tpcc-uva: an open-source implementation
of the TPC-C benchmark

Installation and User Guide

Version 1.2

Diego R. Llanos
diego@infor.uva.es
University of Valladolid, Spain

December 2, 2014

Contents

Introduction

1.1 Imstallation highlights
1.2 Copyright notice
1.3 Weneed your opiniono e
1.4 Acknowledgements e
Installation of tpcc-uva

2.1 Imtroduction L e
2.2 Imitial requirements L
2.3 Imstalling PostgreSQL e
2.4 Installing Gnuplot
2.5 Installing tpcc-uva L L
2.6 How to remove everything L L

Running the benchmark

3.1 Option 1: Create a New Test Database
3.2 Option 2: Restore Existing Database
3.3 Option 3: Run The Test
3.4 Option 4: Check Database Consistency
3.5 Option 5: Delete Database
3.6 Option 6: Perform Data Analysis
3.7 Option 7: Check Database State
3.8 Option 8 Quit o
Performance analysis

4.1 General results L
4.2 Frequency Distribution of Response Times (Clause 5.6.1)
4.3 Response Times vs. Throughput for the New Order Transaction (Clause 5.6.2)
4.4 Frequency Distribution of Think Times (Clause 5.6.3)
4.5 Throughput of the New Order Transaction (Clause 5.6.4)

CONTENTS

Chapter 1

Introduction

The TPC-C benchmark is a well-know benchmark used to measure the performance of high-end systems.
TPC-C simulates the execution of a set of distributed, on-line transactions (OLTP), for a period between
two and eight hours. TPC-C incorporates five types of transactions with different complexity, for on-line
and deferred execution on a database system. The execution of the benchmark produces a performance
parameter, called "TPC-C transactions per minute" (tpmC). This parameter allows to compare the speed
of different systems!.

Although the TPC-C specifications are public, there was not a public implementation: each company
develops and uses its own. We have developed an open-source version of the TPC-C benchmark, that
can be used and distributed under the terms of the General Public License (GPL). This program, called
tpcc-uva, is written entirely in C language and can be run in any Linux system. It uses the PostgreSQL
database system and a simple transaction monitor. This implementation can be used to measure the
speed of different computers or to analyze the behavior of individual components, either hardware or
software, and its impact on the overall performance of the system. The development was started by
Eduardo Hernandez-Perdiguero and Julio A. Hernandez-Gonzalo as part of their Bachelor’s Thesis in the
Escuela Universitaria Politécnica, University of Valladolid, with the advise of Diego R. Llanos.

To keep tpcc-uva as an open-source program, we use our own version of a very simple Transaction
Monitor (TM), instead of using any commercial TM. This is the main deviation of tpcc-uva with respect
to the TPC-C standard, which says that the TM used should be commercially available. Because of that,
the results obtained with tpcc-uva, particularly the main performance parameter “tpcc-uva Transactions
per minute (tpmC-uva)” can not be compared with values of tpmC obtained with other implementations.

1.1 Installation highlights

Version 1.2 of tpcc-uva has more flexible installation requirements than its predecessors. It is not even
necessary to have root permissions on the system. All the user should do is to install the PostgreSQL
database server and to compile tpcc-uva in order to successfully run the benchmark.

In order to allow to reproduce the experiments, we strongly suggest to indicate, together with the
performance metric given by tpcc-uva, the operating system and the kernel and compiler used.

1.2 Copyright notice

tpcc-uva is distributed under the terms of the General Public License (GPL).

IThe official comparison is available at http://www.tpc.org/tpcc/results/tpcc_perf_results.asp.

6 CHAPTER 1. INTRODUCTION

1.3 We need your opinion

We are happy to allow the use of this benchmark for research purposes. To improve it we need your
feedback: if you use it, please let us know, writing to diego@infor.uva.es.

