
7th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2014)
Amsterdam, Netherlands
July 3-4, 2014

New Data Structures to Handle Speculative
Parallelization at Runtime

Alvaro Estebanez · Diego R. Llanos ·
Arturo Gonzalez-Escribano

Abstract Software-based, thread-level speculation (TLS) is a software tech-
nique that optimistically executes in parallel loops whose fully-parallel seman-
tics can not be guaranteed at compile time. Modern TLS libraries allow to
handle arbitrary data structures speculatively. This desired feature comes at
the high cost of local store and/or remote recovery times: The easier the local
store, the harder the remote recovery. Unfortunately, both times are on the
critical path of any TLS system. In this paper we propose a solution that
performs local store in constant time, while recover values in a time that is
in the order of T , being T the number of threads. As we will see, this solu-
tion, together with some additional improvements, makes the difference be-
tween slowdowns and noticeable speedups in the speculative parallelization of
non-synthetic, pointer-based applications on a real system. Our experimental
results show a gain of 3.58× to 28× with respect to the baseline system, and
a relative efficiency of up to, on average, 65% with respect to a TLS imple-
mentation specifically tailored to the benchmarks used.

Keywords thread-level speculation · speculative parallelism · memory
improvements

1 Introduction

Thread-Level Speculation (TLS) [3,29,30,34], also called Speculative Paral-
lelization (SP) [8,10,14,37] or Optimistic Parallelism [16–21] tries to extract
parallelism of loops that can not be considered fully parallel at compile time.

A. Estebanez · D.R. Llanos · A. Gonzalez-Escribano
Departamento de Informatica, Universidad de Valladolid, Valladolid, Spain 47011
E-mail: alvaro@infor.uva.es

D.R. Llanos
E-mail: diego@infor.uva.es

A. Gonzalez-Escribano
E-mail: arturo@infor.uva.es

Estebanez et al.

TLS optimistically assumes that dependence violations will not occur, launch-
ing the parallel execution of the loop. A hardware or software monitor ensures
the correctness of that assumption. If a dependence violation is detected, of-
fending threads are stopped and re-started in order. After solving the issue,
the optimistic, parallel execution is allowed to proceed. The target of TLS sys-
tems are usually for loops. Other loops can be considered as well, but as long
as their number of iterations can not be so easily predicted, the applicability
of TLS solutions is limited by scheduling problems.

In order to handle the speculative parallelization of a loop, all variables
that are not private nor shared are labeled at compile time as “speculative”.
All reads to a speculative variable are replaced at compile time with a function
that recovers the most up-to-date value for this variable. In a similar way, all
writes to a speculative variable are replaced with a function that not only
performs the write operation, but also ensures that no thread executing a
subsequent iteration has already consumed an outdated value of this variable.

The most common solution to maintain speculative data is to allow each
thread to keep a version copy of all the speculative variables that have been
locally accessed. Once a thread finishes the execution of its chunk of iterations,
all changes in the speculative data are committed to main memory.

The biggest challenge in software-based TLS is how to reduce the time
needed to (a) get the most up-to-date value when reading speculative data,
and (b) to search for a possible dependence violation when a thread writes on a
speculative variable. Note that both operations imply traversing all the version
copies maintained by other threads. In the first case, the search for an up-to-
date value implies to traverse all the data being kept by all predecessor threads
(that is, threads being executing earlier chunks of iterations). In the second
case, the search implies to traverse all the speculative data being maintained
by all successors.

Access to predecessor and successor copies of the data are in the critical
path of any TLS system. The problem is even more difficult to solve if the
TLS library allows to speculate over dynamic structures and/or pointer-based
references.

Among all software-based TLS approaches proposed in the literature, few
of them are capable of speculatively handling dynamic data structures [20,
34]. Considering the difficulty of the problem to solve, it is not strange that
the solutions proposed rely on abstract approaches that are difficult to both
understand and implement.

