
TPCC-UVa
An Open-Source TPC-C Implementation for Parallel and

Distributed Systems

Diego R. Llanos, Belén Palop

Computer Science Department
University of Valladolid, Spain

PMEO-PDS 06, Rhodes Island, April 29th, 2006

Diego R. Llanos, Belén Palop TPCC-UVa

Motivation

There are many benchmarks available to measure CPU
performance:

SPEC CPU2000, NAS, Olden. . .

To measure global system performance, vendors use
TPC-C benchmark
However, only TPC-C specifications are freely available
TPCC-UVa is an (unofficial) implementation of the TPC-C
benchmark, intended for research purposes

Diego R. Llanos, Belén Palop TPCC-UVa

How does TPC-C work?

TPC-C simulates the execution of a set of both interactive
and deferred transactions: OLTP-like environment
A number of terminals request the execution of different
database transactions, simulating a wholesale supplier
Five different transaction types are executed during a 2- to
8-hours period:

New Order enters a complete order
Payment enters the customer’s payment
Order Status queries the status of a customer’s last order
Delivery processes a batch of ten new orders
Stock Level determines the number of recently sold items

The number of New Order transactions processed during
the measurement time gives the performance number:
Transactions-per-minute-C, or tpm-C

Diego R. Llanos, Belén Palop TPCC-UVa

How does TPC-C work?

TPC-C simulates the execution of a set of both interactive
and deferred transactions: OLTP-like environment
A number of terminals request the execution of different
database transactions, simulating a wholesale supplier
Five different transaction types are executed during a 2- to
8-hours period:

New Order enters a complete order
Payment enters the customer’s payment
Order Status queries the status of a customer’s last order
Delivery processes a batch of ten new orders
Stock Level determines the number of recently sold items

The number of New Order transactions processed during
the measurement time gives the performance number:
Transactions-per-minute-C, or tpm-C

Diego R. Llanos, Belén Palop TPCC-UVa

How does TPC-C work?

TPC-C simulates the execution of a set of both interactive
and deferred transactions: OLTP-like environment
A number of terminals request the execution of different
database transactions, simulating a wholesale supplier
Five different transaction types are executed during a 2- to
8-hours period:

New Order enters a complete order
Payment enters the customer’s payment
Order Status queries the status of a customer’s last order
Delivery processes a batch of ten new orders
Stock Level determines the number of recently sold items

The number of New Order transactions processed during
the measurement time gives the performance number:
Transactions-per-minute-C, or tpm-C

Diego R. Llanos, Belén Palop TPCC-UVa

How does TPC-C work?

TPC-C simulates the execution of a set of both interactive
and deferred transactions: OLTP-like environment
A number of terminals request the execution of different
database transactions, simulating a wholesale supplier
Five different transaction types are executed during a 2- to
8-hours period:

New Order enters a complete order
Payment enters the customer’s payment
Order Status queries the status of a customer’s last order
Delivery processes a batch of ten new orders
Stock Level determines the number of recently sold items

The number of New Order transactions processed during
the measurement time gives the performance number:
Transactions-per-minute-C, or tpm-C

Diego R. Llanos, Belén Palop TPCC-UVa

About TPCC-UVa

Disclaimer
TPCC-UVa is not an official implementation. Our performance
number, tpmC-uva, should not be compared with tpm-C given
by any vendor

Why not?
We have not implemented price-per-tpmC metrics
Our Transaction Monitor is not “commercially available”
Therefore, the implementation does not have TPC approval

TPCC-UVa is written entirely in C language, and uses the
PostgreSQL database engine
To ensure fairness, we distribute TPCC-UVa together with
the toolchain that should be used to compile it

Diego R. Llanos, Belén Palop TPCC-UVa

About TPCC-UVa

Disclaimer
TPCC-UVa is not an official implementation. Our performance
number, tpmC-uva, should not be compared with tpm-C given
by any vendor

