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Abstract

The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph the-
ory whose objective is to find the shortest paths between any pair of nodes. Computing
the distances from one source node to the rest and repeating this process for every node
of the graph is an adequate solution for sparse graphs. During the last years the ap-
plication of GPU devices have increased to accelerate this kind of problems. While the
correctness of an NVIDIA CUDA implementation of this algorithm is easy to achieve,
exploiting the GPU capabilities to obtain a good performance is a task for CUDA expe-
rienced programmers. A typical code tuning strategy is the selection of an appropriate
threadBlocks size. Besides this, the concurrent deployment of several kernels that com-
putes distances from different sources, also accelerates the execution times. In this
paper we show that an adequate combination of both strategies represents a 11.5 %
performance improvement between different, recommended CUDA configurations for
the most costly kernel of the APSP problem.

Key words: APSP, Concurrent-kernel, Dijkstra, GPU, SSSP, ThreadBlock size.

1 Introduction

Many problems that arise in real-world networks imply the computation of shortest paths
and their distances from any source to any destination point. Some examples include traffic
simulations [1], databases [2], Internet route planners [3], sensor network [4] or even the com-
putation of graph features as betweenness centrality [5]. Algorithms to solve shortest-path
problems are computationally costly, so, in many cases, commercial products implement
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heuristic approaches to generate approximate solutions instead. Although heuristics are
usually faster and do not need much amount of data storage or precomputation, they do
not guarantee the optimal path.

The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory
whose objective is to find the shortest paths between any pair of nodes. Given a graph
G= (V,E) and a function w(e) : e ∈ E that associates a weight to the edges of the graph,
it consists in computing the shortest paths for all pair of nodes (u, v) : u, v ∈ V . The
APSP problem is a generalization of the classical problem of optimization, the Single-Source
Shortest-Path (SSSP), that consists in computing the shortest paths from just one source
node s to every node v ∈ V . If the weights of the graph range only in positive values,
w(e) ≥ 0 : e ∈ E, we are facing the so-called Non-negative Single-source Shortest-Path
(NSSP) problem.

There are two ways to solve the APSP problem. The first solution is to execute |V |
times a NSSP algorithm selecting a different node as source in each iteration. The classical
algorithm that solves the NSSP problem is due to Dijkstra [6]. The second solution is to
execute an algorithm that globally solves the APSP problem using dynamic programming,
as the Floyd-Warshall algorithm [7, 8]. The former approach is used for sparse graphs
whereas the latter is more efficient for dense graphs.

In this paper we face the APSP problem for sparse graphs using a parallelized version
of Dijkstra’s algorithm for GPUs [9] combined with CUDA optimization methods. These
methods include the selection of a good criteria for the threadBlock size [10, 11] and the
deployment of concurrent kernels in the same application context on a single GPU device
to better exploit the underlying hardware resources [12]. The näıve Dijkstra’s algorithm is
a greedy algorithm whose efficiency is based in the ordering of previously computed results.
This feature makes its parallelization a difficult task. However, there are certain situations
where parts of this ordering can be permuted without leading to wrong results neither
performance losses. Some of these enhancements were posed by the authors in [13] allowing
to take more profit from parallel computation systems and devices.

An emerging way of parallel computation includes the use of hardware accelerators, such
as graphic processing units (GPUs). Their powerful capability have triggered their massive
use to speed up high-level parallel computations. High-level languages for parallel-data
computation, such as CUDA [14] and OpenCL [15], ease the general purpose programming
for these devices. The application of GPU computing to accelerate problems related with
shortest-path problems have increased during the last years. Some GPU-implemented so-
lutions to the NSSP problem have been previously developed by [9, 16, 17] using some
modifications of Dijkstra’s algorithm. The former algorithm is the parallel implementation
that we have used for our experiments.

In this paper we present GPU solutions to the APSP problem that apply the different
configurations recommended by CUDA [14] and the ones recommended in [10, 11] in order
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Table 1: Summary of Fermi CUDA architecture parameters.

Parameter Fermi GF110

Number of SPs (per-SM) 32
Max. number of blocks (per-SM) 8
Max. number of threads (per-SM) 1 536
Max. number of threads (per-block) 1 024
Max. concurrent kernel supported 16
Max. Occupancy block sizes 192, 256, 384, 512, 768

to obtain a good performance for the most costly kernel used in the GPU implementation.
Our experimental results show that the correct choice of some tuning parameter values of the
GPU, as the threadBlock size and the number concurrent kernels, represents a performance
difference up to a 11.5 percent from the worst recommended configuration to the best one.