The contribution of this paper is to show a new solution to traverse specula-
tive data in a software-based TLS library. We will describe how to dramatically
decrease the number of memory accesses when searching for predecessor and
successor versions of speculative data, while keeping the cost of local data stor-
age in O(1). Our experimental results with well-known benchmarks on a real
system show that these optimizations lead to significant reductions in the num-
ber of accesses needed (by a factor of three orders of magnitude) comparing
with a competitive baseline implementation that lacks this feature. We also
propose additional solutions to further reduce the memory allocation calls,

New Data Structures to Handle Speculative Parallelization at Runtime

needed to dynamically add new variables to the speculative structures that
should be managed at runtime. The combined effect of all these improvements
is an impressive increment in the speedups obtained.

The rest of this paper is structured as follows: Section 2 puts this work
in perspective with the existent solutions in this field. Section 3 describes the
baseline solution developed in a previous research. Section 4 describes both the
experimental environment and the benchmarks used to evaluate the baseline
solution and our new proposals. Section 5 evaluates the costs of speculative
reads and writes, from a theoretical and experimental points of view. Section 6
addresses the improvements applied to the library in order to improve its
performance. Section 7 describes two additional improvements that leads to an
ever faster speculative parallel execution. Section 8 shows some experimental
results in terms of performance measured in a real system. Finally, Section 9
concludes this paper.

2 Related work

Memory management is a critical field in the context of speculative paral-
lelization. As we will see in this paper, an adequate handling of speculative
variables makes a huge difference in terms of performance. We will first re-
view some efforts in this field, and later we will concentrate on the problem of
ensuring fast accesses to version data.

2.1 TLS approaches

Several researches have been centered in the parallelization of loops with cross-
iteration dependences through thread-level speculation (TLS) techniques. Some
of them have been implemented in hardware [5,7,11,15,24,31,32], through the
design of specific chips, or the addition of some functionalities. But there are
also several software approaches that support the mentioned parallelism with
no architectural changes [3,14,16,18,20,23,28,30,34]. One of this software ap-
proaches is the work of Tian, Feng, Nagarajan and Gupta in [34,35], where they
proposed the Copy-or-Discard (CorD) execution model, in which the execution
of parallel threads are separately managed by the non-speculative one. Spec-
ulative threads read values of the non-speculative thread and perform their
computation, after that, speculative threads are committed in order. After
that results are checked by non-speculative thread in order to preserve seman-
tics of sequential order. Commit operation is performed by non-speculative
thread through the Copy or Discard mechanism that checks whether results
are correct to be copied to the non-speculative data, or discarded with no cost
otherwise. However, CorD approach did not support those applications whose
speculative variables were dynamically allocated, so in [33] Tian, Feng and
Gupta developed mechanisms that enable their solution to do it.

Estebanez et al.

Cintra and Llanos [3,4] contributed another scheme mainly based on an
aggressive sliding window, with checks for data dependence violations on spec-
ulative stores that reduced synchronization constraints, and with fine-tuned
data structures.

Kulkarni et al. in the work described in [20,21], introduced Galois a system
to support complex pointer-based sets of elements in optimistic parallelism.
They were centered on parallelize applications with complex structures as
linked lists, graphs, trees, etc.

In particular, these approaches suffered from some specific bottlenecks be-
cause a dynamic structure could change their size during the execution, and
usually they are bigger than the static structures, so traverse them could be
very inefficient.

2.2 The problem of traversing version copies

Earlier software-based TLS libraries such as [3] only allowed speculative ac-
cesses to static data structures such as vectors. In this way, if a given thread
wanted to get the most up-to-date value for the i-th element of a speculative
vector, it simply looked for it in the i-th position of the version copy of each
predecessor. Writes were handled in the same way, looking for the i-th position
of each successor’s version copy of the speculative data. It is easy to see that,
with T threads, the complexity of this search is in O(T), an affordable value
taking into account that T is usually in the order of tenths of processors.