1.4 Acknowledgements

We would like to acknowledge the contribution of the following persons: Eduardo Hernandez-Perdiguero
and Julio Alberto Hern4dndez-Gonzalo for developing the first version of tpcc-uva [1] under our advice;
Belén Palop, for her useful work in the improvement of the benchmark [2]; Carmen Pilar Martinez-
Sanchez, Maria Pilar Gonzéalez and Juan Piernas Céanovas (University of Murcia, Spain), for helping us
to debug the code and the documentation, and Leonardo Antonio dos Santos (UFPR) for speeding up
the database creation process.

Chapter 2

Installation of tpcc-uva

2.1 Introduction

In this section we will describe how to correctly build the environment needed by the benchmark. To
keep the compatibility with most Linux distributions, and to be fair with the characteristics of the system
under test, the benchmark is distributed together with the source code of the database engine.

The time needed by the entire installation process depends on the characteristics of the system, but
for the current version can be estimated in less than an hour.

2.2 Initial requirements

The only requirements is to have a GNU/Linux system with 1Gb of recommended free disk space, and
a running GCC compiler. The installation is much simpler in tpcc-uva 1.2.1 than for its predecessors:
it is just a matter of installing the database engine, to compile the benchmark source code, to start the
database and then to start the benchmark.

2.3 Installing PostgreSQL

This benchmark was extensively tested with version 8.1.4 of the PostgreSQL engine. Other versions may
work as well, but we have not try them. Do not use versions older than version 8.0.

1. Create a tpcc-uva directory, and unpack there the PostgreSQL tarball. Only the tarball labeled
base is needed:

diego@linux:> mkdir $HOME/tpcc-uva

diego@linux:> mv postgresql-base-8.1.4.tar.bz2 tpcc-uva
diego@linux:> cd $HOME/tpcc-uva

diego@linux:> bunzip2 postgresql-base-8.1.4.tar.bz2
diego@linux:> tar xvfz postgresql-base-8.1.4.tar

2. Configure the PostgreSQL database source code. We suggest to create a tpcc-uva/pgsql directory
to install the binaries, libraries and include files of PostgreSQL. It is not really necessary to create
a postgres user: you can run the database engine and the benchmark as the same user.

Here we will summarize the steps needed to compile and install PostgreSQL. The detailed instruc-
tions can be found in the INSTALL file that comes with the source tarball of PostgreSQL.

CHAPTER 2. INSTALLATION OF TPCC-UVA

diego@linux:> mkdir $HOME/tpcc-uva/pgsql
diego@linux:> cd $HOME/tpcc-uva/postgresql-8.1.4
diego@linux:> ./configure --prefix=$HOME/tpcc-uva/pgsql

configure should not fail. If it fails, the most common reason is that a particular library is missing
in the system, such as readline or zlib. Contact your system administrator in order to install
them, and run configure again.

. Compile and install PostgreSQL. According to PostgreSQL documentation, the gmake binary should
be used to compile it: other make implementations may not work. This is not a problem in Linux
systems, but for other systems it should be taken into account.

diego@linux:> gmake
diego@linux:> gmake install
diego@linux:> mkdir $HOME/tpcc-uva/pgsql/data

. Modify the PATH and LD_LIBRARY_PATH environment variables of your account. To do so, edit
$HOME/ .bash_profile and add the following lines:

PATH=$HOME/tpcc-uva/bin: $HOME/tpcc-uva/pgsql/bin: $PATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/tpcc-uva/pgsql/lib
export PATH LD_LIBRARY_PATH

. Run the modified $HOME/ .bash_profile. Be careful with the exact format of the following com-
mand:

diego@linux:> . $HOME/.bash_profile

. Ensure that the paths are correct. Issue the following command:
diego@linux> which initdb

The answer should be $HOME/tpcc-uva/bin/initdb, indicating that the executable file is the one
we have just compiled.

. Run PostgreSQL.

diego@linux:> initdb -D $HOME/tpcc-uva/pgsql/data
diego@linux:> postmaster -D $HOME/tpcc-uva/pgsql/data >log.out 2>log.err &

From here on, PostgreSQL is running in the system. To use the tpcc-uva benchmark, this command
should be executed again each time the machine reboots.