The rest of this paper is organized as follows. Section 2 introduces some details of
the Fermi CUDA architecture. Section 3 introduces some basic concepts and notations
related to graph theory, and briefly describes the sequential Dijkstra’s algorithm. Section
4 explains the parallel version used and its implementation for GPU devices. Section 5
describes the optimization techniques used to speed up the GPU solution. Section 6 poses
the experimental methodology and used platform, and the input sets considered. Section 7
discusses the results obtained. Finally, Sect. 8 summarizes the conclusions we have obtained
and future work.

2 CUDA Overview

Graphics processing units started as image processing devices. Over the years, the GPUs
have increased in performance, architectural complexity, and programmability. Currently,
these devices are widely used for general purpose computing (GPGPU) [18] due to the
performance improvements achieved on multiple kind of parallel applications.

CUDA (Compute Unified Device Architecture) [14] is the parallel computing architec-
ture developed by Nvidia Company for general purpose applications. CUDA simplifies the
GPGPU programming by means of high level API and a reduced set of instructions.

The second generation of CUDA architecture is Fermi [12], released on early 2010.
Table 1 summarizes Fermi’s main characteristics. This architecture generation has increased
the number of SPs (Streaming Processors), and the maximum number of threads per SM
(Streaming Multiprocessor). Fermi introduced support for concurrent kernel execution,
where different kernels of the same application context can be executed on a single GPU at
the same time. This concurrent execution allows to better exploit the underlying hardware
resources. If the number of launched kernels overpasses the upper limit of concurrent kernels
supported by the architecture, then these kernels are stored in a concurrent kernel queue.
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3 Algorithmic Overview

3.1 Graph Theory Notation

We will briefly present some graph theory concepts and notations related to the shortest-
path problem. A graph G = (V,E) is composed by a set of vertices V , also called nodes,
and a set of edges E, also called arcs. Every vertex v is usually depicted as a point in the
graph. Every edge e is usually depicted as a line that connects two and only two vertices.
An edge is a tuple (u, v) that represents a link between vertices u and v. The number of
edges connected to a vertex v is called the degree of v. In an undirected graph all edges
can be traversed in both directions, whereas an edge (u, v) of a directed graph only can
be traversed from u to v. There is a weight function w(u, v) associated to each edge, that
represents the cost of traversing the edge.

A path P = 〈s, ..., u, ..., v, ..., t〉 is a sequence of vertices connected by edges, from a
source vertex s to a target one t. The weight of a path, w(P ), is the sum of all the weights
associated to the edges involved in the path. The shortest path between two vertices s and t
is the path with the minimum weight among all possible paths between s and t. Finally, the
minimum distance between s and t, d(s, t) or simply d(t), is the weight of the shortest path
between them. We denote δ(s, t), or simply δ(t), to a temporal tentative distance between
s and t during the computation of d(t).

3.2 Dijkstra’s algorithm

The basic solution for the NSSP is Dijkstra’s algorithm [6]. This algorithm constructs
minimal paths from a source node s to the remaining nodes, exploring adjacent nodes
following a proximity criterion. The exploring process is known as edge relaxation. When
an edge (u, v) is relaxed from a node u, it is said that node v has been reached. Therefore,
there is a path from source through u to reach v with a tentative shortest distance. Node v
will be considered settled when the algorithm has found the shortest path from source node
s to v. The algorithm finishes when all nodes are settled.

The algorithm uses an array, D, that stores all tentative distances found from source
node s to the rest of nodes. At the beginning of the algorithm, every node is unreached and
no distances are known, so D[i] = ∞ for all nodes i, except current source node D[s] = 0.
Note that both reached and unreached nodes are considered unsettled nodes.

The algorithm proceeds as follows:

1. (Initialization) The algorithm starts on the source node s, initializing distance array
D[i] = ∞ for all nodes i and D[s] = 0. Node s is considered as the frontier node f
(f ← s) and it is settled.