Modern TLS libraries allow to speculatively access not only static vectors,
but arbitrary memory locations. Usually, this data is kept with no particular
order, an attractive solution since the cost of inserting a new element to the
structure is exactly in O(1). The problem with this solution is that the search
for a previous value (due to a read operation) and the search for potential
violations (due to a write) imply traversing all version data kept by all pre-
decessors and successors, respectively. If we consider T threads and M data
elements in each version copy, this lead to a complexity that is in O(T ×M),
with M potentially in the order of millions of elements. The solution of storing
values using an ordered data structure may seem reasonable, but this comes
at the cost of a higher storage time, that is also undesirable. As we will see,
our solution keeps the storage cost in O(1) while the traversing cost is in
O(T × M

H), with H an arbitrarily large constant. In practice, this solution
leads to a traversing cost that is just in O(T).

Ceze et al. [2] addressed the problem of the complexity of the basics oper-
ations involved in TLS processes. To do this they used a kind of hash encoder,
called signature, that manages the addresses accessed by each speculative
thread. Each signature is a set of addresses and allowed to treat several ad-
dresses as if they were a single one. They enhanced the architecture with some
hardware mechanism that could efficiently operate with this hashed informa-
tion. The main differences with our system are that their’s is hardware-based

New Data Structures to Handle Speculative Parallelization at Runtime

and the hash is used to perform operations to a group of addresses instead
traversing their data.

Kulkarni et al. [19] introduced some improvements that increased the ef-
ficiency of Galois. They implemented a method to perform data partitioning
in the data in a way that all elements of a set where mapped to an abstract
domain, and then, transformed again to physical cores. Mendez-Lojo et al.
[26] also described three techniques to optimize irregular applications. The
first one is modifying codes in a way that all read operations are done before
any write operation. The second one, based on the calculation of dependences
before the execution. The last one, is used for those algorithms whose bottle-
necks are located in the accesses to data sets and it is based on removing the
correspondence between iteration and activities. Unlike our solution, all these
optimizations are referred to algorithms.

Tian et al. [33] addressed the problems related to storage and location of
intermediate values in CorD with the use of a mapping table that translate
addresses between speculative and non-speculative threads. In that work, au-
thors affirmed that using a hash function was inefficient, with a 6× slowdown
with respect to other alternatives due to the use of a complex hash function.
Our work shows that the use of a simpler hash function leads to impressive
speedups in several applications.

Mehrara et al. [25] described STMLite, a software transactional memory
model modified to support speculative parallelization. It was specially designed
to reduce overheads of accesses to variables logs in transactions using a thread
that managed the execution. Management of addresses was handled with the
use of hash-based solutions. More software transactional model systems have
used hashes to improve their performance, i.e., Harris et al. [12] used hashes
to remove duplicates in an undo log.

Oancea et al. [27] described their own TLS approach called SpLIP, cen-
tered on decreasing overheads of speculative operations of previous approaches.
They implemented non-locking operations where was possible, and used a hash
function to improve location of version copies. Their hash is based on mapping
adjacent zones of the array that stored speculative values in a single place. As
we will see, our solution is not based on joining near addresses, since we do
not need to group speculative variables.

A similar approach to SpLIP [27], called MiniTLS, was developed by Yi-
apanis et al. [36]. They introduced a new structure that optimized memory
overheads of classical approaches based on the idea of mapping every user-
accessed address into an array of integers using a hash function.

Jimborean et al. [13] introduced a TLS framework specially designed to
speculatively execute nested loops. To do so, authors used features of polyhe-
dral model to dynamically transform code in a more optimized version that led
to higher speedups. Framework consisted on dividing execution in two parts,
one to generate some skeletons, and other one that selected the optimized code
at runtime.

Estebanez et al.

3 Description of the baseline solution

Software speculative schemes should allocate some additional memory in order
to hold the information related to speculative executions. The use of this data
is mandatory to enable recovery operations that could arise in an optimistic
execution. In this context, memory needed could be allocated dynamically, or
statically, and the use of an approach instead of the other is a critical decision
that directly influences in the overall memory used in a program.