Why not?
We have not implemented price-per-tpmC metrics
Our Transaction Monitor is not “commercially available”
Therefore, the implementation does not have TPC approval

TPCC-UVa is written entirely in C language, and uses the
PostgreSQL database engine
To ensure fairness, we distribute TPCC-UVa together with
the toolchain that should be used to compile it

Diego R. Llanos, Belén Palop TPCC-UVa

About TPCC-UVa

Disclaimer
TPCC-UVa is not an official implementation. Our performance
number, tpmC-uva, should not be compared with tpm-C given
by any vendor

Why not?
We have not implemented price-per-tpmC metrics
Our Transaction Monitor is not “commercially available”
Therefore, the implementation does not have TPC approval

TPCC-UVa is written entirely in C language, and uses the
PostgreSQL database engine
To ensure fairness, we distribute TPCC-UVa together with
the toolchain that should be used to compile it

Diego R. Llanos, Belén Palop TPCC-UVa

About TPCC-UVa

Disclaimer
TPCC-UVa is not an official implementation. Our performance
number, tpmC-uva, should not be compared with tpm-C given
by any vendor

Why not?
We have not implemented price-per-tpmC metrics
Our Transaction Monitor is not “commercially available”
Therefore, the implementation does not have TPC approval

TPCC-UVa is written entirely in C language, and uses the
PostgreSQL database engine
To ensure fairness, we distribute TPCC-UVa together with
the toolchain that should be used to compile it

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

The Benchmark Controller interacts with the user,
populating database and launching experiments

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

To each RTE

Signals

Inter−process
communications

Disk access

Emulator
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote
Terminal
Remote

The Remote Terminal Emulators, one por terminal, request
transactions according with TPC-C specifications

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

The Transaction Monitor receives all the requests for RTEs
and execute queries to the database system

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

Checkpoints
Controller

Vacuums
Controller

The Checkpoints Controller performs checkpoints
periodically and registers timestamps

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database
Checkpoints
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

Vacuums
Controller

The Vacuums Controller avoids the degradation produced
by the continuous flow of operations in the database

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa architecture

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

IPCs are carried out using shared-memory structures and
system signals→ suitable for SMPs

Diego R. Llanos, Belén Palop TPCC-UVa

The Transactions Monitor

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

The TM receives the transaction requests from all RTEs,
passing them to the database engine and returning the
results
The TPC-C clause that forces the use of a “commercially
available TM” avoids the use of tailored TMs to artificially
increase performance
We do not use a “commercially available TM”; instead, we
simple queue the requests and pass them to the database

Diego R. Llanos, Belén Palop TPCC-UVa

The Transactions Monitor

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

The TM receives the transaction requests from all RTEs,
passing them to the database engine and returning the
results
The TPC-C clause that forces the use of a “commercially
available TM” avoids the use of tailored TMs to artificially
increase performance
We do not use a “commercially available TM”; instead, we
simple queue the requests and pass them to the database

Diego R. Llanos, Belén Palop TPCC-UVa

The Transactions Monitor

Database
Checkpoints
Controller

Vacuums
Controller

TM logs

Emulator

Remote
Terminal
Emulator

Terminal
Emulator

Terminal
Emulator

Remote Remote Remote

Performance logs

engine
database

PostgreSQL

Transaction
Monitor

B
en

ch
m

ar
k

C
on

tr
ol

le
r

Terminal
To each RTE

Signals

Inter−process
communications

Disk access

The TM receives the transaction requests from all RTEs,
passing them to the database engine and returning the
results
The TPC-C clause that forces the use of a “commercially
available TM” avoids the use of tailored TMs to artificially
increase performance
We do not use a “commercially available TM”; instead, we
simple queue the requests and pass them to the database