2. (Edge relaxation) For every node v adjacent to f that has not been settled, a new
distance from source is found using the path through f , with value D[f ] +w(f, v). If
this distance is lower than previous value D[v], then D[v]← D[f ] + w(f, v).
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3. (Settlement) The node u with the lowest value in D is taken as the new frontier node
(f ← u). After this, current frontier node f is now considered as settled.

4. (Termination criterion) If all nodes have been settled the algorithm finishes. Other-
wise, the algorithm proceeds to step 2.

In order to recover the path, every reached node stores its predecessor, so at the end
of the query phase the algorithm just runs back from target through stored predecessors
till the source node is reached. The shortest path tree of a graph from source node s is the
composition of every shortest path from s to the remaining nodes.

4 GPU Parallel Version of Dijkstra’s algorithm

In order to parallelize the Dijkstra algorithm, it is needed to identify which nodes can be
settled and used as frontier nodes at the same time. Crauser et al. in [13] introduces an
enhancement that tries to augment the frontier set with nodes which tentative distance
is bigger than the minimum computed in the iteration i but lower than a threshold ∆i.
The algorithm computes in each iteration i, for each node of the unsettled set, u ∈ Ui,
the sum of: (1) its tentative distance, δ(u), and (2) the minimum cost of its outgoing
edges, W (u) = min{w(u, z) : (u, z) ∈ E}. Afterwards, it calculates the minimum of these
computed values, ∆i = min{δ(u) + W (u) : u ∈ Ui}. Finally, those nodes whose tentative
distance δ(u) is lower or equal than this minimum value ∆i can be settled, becoming the
frontier set.

The four Dijkstra’s algorithm steps described in Sect. 3.2 can be easily transformed
into a GPU general algorithm (see Alg. 1). It is composed of three kernels that executes
the internal operations of the Dijkstra vertex outer loop.

The relax kernel (Alg. 2 (left), invoked in line 3 of Alg. 1) decreases the tentative
distances for the remaining unsettled nodes of the current iteration i through the outgoing
edges of the frontier nodes f ∈ Fi. A GPU thread is associated for each node in the graph.
Those threads assigned to frontier nodes, f ∈ Fi, traverse their outgoing edges, relaxing the
distances of their unsettled adjacent nodes.

The minimum kernel (invoked in line 4 of Alg. 1) computes the minimum tentative
distance of the nodes that belongs to the Ui set. To do so, the advanced reduce3 method
of the CUDA SDK has been modified to accomplish this task. Our minimum kernel is
adapted in order to: (1) add the corresponding W (v) value to δ(v), and (2) compare its
new assigned values to obtain the minimum one. The resulting value of this kernel is ∆i.

The update kernel (Alg. 2 (right), invoked in line 5 of Alg. 1) settles those nodes from Ui
whose tentative distances are lower or equal to ∆i. This task is carried out extracting them
from the following-iteration unsettled set, Ui+1, and putting them to the following-iteration
frontier set Fi+1. Each single GPU thread checks, for its corresponding node v, whether
U(v) ∧ δ(v) ≤ ∆i. If so, the thread assigns v to Fi+1 and deletes v from Ui+1.
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Algorithm 1 GPU implementation of Dijkstra’s algorithm. Kernels are delimited by <<< ... >>>.

1: <<<initialize>>> (U, F, δ); //Initialization
2: while (∆ 6=∞) do
3: <<<relax>>> (U, F, δ); //Edge relaxation
4: ∆ =<<<minimum>>> (U, δ); //Settlement step 1
5: <<<update>>> (U, F, δ,∆); //Settlement step 2
6: end while

Algorithm 2 Pseudo-code of a CUDA thread in relax kernel (left) and update kernel (right).

relax kernel(U, F, δ)

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: BEGIN ATOMIC REGION
6: δ[j] = min{δ[j], δ[tid] + w(tid, j)};
7: END ATOMIC REGION
8: end if
9: end for
10: end if

update kernel(U, F, δ, ∆)

1: tid = thread.Id;
2: F[tid]= FALSE;
3: if (U[tid]==TRUE and δ[tid] <= ∆) then
4: U[tid]= FALSE;
5: F[tid]= TRUE;
6: end if

5 CUDA optimizations to the relax kernel

This section describes how the CUDA optimization techniques and the guidelines described
in [10, 11] can improve the performance of the GPU solution for the APSP problem. From
the kernels used in this algorithm, we are going to focus on optimizing the relax kernel (See
Alg. 2) because it is the most costly kernel due to its scattered memory access pattern.