Our entire research framework relies on a first, pointer-based version of a
software-based TLS library that strictly follows the principles of the library
developed by Cintra and Llanos [3,4]. That works established the foundations
of the correctness of the speculative execution of sequential applications. Their
approach only allowed to speculate on variables encapsulated inside a vector.
The use of this solution required threads to allocate memory for the entire
vector, even if many positions of it were not used during the execution of
the assigned chunk of iterations. So, in the case that M was the speculative
variables used in a problem executed with T threads, and each variable need
a byte, variables require M × (T +1) bytes to be stored, because an additional
space is required to save the persistent copy. Moreover, using vectors required
that all the variables used had to share the same type.

The version that we use as a baseline in this work has been originally
presented in [9]. This baseline version supports the speculative execution of
for loops with dynamic and pointer-referenced speculative variables, handling
dynamic memory and managing on demand the space needed for speculative
variables in each thread. This TLS runtime library allows the parallelization
of loops with variables of any data type, referencing these variables either
by name or by address. As we will see, although this library effectively re-
moves many constrains of Cintra and Llanos’ solution, the strict adherence
to the original architecture leads to unacceptable costs for speculative reads
and writes. In this section we will briefly show the architecture of our library,
since it will be used as the baseline to test some improvements proposed in
this paper.

3.1 Data structures

The data structures needed by the baseline speculative library are depicted in
Fig. 1. A matrix with W window slots (four in the figure) implements a sliding
window that manages the runtime of the library. Each slot is responsible to
manage the speculative execution of a particular set of iterations. The slots
assigned to the non-speculative and the most-speculative threads are indicated
by two variables, non-spec and most-spec. Each slot is composed of two fields,
STATE with the state of the execution being carried out in each slot; and a
pointer to maintain the position of the speculative variables used by each slot
in the execution.

New Data Structures to Handle Speculative Parallelization at Runtime

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

Fig. 1 Data structures of our new speculative library.

An example of the execution of a loop is also depicted in Fig. 1. The loop
has been divided into three chunks of iterations, and it will be executed in
parallel using three threads. It is very important to understand that there
is not a fixed association between threads and slots. Whenever a thread is
assigned a new chunk of iterations, it is also assigned the corresponding slot
to work in. This allows to maintain an order relationship among the chunks
being executed.

In the depicted example, thread working in slot 1 is executing the non-
speculative chunk of iterations (as indicated by its RUNNING state); the fol-
lowing chunk has been already executed and its data has been left there to be
committed after the non-spec chunk finishes (since it is in DONE state), while
the last one, the most-speculative chunk launched so far, is also RUNNING. In
other words, the thread in charge of the second chunk has already finished,
while the non-spec and most-spec threads are working. If more chunks were
pending, the freed thread would be assigned the following chunk, starting its
execution in slot 4. Slot 2 can not be re-used yet, because the execution of
chunk 2 left changes to speculative variables that are yet to be committed. As
we will see in Sect. 3.3, when the non-speculative thread working in slot 1 fin-
ishes, it will commit its results and the results stored in all subsequent DONE
slots, since commits should be carried out in order. After that, in our example,
the non-spec pointer will be advanced to slot 3 to reflect the new situation.

In addition to its STATE, each slot points to a data structure that holds the
version copies of the data being speculatively accessed. Fig. 1 represents a loop
with three speculative variables. At a given moment, the thread executing the
non-speculative chunk has speculatively accessed variables a and b. Each row
of the version copy data structure keeps the information needed to manage

Estebanez et al.

Exp. Loaded and Updated

(ELUP)

Exposed Loaded

(EXPLD)

Not Accessed

Modified

(MOD)

store

load

store

Spec.

Spec.

Spec.