. Change the PosgreSQL parameters. Perform the following changes in the
$HOME/tpcc-uva/pgsql/data/postgresql. conf file:

(a) Replace
#checkpoint_segments = 3 # in logfile segments (16MB each), min 1
in line 115 of postgresql.conf with the following:

checkpoint_segments = 10 # in logfile segments (16MB each), min 1

2.4. INSTALLING GNUPLOT 9

This increments the number of WAL (Write Ahead Logging) files that should become full to
force PostgreSQL to perform an automatic checkpoint.

(b) Replace
#checkpoint_timeout = 300 # in seconds, range 30-3600
in line 116 of postgresql.conf with the following:
checkpoint_timeout = 3600 # in seconds, range 30-3600

This moves to the maximun the time between automatic checkpoints.

9. Force PostgreSQL to re-read the configuration file:
diego@linux:> killall -HUP postmaster

Now PosgreSQL is ready for the test.

2.4 Installing Gnuplot

Gnuplot is needed to build the plots that summarize the results obtained with the benchmark. If you
do not have Gnuplot already installed in the system, you will need it. Again, it is enough to compile it
inside our user space.

1. Unpack the Gnuplot tarball under $HOME/tpcc-uva:

diego@linux:> cd $HOME/tpcc-uva
diego@linux:> gunzip gnuplot-3.7.1.tar.gz
diego@linux:> tar xvf gnuplot-3.7.1.tar

2. Go inside the Gnuplot source code directory and configure it:

diego@linux:> cd $HOME/tpcc-uva/gnuplot-3.7.1
diego@linux:> ./configure --prefix=$HOME/tpcc-uva/bin --without-x

To use only the libraries installed in the previous sections, we will not build the X interface of
Gnuplot.

3. Compile and install the package:

diego@linux:> make
diego@linux:> make install

2.5 Installing tpcc-uva

1. Unpack the tpcc-uva tarball under $HOME/tpcc-uva:

diego@linux:> cd $HOME/tpcc-uva
diego@linux:> gunzip tpccuva-1.2.1.tar.gz
diego@linux:> tar xvf tpccuva-1.2.1.tar

2. Create a tpcc-uva/var/tpcc directory to store the files generated by tpcc-uva during the execution
of the benchmark.

10 CHAPTER 2. INSTALLATION OF TPCC-UVA

diego@linux:> mkdir $HOME/tpcc-uva/var
diego@linux:> mkdir $HOME/tpcc-uva/var/tpcc

3. Important: Adjust the environment variables present in tpccuva-1.2.1/Makefile.

4. Compile and install the package:

diego@linux:> cd $HOME/tpcc-uva/tpccuva-1.2.1
diego@linux:> make
diego@linux:> make install

Congratulations! The benchmark is now installed. Chapter 3 explains how to run the benchmark,
and Chapter 4 how to obtain the performance plots according to TPCC specifications.

2.6 How to remove everything

To remove all the software can not be easier. Just kill the postmaster server and remove the directory
tree.

diego@linux:> killall -9 postmaster
diego@linux:> rm -rf $HOME/tpcc-uva/

Chapter 3

Running the benchmark

This chapter explains how to run the benchmark. Each run is called a test. The next chapter is devoted
to explain the basics of the analysis of the performance data after the execution of a test.

To run the benchmark, first create a directory to store the results. From there issue the following
command:

diego@linux:> $HOME/tpcc-uva/bin/bench

This will launch the benchmark controller. A menu with several options will appear. The basic steps
are the following:

1. Create a database.
2. Run the test and store the results.

3. Choose to run another test on the same database or to delete it and create a new one.

Therefore, if no database is present, only options 1 (create a database) and 8 (quit) are shown in the
menu. The following sections describe each option in detail.