Diego R. Llanos, Belén Palop TPCC-UVa

Running an experiment

The TPC-C benchmark should be executed during a given
period (2 or 8 hours), with a workload chosen by the user
To be considered valid, the results of the test should meet
some response time requirements (that is, the test may fail)
Our implementation, TPCC-UVa, checks these
requirements and reports the performance metrics,
including tpmC-uva obtained
Results given in the paper shows the performance of an
Intel Xeon system with two processors, with a value for
tpmC-uva = 107.882 for 9 warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Running an experiment

The TPC-C benchmark should be executed during a given
period (2 or 8 hours), with a workload chosen by the user
To be considered valid, the results of the test should meet
some response time requirements (that is, the test may fail)
Our implementation, TPCC-UVa, checks these
requirements and reports the performance metrics,
including tpmC-uva obtained
Results given in the paper shows the performance of an
Intel Xeon system with two processors, with a value for
tpmC-uva = 107.882 for 9 warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Running an experiment

The TPC-C benchmark should be executed during a given
period (2 or 8 hours), with a workload chosen by the user
To be considered valid, the results of the test should meet
some response time requirements (that is, the test may fail)
Our implementation, TPCC-UVa, checks these
requirements and reports the performance metrics,
including tpmC-uva obtained
Results given in the paper shows the performance of an
Intel Xeon system with two processors, with a value for
tpmC-uva = 107.882 for 9 warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Running an experiment

The TPC-C benchmark should be executed during a given
period (2 or 8 hours), with a workload chosen by the user
To be considered valid, the results of the test should meet
some response time requirements (that is, the test may fail)
Our implementation, TPCC-UVa, checks these
requirements and reports the performance metrics,
including tpmC-uva obtained
Results given in the paper shows the performance of an
Intel Xeon system with two processors, with a value for
tpmC-uva = 107.882 for 9 warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Report

Test results accounting performed on 2004-18-10 at 17:58:57 using 9 warehouses.

Start of measurement interval: 20.003233 m
End of measurement interval: 140.004750 m
COMPUTED THROUGHPUT: 107.882 tpmC-uva using 9 warehouses.
29746 Transactions committed.

NEW-ORDER TRANSACTIONS:
12946 Transactions within measurement time (15035 Total).
Percentage: 43.522%
Percentage of "well done" transactions: 90.854%
Response time (min/med/max/90th): 0.006 / 2.140 / 27.930 / 4.760
Percentage of rolled-back transactions: 1.012% .
Average number of items per order: 9.871 .
Percentage of remote items: 1.003% .
Think time (min/avg/max): 0.000 / 12.052 / 120.000

PAYMENT TRANSACTIONS:
12919 Transactions within measurement time (15042 Total).
Percentage: 43.431%
Percentage of "well done" transactions: 90.858%
Response time (min/med/max/90th): 0.011 / 2.061 / 27.387 / 4.760
Percentage of remote transactions: 14.862% .
Percentage of customers selected by C_ID: 39.601% .
Think time (min/avg/max): 0.000 / 12.043 / 120.000

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Report

ORDER-STATUS TRANSACTIONS:
1296 Transactions within measurement time (1509 Total).
Percentage: 4.357%
Percentage of "well done" transactions: 91.435%
Response time (min/med/max/90th): 0.016 / 2.070 / 27.293 / 4.640
Percentage of customers chosen by C_ID: 42.284% .
Think time (min/avg/max): 0.000 / 9.998 / 76.000

DELIVERY TRANSACTIONS:
1289 Transactions within measurement time (1502 Total).
Percentage: 4.333%
Percentage of "well done" transactions: 100.000%
Response time (min/med/max/90th): 0.000 / 0.000 / 0.001 / 0.000
Percentage of execution time < 80s : 100.000%
Execution time min/avg/max: 0.241/2.623/27.359
No. of skipped districts: 0 .
Percentage of skipped districts: 0.000%.
Think time (min/avg/max): 0.000 / 4.991 / 38.000