5.1 ThreadBlock size

The maximization of SM occupancy tries to hide the global memory latencies. In order to
achieve a high ratio of occupancy, CUDA recommends to select a proper threadBlock size.
However as we will see, this strategy not always leads to the best performance.

The authors in [10, 11] have tested a wide collection of kernels with different features us-
ing several optimization techniques. Their results showed that, for kernels with a high ratio
between low-coalesced global memory accesses and the number of instructions per thread,
a good performance can be obtained using threadBlock sizes that represent a medium ratio
of SM occupancy.

Due to the big amount of simultaneous memory requests, whose latencies cannot be
hidden, this type of kernels does not need to maximize the occupancy to obtain a good
performance. Moreover, the reduction of the number of threads per block also alleviates
the global memory bandwidth bottleneck, leading to better execution times. Thus, this re-
duction of the memory bandwidth bottleneck and bank conflicts compensates the inactivity
of some idle SPs per SM.
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The relax kernel of the GPU implementation shown in Sect. 4 presents similar features
as the kind of kernels described above. This fact suggest us that the use of block sizes with
a medium occupancy ratio would obtain better performance behaviour than the block sizes
recommended by CUDA, as can be seen in the following section.

5.2 Concurrent kernels

Since the second generation of NVIDIA architectures, CUDA supports concurrent kernel
execution. With this feature different kernels can be executed concurrently, allowing better
utilization of GPU resources. The maximum limit of concurrent kernels that the Fermi
architecture present in GF 110 series supports up to 16 kernels.

Moreover, the advantages of concurrent kernel execution are automatically exploited
by the CUDA kernel dispatcher, providing a high efficiency without an extensive user in-
tervention. The authors in [12] show that the best performance using concurrent kernels
is achieved with small kernels. The maximum number of concurrent kernels that can be
allocated efficiently in the GPU depends on the use of the hardware resources made by each
one. The less resources used by each kernel, the more kernels can be efficiently computed
concurrently.

Although the relax kernel was designed to take profit of the available resources, we
believe that the use of concurrent-kernels technique would provide a better exploitation of
the L1 and L2 data-cache and the threadBlock/warp dispatchers, as can be seen in the
following section.

6 Experimental setup

In this section we describe the methodology used for our experiments as well as the input
set problem used and the different configurations evaluated.

6.1 Methodology

We have compared the GPU solution proposed in [9] with different configurations of the
CUDA optimization techniques for the relax kernel, that are the threadBlock size and the
number of concurrent kernels. Both techniques are closely related to the use of the hardware
resources, and therefore, we have considered to test them together to efficiently squeeze the
GPU capabilities.

Additionally, for our experiments we have used sparse graphs whose number of nodes is
1 049 088. This size has been chosen because it is a multiple of all recommended values for
the threadBlock size. However, due to the large amount of computational load needed to
solve the APSP in these graphs, we have bounded the APSP problem to smaller problem
sets in order to reduce the global execution time.
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6.2 Target Architectures

The GPU device used for our experiments is the GeForce GTX 480 that has a Fermi CUDA
architecture (GF 110 series). The experiments have been launched using CUDA 4.2 toolkit
and the 195.36 64-bit driver. Regarding the host machine, we used an Intel(R) Core(TM)
i7 CPU 960 3.20GHz, 64-bits compatible, with a global memory of 6 GB DDR3. It runs an
UBUNTU Desktop 10.10 (64 bits) operating system.

6.3 Input Set Characteristics

The input set is composed by a collection of graphs randomly generated by a graph-creation
tool used by [16] in their experiments. The graphs have been created adding seven adjacent
predecessors to each node of the graph. Afterwards, they have inverted the graphs in order
to store the node successors sequentially. These graphs are represented through adjacency
lists, with the nodes numbered from 0 . . . |V | − 1, and integers that randomly range from
1 . . . 10 for edge weights.

6.4 Tuning the threadBlock and concurrent kernels

We have chosen the recommended threadBlocks sizes that maximize the SM occupancy
in the Fermi architecture (192, 256, 384, 512 and 768), as we have explained in Sect. 5.1.
Moreover, following the recommendations described in [10, 11], we have tested a lower value
for this threadBlock size, that is 64, 96 and 128 threads per block, with a medium ratio
of SM occupancy. Regarding the grid and the block shape, both have a single horizontal
dimension because the graph is stored in this way.