3.1 Option 1: Create a New Test Database

This option allows the user to crate a new test database for running the benchmark. This database will
be populated according to the TPC-C standard requisites. If this option is not available, this means that
the database has been already created. The database will be created in the $HOME/tpcc-uva/pgsql/data
directory.

After choosing this option, the program asks for the number of warehouses the database will contain.
This number should be between 1 and 100. A greater number of warehouses means a larger workload.

Note: Take into account that a large enough workload will make the benchmark test fail. Typical
values are 1 warehouse for desktop PCs, or more for more powerful systems. To find the optimum value,
run a 2-hours test with a given number of warehouses and, if it succeeds, try to increment it and run
another one. Choose the maximum number your machine can process, and keep it during the remaining
measurements.

Note: Each additional warehouse means 137Mb of additional disk space.

The database population process can be stopped at any time just by pressing <Caryl>C. The program
will ask the user for confirmation. The number of rows that the database will have is described in Table
3.1.

11

12 CHAPTER 3. RUNNING THE BENCHMARK

Item table 100,000 rows.

Warehouse table 1 row for each warehouse.

District table 10 rows for each warehouse.

Customer table 30,000 rows for each warehouse.

History table 30,000 rows for each warehouse.

Orderr table 30,000 rows for each warehouse.

Order-line table | A mean value of 300,000 rows for each warehouse.
New-Order table 9,000 rows for each warehouse.

Stock table 100,000 rows for each warehouse.

Table 3.1: Number of rows of the database

3.2 Option 2: Restore Existing Database

This option undo the changes on the database due to the execution of a test. The option only appears
in the menu when a database has already been created.

Although is it possible to run a test with a restored database, the results of the test will be worse
than using a brand new database. On the other hand, to restore a database is much less time-consuming
than to create a new one. We recommend to use restored database only for preliminary tests.

The benchmark will not try to recover corrupted databases. If in doubt, remove the existing database
and build a new one.

3.3 Option 3: Run The Test

This option runs the performance test. This option is only shown when a database has already been
created or restored.
The program will ask for the parameters needed to run the test. These parameters are the following:

Number of warehouses: The number should be lower than or equal to the number of warehouses
stored in the database.

Number of terminals per warehouse: The official TPC-C specifications set this value to 10, although
for preliminary tests we may choose to use a lower value.

Ramp-up period: The terminal processes are launched during the so-called “ramp-up period”. After
this period the performance is expected to be stable, in order to start the measurements (as specified
in Clause 5.5 of the TPC-C benchmark). The ramp-up period should be set in minutes: A typical
value is around 20 minutes.

Measurement period: This is the time when the performance will be calculated. The TPC-C standard
specifies that this period should be last for 2 hours (120 minutes) to 8 hours (480 minutes). The
chosen period should be set in minutes.

After setting the values described above, the program will ask for a confirmation to continue the
process. If the values are not correct the program will ask for them again.

Once the values are correct the system will ask the user if he/she wants to perform vacuums during
the test. These vacuums are needed in order to eliminate residual information from the database that
degrade performance. The maximum number of vacuums and the interval between vacuums can be set
by the user. For eight-hours test it is useful to perform vacuums each 60 minutes, with a maxi-mun of
six vacuums'. The effect of these vacuums can be clearly observed in the performance plots obtained at
the end of the test.

IThe maxi-mun number of vacuums is set to avoid performing a vacuum just before finishing the test.

3.4. OPTION 4: CHECK DATABASE CONSISTENCY 13

After a new confirmation message, the test will begin by checking the database consistency, and later
executing the test itself. If the check fails for a given table, the program ask the user for confirmation
before proceeding. Although it is possible to proceed, we recommend to restore or rebuild the database
in case of error. The only exception is the New-Order table, because the transactions that works with
this table permit it to have fewer rows than the initial population. In any other case we recommend not
to continue with the test.

After the database check, the Transactions Monitor (TM) and the Remote Terminal Emulators (RTE)
will be launched, together with the Vacuum Controller, and the test will begin.