STOCK-LEVEL TRANSACTIONS:
1296 Transactions within measurement time (1506 Total).
Percentage: 4.357%
Percentage of "well done" transactions: 99.691%
Response time (min/med/max/90th): 0.026 / 2.386 / 26.685 / 5.120
Think time (min/avg/max): 0.000 / 5.014 / 38.000

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Report

Longest checkpoints:
Start time Elapsed time (s) Execution time (s)
Mon Oct 18 20:19:56 2004 8459.676000 27.581000
Mon Oct 18 18:49:10 2004 3013.506000 21.514000
Mon Oct 18 19:19:32 2004 4835.039000 14.397000
Mon Oct 18 18:18:57 2004 1200.238000 13.251000

No vacuums executed.

» TEST PASSED

If the test fails because of response time requirements
have not met, the workload chosen was too high: The
experiment should be repeated with less warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Report

Longest checkpoints:
Start time Elapsed time (s) Execution time (s)
Mon Oct 18 20:19:56 2004 8459.676000 27.581000
Mon Oct 18 18:49:10 2004 3013.506000 21.514000
Mon Oct 18 19:19:32 2004 4835.039000 14.397000
Mon Oct 18 18:18:57 2004 1200.238000 13.251000

No vacuums executed.

» TEST PASSED

If the test fails because of response time requirements
have not met, the workload chosen was too high: The
experiment should be repeated with less warehouses

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Plots

According with clause 5.6.1 of TPC-C, some performance
plots should be generated after a test run

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, New Order transactions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Order Status transactions

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Payment transactions

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

N
um

be
r

of
 T

ra
ns

ac
tio

ns

Response Time (s)

Response Time Distribution, Stock Level transactions

Response time distribution of some transaction types for a 2-hours
execution on the system under test

Diego R. Llanos, Belén Palop TPCC-UVa

Experimental results: Need of vacuums

If the experiment is longer than 8 hours, vacuums should
be executed periodically in order to keep performance

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5000 10000 15000 20000 25000 30000

T
hr

ou
gh

pu
t (

tp
m

C
-u

va
)

Elapsed Time (s)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5000 10000 15000 20000 25000 30000

T
hr

ou
gh

pu
t (

tp
m

C
-u

va
)

Elapsed Time (s)

Throughput of the New-Order transaction for a 2-hours execution on the
system under test With (a) hourly vacuum operations, and (b) no

vacuums.

Diego R. Llanos, Belén Palop TPCC-UVa

Conclusion

TPCC-UVa is an implementation of TPC-C benchmark that
allows the performance measurement of parallel and
distributed systems
TPCC-UVa is open-source, making easy to instrument it in
order to use it with simulation environments such as Simics
TPCC-UVa can be downloaded from

http://www.infor.uva.es/~diego/tpcc-uva.html

Diego R. Llanos, Belén Palop TPCC-UVa

Conclusion

TPCC-UVa is an implementation of TPC-C benchmark that
allows the performance measurement of parallel and
distributed systems
TPCC-UVa is open-source, making easy to instrument it in
order to use it with simulation environments such as Simics
TPCC-UVa can be downloaded from

http://www.infor.uva.es/~diego/tpcc-uva.html

Diego R. Llanos, Belén Palop TPCC-UVa

Conclusion

TPCC-UVa is an implementation of TPC-C benchmark that
allows the performance measurement of parallel and
distributed systems
TPCC-UVa is open-source, making easy to instrument it in
order to use it with simulation environments such as Simics
TPCC-UVa can be downloaded from

http://www.infor.uva.es/~diego/tpcc-uva.html

Diego R. Llanos, Belén Palop TPCC-UVa

TPCC-UVa
An Open-Source TPC-C Implementation for Parallel and

Distributed Systems

Diego R. Llanos, Belén Palop

Computer Science Department
University of Valladolid, Spain

PMEO-PDS 06, Rhodes Island, April 29th, 2006

Diego R. Llanos, Belén Palop TPCC-UVa