We also wanted to check if the deployment of more concurrent kernels will lead to better
performance times due to a good resource exploitation. In order to test this behaviour, we
have evaluated the GPU solution for the APSP with the following number of concurrent
kernels: 1, 2, 4, 8, 16, 32 and 64. As long as Fermi architecture cannot support more than
16 concurrent kernels, we suppose that the performance gain from this point will not be
significantly improved. The kernels launched after this limit are stored in a queue to later
be dispatched.

Since the threadBlock size and the number of concurrent kernels are closely related to
the use of hardware resources, they should be evaluated testing all combinations of these
parameters. First, we want to obtain the best configuration from the recommended values
for both threadBlock size and number of concurrent kernels for the GPU implementation.
Due to the large amount of computational time involved to solve the APSP problem we
have only launched this first experiment by computing only the distance from 1 024, 2 048
and 8 192 source nodes to all nodes. These values are selected because they are multiples
of the chosen numbers for the concurrent kernels launched.
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Figure 1: Relax-kernel execution times for different input sets with different configurations
between the number of threads per block (ths) and number of multi-kernels.

Second, we want to show the performance difference between the worst and the best
recommended configurations and to evaluate its scalability with bigger input sets. So, we
have also evaluated the performance for the 16 384 and 32 768 source-node to all.

7 Experimental results

In this section we present the experimental results obtained for the different parameter
configurations evaluated and the behaviour of the worst and the best configurations for the
relax kernel.

7.1 Tuning the threadBlock and concurrent kernels

Figure 1 shows the execution times for the different configurations for the 1 024-source-node
to all (left) and 8 192-source-node to all (right). The 4 096-source-node to all plot is not
shown because it presents a similar performance. In all cases, the best configuration from
the recommended values is reached with a block size of 96 threads and the execution of 4
concurrent kernels.

The results show that there are performance improvements from using one kernel until
four (or eight, for bigger threadBlock size) concurrent kernels due to the exploitation of
the data-caches and block/warp dispatchers. Through the CUDA Visual Profiler we have
observed that the use of concurrent kernels slightly reduces the number of L1 data-caches
misses for this kind of kernels. However, although the performance times from this point
are also good, the performance cannot be improved any more by introducing new kernels,
because the global memory bottlenecks and data-cache trashing effects increase even more.
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Figure 2: Execution times of the relax kernel for the best and the worst tuning/multi-kernel
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7.2 Total performance gain

From the previous experiments, the worst configuration is obtained with 256 threads per
block and 1 single concurrent kernel. On the other hand, the best results are reached with
96 threads per block and 4 concurrent kernels. Figure 2 shows the execution times for the
best and the worst recommended configurations for bigger problems as 16 384 and 32 768-
source-node to all. The global performance gain reached between the worst configuration
(256 threads + 1 kernel) and the best (96 threads + 4 concurrent kernels) is an 11.5 percent.

8 Conclusions

In this paper we have used two CUDA tuning techniques, namely, the choice of a good
threadBlock size and the use of concurrent kernels, to squeeze the performance of the
relax kernel of the GPU solution to the APSP problem. We have observed that the best
configuration of these two tuning techniques is reached with 96 threads per block and the use
of 4 concurrent kernels. The result of using these tuning techniques leads to a performance
gain up to 11.5 percent.

The results of our experiments corroborate the conclusions of the work described in [10].
For kernels with the same features as our relax kernel, an optimal performance is achieved if
smaller threadBlock sizes that do not reach the maximum occupancy are used. This occurs
because the blocks can be evicted from the SM quicker than other maximum-occupancy
configurations, and the global memory bottleneck is alleviated.
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The characteristics of our relax kernel lead us to think that the performance could be
improved even more by changing the configuration of the L1 data-cache. Due to our kernel
is not full coalesced, the augmentation of the L1 cache will reduce the thrashing effect of
this memory. Consequently, the amount of data transferred between the GPU memory
hierarchy could be significantly decreased. Our future work includes the better exploitation
of the L1 data-cache by choosing a good size configuration for this memory.

Additionally, also as future work, we will extend the techniques used, following the
guidelines proposed in [10], to optimize the remaining kernels of the APSP-GPU implemen-
tation.
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