Spec. load

Spec. load / Spec. store

Spec. load / Spec. store

Fig. 2 State transition diagram for speculative data.

the access to a different speculative variable. The first column indicates the
address of the original variable, known as the reference copy. The second one
indicates the data size. The third one indicates the address of the local copy
of this variable associated to this window slot. Finally, the fourth column
indicates the state associated to this local copy. Once accessed by a thread, the
version copies of the speculative data can be in three different states: Exposed
Loaded, indicating that the thread has forwarded its value from a predecessor
or from the main copy; Modified, indicating that the thread has written to that
variable without having consumed its original value; and Exposed Loaded and
Updated, where a thread has first forwarded the value for a variable and has
later modified it. The transition diagram for these states is shown in Fig. 2.

Fig. 1 represents a situation where the thread working in slot 1 has per-
formed a speculative load from variable a (obtaining its value from the refer-
ence copy) and a speculative store to variable b. Regarding a, the figure shows
that the thread working in slot 3 has forwarded its value. With respect to
variable b, the information in the figure shows that b has been overwritten
both by threads working in slots 1 and 3.

3.2 Speculative loads and stores

The interface of our implementation of specload() is as follows:

specload(VOID* addr, UINT size, UINT chunk number, VOID* value)

The first parameter is the address of the speculative variable; the second one
is the size of the variable; the third one is the number of the chunk being
executed (needed to infer the slot being used); and the fourth one is a pointer
to a place to store the datum requested.

New Data Structures to Handle Speculative Parallelization at Runtime

2

1 E

F

A

B

D

G

C3

1

Non−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1
9

a3 b3

25.8

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

Slot 1 Slot 2 Slot 3 Slot 4

RunningSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative

variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4 &a 1 EXPLD

MOD&b 4 &b3

&a3

8&c ELUP&c2

&b 4 EXPLD&b2

Running

Version copy data structures

&a 1 &a2 MOD

FreeRunning
SQUASHED

Most−spec window slot

23

Fig. 3 Steps of a speculative load (1..3) and speculative store (A..G).

Recall that specload() should return the most up-to-date value available
for the speculative variable. Fig. 3 shows how speculative load works. Suppose
that the thread working in slot 2 has only accessed variable c so far, and then it
calls specload(&b, sizeof(b), 2, &value) to obtain a value for b. The thread working
in slot 2 scans from its version copy data structure to its predecessors’ until
the value is found (point 1). Otherwise, if value has not been used before, it
is obtained from reference copy. In the Fig. 3 the thread working in slot 1 has
used b, so the thread that called specload() copies the value to its own local
copy (point 2), and add a row to its version copy data structure. Note that
the process described in the point 1 of Fig. 3, that is, searching for a copy of
a variable is a sequential process that origins big bottlenecks.

The interface of specstore() is similar as specload()’s, but in this case the
last parameter is a pointer to the value to be stored. Recall that specstore()
should not only store the new value, but also check whether a successor has
consumed an outdated value for it. Fig. 3 shows the sequence of events related
to a speculative store. Suppose that the thread working in slot 2 executes
specstore(&a, sizeof(a), 2, &temp), where temp holds the value 7. Thread working
in slot 2 searches for a local version copy of a in its structure (point A). If
it was found, its local value would be updated, but in this case, a new row
is added with the address of a, its size, the address of the new local version
(point B), and its state (point C). Then, the thread that performed the call
should check whether any successor thread has consumed an outdated value
of a (point D). In this case, the thread working in slot 3 has loaded this value
(point E), so, it should be squashed (points F and G). Note that the process
described in the point D of Fig. 3, that is, searching for copies of outdated
variables is a sequential process that origins big bottlenecks.

Estebanez et al.

3.3 Partial commit operation

The partial commit operation is exclusively carried out by the non-speculative
thread. Every time a thread should check if its data have to be committed or
discarded, it first checks if it has not been squashed and if is the non-speculative
thread. If the thread is speculative, the slot is left to be committed by the non-
spec thread.

