = length(svi);

fprintf(’Support Vectors : %d (%3.1f%%)\n’,nsv ,100* nsv/n);

% Implicit bias , b0

b0 = 0;

% Explicit bias , b0

if nobias(ker ) ~= 0

% find b0 from average of support vectors on margin

% SVs on margin have alphas : 0 < alpha < C

svii = find( alpha > epsilon & alpha < (C - epsilon ));

if length(svii ) > 0

b0 = (1/ length(svii ))* sum(Y(svii) - H(svii ,svi)*alpha(svi).*Y(svii ));

else

fprintf(’No support vectors on margin - cannot compute bias.\n’);

end

end

end

Listing A.1: Support Vector Classification MATLAB Code

A.2 Support Vector Regression

The optimisation problem for an ε-insensitive loss function can be expressed in matrix
notation as,

min
x

1
2
xT Hx + cT x (A.5)

where

H =

[
XXT −XXT

−XXT XXT

]
, c =

[
ε + Y

ε− Y

]
, x =

[
α

α∗

]
(A.6)

with constraints

x · (1, . . . , 1,−1, . . . ,−1) = 0, αi, α
∗
i ≥ 0, i = 1, . . . , l. (A.7)

where

X =


x1

...
xl

, Y =


y1

...
yl

 (A.8)
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The MATLAB implementation is given below:

function [nsv , beta , bias ] = svr(X,Y,ker ,C,loss ,e)

%SVR Support Vector Regression

%

% Usage : [ nsv beta bias ] = svr(X,Y,ker ,C,loss ,e)

%

% Parameters : X - Training inputs

% Y - Training targets

% ker - kernel function

% C - upper bound (non - separable case)

% loss - loss function

% e - insensitivity

% nsv - number of support vectors

% beta - Difference of Lagrange Multipliers

% bias - bias term

%

% Author : Steve Gunn ( srg@ecs.soton.ac.uk)

if ( nargin < 3 | nargin > 6) % check correct number of arguments

help svr

else

fprintf(’Support Vector Regressing ....\n’)

fprintf(’______________________________\n’)

n = size(X,1);

if (nargin <6) e=0.0; , end

if (nargin <5) loss=’eInsensitive ’;, end

if (nargin <4) C=Inf;, end

if (nargin <3) ker=’linear ’;, end

% Construct the Kernel matrix

fprintf(’Constructing ...\n’);

H = zeros(n,n);

for i=1:n

for j=1:n

H(i,j) = svkernel(ker ,X(i,:),X(j ,:));

end

end

% Set up the parameters for the Optimisation problem

switch lower(loss)

case ’einsensitive ’,

Hb = [H -H; -H H];

c = [(e*ones(n,1) - Y); (e*ones(n ,1) + Y)];

vlb = zeros (2*n ,1); % Set the bounds : alphas >= 0

vub = C*ones (2*n ,1); % alphas <= C

x0 = zeros (2*n ,1); % The starting point is [0 0 0 0]

neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)

if neqcstr

A = [ ones(1,n) -ones(1,n)];, b = 0; % Set the constraint Ax = b

else

A = []; , b = [];

end

case ’quadratic ’,

Hb = H + eye(n)/(2*C);

c = -Y;

vlb = -1e30*ones(n,1);
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vub = 1 e30*ones(n,1);

x0 = zeros(n ,1); % The starting point is [0 0 0 0]

neqcstr = nobias(ker ); % Set the number of equality constraints (1 or 0)

if neqcstr

A = ones(1,n);, b = 0; % Set the constraint Ax = b

else

A = []; , b = [];

end

otherwise , disp(’Error : Unknown Loss Function\n’);

end

% Add small amount of zero order regularisation to

% avoid problems when Hessian is badly conditioned .

% Rank is always less than or equal to n.

% Note that adding to much reg will peturb solution

Hb = Hb+1e-10* eye(size(Hb));

% Solve the Optimisation Problem

fprintf(’Optimising ...\n’);

st = cputime;

[ alpha lambda how ] = qp(Hb , c, A, b, vlb , vub , x0 , neqcstr );

fprintf(’Execution time : %4.1f seconds\n’,cputime - st);

fprintf(’Status : %s\n’,how);

switch lower(loss)

case ’einsensitive ’,

beta = alpha (1:n) - alpha(n+1:2*n);

case ’quadratic ’,

beta = alpha;

end

fprintf(’|w0 |^2 : %f\n’,beta ’*H*beta);

fprintf(’Sum beta : %f\n’,sum(beta ));

% Compute the number of Support Vectors

epsilon = svtol(abs(beta ));

svi = find( abs(beta) > epsilon );

nsv = length ( svi );

fprintf(’Support Vectors : %d (%3.1f%%)\n’,nsv ,100* nsv/n);

% Implicit bias , b0

bias = 0;

% Explicit bias , b0

if nobias(ker ) ~= 0

switch lower(loss)

case ’einsensitive ’,

% find bias from average of support vectors with interpolation error e

% SVs with interpolation error e have alphas : 0 < alpha < C

svii = find( abs(beta) > epsilon & abs(beta ) < (C - epsilon ));

if length(svii ) > 0

bias = (1/ length(svii ))* sum(Y(svii) - e*sign(beta(svii )) - H(svii ,svi)*beta(svi ));

else

fprintf(’No support vectors with interpolation error e - cannot compute bias.\n’);

bias = ( max(Y)+min(Y))/2;

end
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case ’quadratic ’,

bias = mean(Y - H*beta);

end

end

end

Listing A.2: Support Vector Regression MATLAB Code



Appendix B

MATLAB SVM Toolbox

A MATLAB toolbox implementing SVM is freely available for academic purposes:

1. Download it from: http://www.isis.ecs.soton.ac.uk/resources/svminfo/

2. Extract the tar file svm.tar under the matlab toolbox directory.

3. Add .../matlab/toolbox/svm to your MATLAB path.

4. Type help svm at the MATLAB prompt for help.

The two main user interfaces are for 2D classification and 1D regression (uiclass and
uiregress respectively).
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