A Tuned Concurrent-Kernel Approach
to Speed Up the APSP Problem

Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos and Arturo
(Gonzalez-Escribano

Universidad deValladolid

Universidad de Valladolid, Spain Grupo Trasgo

{hector|yuri.torres|diego|arturo}@infor.uva.es Universidad de Valladolid

INTRODUCTION FERMI ARCHITECTURE
e Many real-world problems compute shortest paths from any source to any destination. Parameter Fermi GF110
e The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory whose Number of SPs (per-SM) 32
objective is to find the shortest paths between any pair of nodes. Max. number 0£ b}llOCkZ (per—Sg/I) 3
.. : : Max. | t -oM 1536
e The application of GPGPU computing to accelerate problems related with shortest-path o, THIDELO B Areas (per-5M)
. . Max. number of threads (per-block) 1024
problems have increased during the last years. Max. concurrent kernel supported 16
e The use of advanced optimizations as the correct choice of the | threadBlock size | and the Max. Occupancy block sizes 192, 256, 384,
use of | concurrent kernels | can improve even more the GPU performance. re?ommended by CUDA [2] 012, 768
. . Block sizes for scatter access patterns 64, 96
e Our goal: To squeeze the performance of the GPU solution [1| for a real-life problem recommended by [3 198

(APSP), following the recommendations of CUDA [2] and the guidelines described in |3].

GPU DIJKSTRA AND THE 7relax kernel

1
2
3
4:
5
6

OPTIMIZATION 2: CONCURRENT KERNELS

Feature released since the 24 CUDA architecture generation.

Introduces a new level of parallelism automatically managed
by the CUDA driver.

Good performance for small size kernels.
- Hardware resources are shared between concurrent kernels.

Kernels with bigger sizes than available resources are
queued, but they are already launched.

Hypothesis: | Queued kernels could take profit from the

L1/L2 data-cache reutilization and the better block /warp dis-
patcher exploitation.

OPTIMIZATION 1: THREADBLOCK SIZE

. <<<initialize>>>(U, F, §); 1: tid = thread.Id; ¢ Not always Maximum Occupancy (MQO): A common
. while (A # o0) do 2: if (F|tid| == TRUE) then optimization to hide the memory latencies is the use of MO
<<<relax>>>(U, F,); 3: for all suc successor of tid do block sizes but not always achieves the best performance.
A =<<<minimum>>>(U,9); | 4 if (Ulsuc| == TRUE) then L #low_coalesced_accesses
<<<update>>>(U, F. 9, A)’ 5: e Kernel characterization: Hinstruc_per_thread
. end while 6: d|suc| = min{d|suc], d|tid| + w(tid,suc)}; Pl
7. - Best performance obtained with medium-occup. block sizes.
U: Set of unsettled nodes]: end if - Medium-occup. block sizes alleviate the memory bottleneck
F': Set of frontier nodes 9. end for and these blocks are evicted quicker than MO blocks.
0: Vector.of tentative distances 10: end if e | Hypothesis: | Relaz kernel performance would be improved
A: Iteration threshold using threadBlock sizes that lead to SM medium-occupancy.

EXPERIMENTAL SETUP

Exhaustive simultaneous evaluation of threadBlock size and concurrent kernel
optimization techniques on the GPU implementation described in [1].

ThreadBlock sizes tested: | 192, 256, 384, 512 and 768 recommended by CUDA
and | 64, 96 and 128 recomended by [3] |

We use sparse graphs with 1049 088 nodes (multiple of recommended values).

Due to the amount of computational load, we have reduced the APSP problem to
1024, 4096 and 8 192-source-node to all.

Number of concurrent kernels tested: |1, 2, 4, 8 and 16 | (maximum number sup-

ported by Fermi) and | 32, 64 | to observe an stressed concurrent environment.

The worst and best configurations are tested with 16 384, 32 768-source-node to all.

RESULTS
8192 tasks with different threadBlock size The best and the worst tuning/multi-kernel configurations PY Alway87 the best Conﬁguration for relar kernel 1s
148 | | | | | | I I L o
256 threads, 1 conc. kernels —— reached with 96 threads and 4 concurrent kernels.
I:T':_j:;;-;_-f_-_-__: _______________ - S it St 500 | 96 threads, 4 conc. kernels -------- e . .
g B R : — § aatn g e There are performance improvements from using 1
SRLLLIITIE "'""@-""""8'"""" SRR . NSRS S - . ,
A | 96ths -~ | 400 L kernel until 4 - 8 kernels.
O 140 . . * 128 ths % - :
2] 192ths e | e Concurrent kernels better exploit the data-cache and
@ 256 ths ---a-- ‘ -
oty - o 1384 the ---o-- block warp dispatchers.
B %g mg e | 200 ¢ e The use of more than 4 - 8 concurrent kernels leads
182 F— = | ' 100 | to more memory bottlenecks and cache thrashing.
g L e e T T } | A | | | e The performance gain between the worst configu-
1 2 4 8 16 32 64 1024 4096 8192 16384 32768 ration and the best is | 11.5%
Number of concurrent kernels Number of tasks i '
CONCLUSION AND FUTURE WORK REFERENCES
e We have squeezed the performance of GPU architecture for the relax kernel in a 11.5%. | ' [1] HECTOR ORTEGA-ARRANZ AND YURI TORRES AND

ry

e The CUDA recommended configurations do not always reach the best results.

rm

e The results corroborate the conclusion described in [3]:

— Smaller block sizes than the smallest MO size present better performance.

DIEGO R. LLANOS AND ARTURO GONZALEZ-ESCRIBANO

A New GPU-based Approach to the Shortest Path Prob-
lem. To appear in Proceedings of High Performance

Computing and Simulation (HPCS) 2013.

2] Davip B. Kirk AND WEN-MEI W. HWU Programming

— Smaller blocks can be evicted from the SM quicker alleviating the memory bottleneck. Massively Parallel Processors: A Hands-on Approach.

e We will test all L1 cache configurations to better exploit the memory hierarchy.

Morgan Kaufmann. Feb, 2010 ISBN: 978-0-12-381472-2.
3] YUurr TORRES, ARTURO GONZALEZ AND DIEGO R.

e Additionally, we want to extend the used techniques to optimize the rest of APSP kernels. LLANOS uBench: exposing the impact of CUDA block

A cknowledgements

geometry in terms of performance The Journal of Su-
percomputing, pp. 1-14, 2013.

This research is partly supported by the Ministerio de Industria, Spain (CENIT MARTA, CENIT OASIS, CENIT OCEANLIDER), Ministerio de Ciencia y Tecnologia
(CAPAP-HS3 network, TIN2010-12011-FE), and the HPC-EUROPA2 project (project number: 228398) with the support of the Furopean Commission - Capacities Area -
Research Infrastructures Initiative, and the ComplexHPC COST Action.