3.4 Option 4: Check Database Consistency

This option launches a check on the database, to ensure that the database follows the conditions of
clauses 3.3.2.1, 3.3.2.2, 3.3.2.3 and 3.3.2.4 of the TPC-C standard [3]|. Take into account that, although
the TPC-C standard defines 12 consistency conditions, only the four first conditions should be explicitly
demonstrated. This option is shown only if a database already exists.

3.5 Option 5: Delete Database

This option allow the user to delete an existing database.

3.6 Option 6: Perform Data Analysis

This option makes the program analyze the result data of the test. All the information is showed in
the screen, including information checkpoint files and vacuums. This information, together with the files
needed to build the performance graphics described in Clauses 5.6.1, 5.6.2, 5.6.3, 5.6.4 of the TPC-C
standard [3], can be stored in the current directory on user request.

After showing all the information, a final message is written in the screen telling the user if the test
has been passed or not. The resulting tpmC-uva value is valid only if the test has been passed.

3.7 Option 7: Check Database State

This option checks the number of rows of the database, showing the information to the user. This
information is useful to see if the database has already been used to run a previous test. If so, the user
may choose to delete it and create a new one, to restore it or to keep on using it. Take into account that
the TPC-C standard specifies that valid test should only be run with a database with the number of rows
showed in Table 3.1. See Section 3.1 for further information.

3.8 Option 8: Quit

This option closes the program. Any created database will remain for a next run of the program.

14

CHAPTER 3. RUNNING THE BENCHMARK

Chapter 4

Performance analysis

This chapter explains how to obtain the performance plots of a test run. As an example, we will use the
results obtained running tpcc-uva on a standard Linux box. The characteristics of this System Under
Test (SUT) are the following;:

e Intel Pentium IV processor at 1.6GHz

e 256 Mb RAM, with 512 Mb swap space.
e 40 Gb hard disk, ext2 filesystem.

e Red Hat Linux 9, Linux kernel 2.4.20-8.

4.1 General results

The maximum number of warehouses the SUT can handle while keeping the response time requirements
is three, with 10 terminals each. After determining this number of warehouses (running several experi-
ments) we ran an eight-hours experiment, with 20 minutes of ramp-up period and with up to 6 vacuums,
performed every 60 minutes. The general output file we obtained is the following:

Test results accounting performed on 2004-10-06 at 16:06:35 using 3 warehouses.
Start of measurement interval: 20.000317 m
End of measurement interval: 500.020467 m
COMPUTED THROUGHPUT: 35.226 tpmC-uva using 3 warehouses.
38896 Transactions committed.

NEW-ORDER TRANSACTIONS:
16909 Transactions within measurement time (17637 Total).
Percentage: 43.472),
Percentage of "well done" transactions: 97.155%
Response time (min/med/max/90th): 0.025 / 1.960 / 253.407 / 1.680
Percentage of rolled-back transactions: 1.005% .
Average number of items per order: 9.908 .
Percentage of remote items: 1.008% .
Think time (min/avg/max): 0.000 / 12.021 / 115.000

PAYMENT TRANSACTIONS:
16914 Transactions within measurement time (17653 Total).

15

16 CHAPTER 4. PERFORMANCE ANALYSIS

Percentage: 43.485

Percentage of "well done" transactions: 97.446Y%

Response time (min/med/max/90th): 0.005 / 1.427 / 253.271 / 1.600
Percentage of remote transactions: 15.153}, .

Percentage of customers selected by C_ID: 40.280% .

Think time (min/avg/max): 0.000 / 11.996 / 115.000

ORDER-STATUS TRANSACTIONS:
1691 Transactions within measurement time (1767 Total).
Percentage: 4.347%
Percentage of "well done" transactions: 97.694J
Response time (min/med/max/90th): 0.035 / 1.031 / 152.543 / 1.680
Percentage of customer selected by C_ID: 41.632% .
Think time (min/avg/max): 0.000 / 9.706 / 90.000

DELIVERY TRANSACTIONS:
1689 Transactions within measurement time (1764 Total).
Percentage: 4.342)
Percentage of "well done" transactions: 100.000%
Response time (min/med/max/90th): 0.000 / 0.000 / 0.001 / 0.000
Percentage of execution time < 80s : 99.5267
Execution time min/avg/max: 0.286/2.761/233.914
No. of skipped districts: O .
Percentage of skipped districts: 0.000%.
Think time (min/avg/max): 0.000 / 4.834 / 45.000

STOCK-LEVEL TRANSACTIONS:
1693 Transactions within measurement time (1766 Total).
Percentage: 4.353),
Percentage of "well done" transactions: 98.878)
Response time (min/med/max/90th): 0.049 / 2.579 / 174.609 / 3.200
Think time (min/avg/max): 0.000 / 4.803 / 45.000

Longest checkpoints:

Start time Elapsed time since test start (s) Execution time (s)
Thu Jun 10 21:27:49 2004 19274.158000 124.806000

Thu Jun 10 16:26:41 2004 1206.341000 10.490000

Thu Jun 10 23:30:14 2004 26619.928000 9.553000

Thu Jun 10 16:56:52 2004 3017.618000 8.884000

Longest vacuums:

Start time Elapsed time since test start (s) Execution time (s)
Thu Jun 10 20:19:04 2004 15149.690000 359.056000

Thu Jun 10 21:25:03 2004 19108.908000 328.324000

Thu Jun 10 22:30:32 2004 23037.508000 297.155000

Thu Jun 10 19:14:38 2004 11283.958000 265.560000

>> TEST PASSED

As we can see, the computed throughput has been 35.226 tpmC-uva using 3 warehouses. It is important
to note again that this value is valid if and only if the test has been passed, that means that the different
response times follows the standard requirements.

4.2. FREQUENCY DISTRIBUTION OF RESPONSE TIMES (CLAUSE 5.6.1)

Number of Transactions

Number of Transactions

4.2

Response Time Distribution, New Order transactions

1000

900
800 r
700
600
500
400
300
200
100

"glNéwOrder.dat" '

0 1 2 3 4
Response Time (s)

Response Time Distribution, Payment transactions

2500

2000

1500

1000

500

0 -

"glPayhent.dat"

0 1 2 3
Response Time (s)

4

Number of Transactions

Number of Transactions

90

80
70 +
60 |-
50
40 H
30 1

20
10

30

25 -

20

15 -

10

Response Time Distribution, Order Status transactions
"glOrd‘erStatus.dat"‘ _—
A s
2 3 4 5 6

Response Time (s)

Response Time Distribution, Stock Level transactions

"ngtockLeveI.dat"

Y WY T S T

)

4 6
Response Time (s)

8

10

Figure 4.1: Example of plots generated according to Clause 5.6.1 of the TPCC benchmark

Frequency Distribution of Response Times (Clause 5.6.1)

12

The purpose of this report is explained in Clause 5.6.1 of the TPC-C Benchmark. The data needed
to build each one of the required plots are in the following files: giDelivery.dat, giNewOrder.dat,

glOrderStatus.dat, glPayment.dat and glStockLevel.dat.
As an example, the Frequency Distribution of Response Times for our SUT in the experiment shown

above can be seen in Figure 4.1. The response time for the Delivery transaction is usually to small to be
accurately represented.

The plots shown in Fig. 4.1 were generated using Gnuplot and the script shown below. To generate

his/her new plots, the user should replace the “<4x90thPERCENTILE>” label that appear in the script file
below with four times the 90th percentile time for each transaction (the values can be found in the main,
text-only output file). Save the script as 561.gnp in the same directory as the output files and execute
gnuplot 561.gnp.

561.eps file generation

(Plot according to Clause 5.6.1 TPC-C Standard)

set
set
set

set
set
set
set

plot [0: <4x90thPERCENTILE>] "giNewOrder.dat" with lines

set

set title "Response Time Distribution, Delivery transactions"

set

terminal postscript 22
size 29.7/21 , 1.
pointsize 1

output "561-NewOrder.eps"

title "Response Time Distribution, New Order transactions"

xlabel "Response Time (s)"

ylabel "Number of Transactions"

output "561-Delivery.eps"

xlabel "Response Time (s)"

18 CHAPTER 4. PERFORMANCE ANALYSIS

set ylabel "Number of Transactions"
plot [0: <4x90thPERCENTILE>] "giDelivery.dat" with lines

set output "561-OrderStatus.eps"

set title "Response Time Distribution, Order Status transactions"
set xlabel "Response Time (s)"

set ylabel "Number of Transactions"

plot [0: <4x90thPERCENTILE>] "glOrderStatus.dat" with lines

set output "561-Payment.eps"

set title "Response Time Distribution, Payment transactions"
set xlabel "Response Time (s)"

set ylabel "Number of Transactions"

plot [0: <4x90thPERCENTILE>] "giPayment.dat" with lines

set output "561-StockLevel.eps"

set title "Response Time Distribution, Stock Level transactions"
set xlabel "Response Time (s)"

set ylabel "Number of Transactions"

plot [0: <4x90thPERCENTILE>] "glStockLevel.dat" with lines

4.3 Response Times vs. Throughput for the New Order Trans-
action (Clause 5.6.2)

The purpose of this report is explained in Clause 5.6.2 of the TPC-C Benchmark. The three points needed
to build it should be obtained manually by the user. To do so, the user should first complete a valid test.
Then the user should run at least other two tests, during at least 20 minutes of measure time, with 50%
and 80% of the number of active terminals were used in the first experiment. Other workloads may be
added to the plot as well. The 90th percentile of the response time for the New Order transaction for the
three experiments should be plotted.

For example, in our SUT we obtained a value of 1.680 for the 90th percentile of response time for
New Order transactions, with a workload of three warehouses (see the main output file at the beginning
of this chapter). To obtain the corresponding values for the 50% and 80% of the workload, we ran two
experiments, using the same number of warehouses but 5 and 8 terminals per warehouse instead of 10.
The experiment have a ramp-up time period of 20 minutes, and another 20 minutes of measurement (the
minimum specified by the standard).

After obtaining the three 90th percentile response times, the user should create a file with the workload
percentages and the times, like the following one. Save it as g2.dat:

50 0.640
80 0.960
100 1.680

Finally, the user may use one script like the following one to produce the desired plot. The <MAX-VALUE>
should be replaced with a value slightly greater than the maximum 90th percentile to be plotted (for ex-
ample, two in our case).

562.eps file generation
(Plot according to Clause 5.6.2 TPC-C Standard)

set terminal postscript landscape 22
set terminal postscript 22

set size 29.7/21 , 1.

set pointsize 1

4.4. FREQUENCY DISTRIBUTION OF THINK TIMES (CLAUSE 5.6.3) 19

Response Time vs. Throughput, New-Order Transaction

5 g2.datt —
K2
£
£ 15¢ 1
(]
%]
c
o
&
4 1 1
x
2
|5
o 05 R
[0
o
c
S
(2] 0 L L L L L L
40 50 60 70 80 90 100 110

MQTh

Figure 4.2: Example of plot generated according to Clause 5.6.2 of the TPCC benchmark.

Frequency Distribution of Think Times for the New Order Transaction

3500 T ‘
"g3.dat" ——
3000
2500
2000
1500

1000

Think Time Frequency

500

0 5 10 15 20 25 30 35 40 45
Think Time (seg)

Figure 4.3: Example of plot generated according to Clause 5.6.3 of the TPCC benchmark.

set output "562.eps"

set title "Response Time vs. Throughput, New-Order Transaction"
set xlabel "MQTh"

set ylabel "90th Percentile Response Time (seg)"

plot [40:110][0: <MAX-VALUE>] "g2.dat" with lines

Figure 4.2 shows the result for our SUT.

4.4 Frequency Distribution of Think Times (Clause 5.6.3)

The purpose of this report is explained in Clause 5.6.3 of the TPC-C Benchmark. This is the Frequency
Distribution of Think Times for the New Order Transaction. The resulting plot obtained in our SUT is
shown Figure 4.3.

The data needed to build the required plot is in the g3.dat file. The plot can be generated using
Gnuplot and the following script. To use it, the user should replace the “4xMEAN-THINK-TIME” label that
appear in the script file with four times the mean think time for the New-Order transaction (shown in

20 CHAPTER 4. PERFORMANCE ANALYSIS

Throughput of the New Order transaction versus Elapsed Time
40

o e —

35 h
T
5 30 E
g
g 257 b
2 20t 1
j=2]
=]
15} 1
e
'_

10 ¢ E

5 L L L L L

0 5000 10000 15000 20000 25000 30000

Elapsed Time (seg)

Figure 4.4: Example of plot generated according to Clause 5.6.4 of the TPCC benchmark.

the main text-only output file). Save the script as 563.gnp in the same directory as the output files and
execute gnuplot 563.gnp.

563.eps file generation
(Plot according to Clause 5.6.3 TPC-C Standard)

set terminal postscript 22
set size 29.7/21 , 1.
set pointsize 1

set output "563.eps"

set title "Frequency Distribution of Think Times for the New Order Transaction"
set xlabel "Think Time (seg)"

set ylabel "Think Time Frequency"

plot [0: 4xMEAN-THINK-TIME] "g3.dat" with lines

4.5 Throughput of the New Order Transaction (Clause 5.6.4)

The purpose of this report is explained in Clause 5.6.4 of the TPC-C Benchmark. This is the most
relevant plot to understand what happened during the measurement interval of the test. As an example,
Figure 4.4 shows the evolution of the number of New Order transactions during the ramp-up period and
the measurement interval. It is easy to see the effect of the vacuums in the evolution of the performance.

The data needed to build the required plot is in the g4.dat file. The plot can be generated using
Gnuplot and the following script. To use it, the user should replace the ELAPSED-TIME value that appear in
the script file with total elapsed time in seconds. This value is equivalent to the length of the measurement
interval plus two times the ramp-up period, measured in seconds. For example, for a 8-hours test with 20
minutes of ramp-up period, the elapsed time will be 31200 seconds. Save the following script as 564 .gnp
in the same directory as the output files and execute gnuplot 564.gnp.

564.eps file generation
(Plot according to Clause 5.6.4 TPC-C Standard)

set terminal postscript landscape 22
set terminal postscript 22

set size 29.7/21 , 1.

set pointsize 1

4.5. THROUGHPUT OF THE NEW ORDER TRANSACTION (CLAUSE 5.6.4)

set output "564.eps"

set title "Throughput of the New Order transaction versus Elapsed Time"
set xlabel "Elapsed Time (seg)"

set ylabel "Throughput (tpmC-uva)"

plot [0: ELAPSED-TIME] "g4.dat" with lines

21

22

CHAPTER 4. PERFORMANCE ANALYSIS

Bibliography

[1] Julio A. Hernandez, Eduardo Hernandez, and Diego R. Llanos. TPCC-UVA: Implementacion del
benchmark TPC-C. In Proc. XIII Jornadas de Paralelismo, Lérida, Spain, September 2002. ISBN
84-8409-159-7.

[2] Diego R. Llanos and Belén Palop. Tpcc-uva: An open-source implementation of the tpe-c¢ benchmark.
In Proceedings of IPDPS 2006 Workshops (PMEO-PDS 06, 5th Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed Systems. IEEE Press, April 2006.

[3] Transaction Processing Performance Council. TPC Benchmark C Standard Specification. Technical
Report Revision 5.0, February 2001.

23