Suppose that we are in the situation depicted in Fig. 1, and the non-spec
thread working in slot 1 finishes. As long as it is the non-spec one, it will
scan its data structure for variables in ELUP or MOD state. In our example, b
has been modified, so it copies the content of b1 into b. After committing the
version copy data structure associated to slot 1, it changes its state to FREE
and advances the non-spec pointer to 2. As long as slot 2 is marked as DONE,
its data should be committed as well. In our example, data stored in c2 and
a2 should be committed to the user-defined variables. After this, the state of
the slot is also changed to FREE and the non-spec pointer is advanced as well.
Thread working in slot 3 is still running: When it finishes, it will be in charge
of committing its own data. These commit operations are carried out with
the help of auxiliary data structures that store a list of elements in ELUP or
MOD states (not shown in our examples), in order to avoid traversing the local
copies entirely only to commit few data elements.

It is interesting to note that each thread only writes on its local version
copy data structure, so no critical sections are needed to protect them. The
only critical section used protects the sliding window data structure, because,
without it, a thread could overwrite another thread’s state.

4 Experimental setup

Before describing the improvements proposed, an in-depth evaluation of the
baseline solution is needed. This section describes our experimental environ-
ment, including the benchmarks used and the target system. The following
section will show the behaviour of the baseline solution in the execution of
these benchmarks.

To test both the baseline TLS library and our improvements we have used
the 2-dimensional Convex Hull problem (2D-Hull), and the Delaunay triangu-
lation. Output results of these benchmarks deterministically depend on their
input sets.

The 2D-Hull problem solves the computation of the convex hull (smallest
enclosing polygon) of a set of points in the plane. We have parallelized Clarkson
et al. [6] implementation. The algorithm starts with the triangle composed by
the first three points and adds points in an incremental way. If the point lies
inside the current solution, it will be discarded. Otherwise, the new convex
hull is computed. Note that any change to the solution found so far generates
a dependence violation, because other successor threads may have been used
the old enclosing polygon to process the points assigned to them. We have used

New Data Structures to Handle Speculative Parallelization at Runtime

Application Input set Average Average
violations (#) violations (%)

2D-Hull Kuzmin 10M 53.5 0.005%
2D-Hull Square 10M 180.25 0.018%
2D-Hull Disc 10M 705.37 0.071 %

Delaunay 1M 2998.25 0.299%
Delaunay 100K 1657.00 1.657 %

Table 1 Characteristics of the benchmarks considered.

three different input sets composed by 10M of points: Kuzmin, that processes
a 2D Kuzmin distribution; Square, that processes a 2D uniform distribution
located into a square, and Disc, with an uniform, 2D distribution located into
a disc.

The Delaunay triangulation [22] applied to a two-dimensional set of points
affirms that a network of triangles is a Delaunay triangulation if all the cir-
cumcircles of all the triangles of the network are empty, i.e., the circumcircle
of each triangle of the network contains no other vertices that those three
that define the triangle. This condition ensures that the interior angles of the
triangles are as large as possible and the length of the sides of the triangles is
minimal. We have used two different input sets, of 100K and 1M points.

Table 1 summarizes the main characteristics of both applications and their
corresponding input sets. The average violations have been calculated execut-
ing the benchmarks in parallel with 2 to 16 threads in our target system. Note
that the number of dependence violations that arise at runtime is not zero for
any of them. These violations severely limit the speedup that can be obtained
with any speculative, parallel execution.

Experiments were carried out on an Intel S7000FC4URE server, equipped
with four quad-core Intel Xeon MPE7310 processors at 1.6GHz and 32GB
of RAM. The system runs Ubuntu Linux operating system. All threads had
exclusive access to the processors during the execution of the experiments, and
we used wall-clock times in our measurements. We have used gcc 4.6.2 for all
applications. Times shown in the following sections represent the time spent
in the execution of the parallelized loop for each application. The time needed
to read the input set and the time needed to output the results have not been
taken into account.

5 Baseline cost of speculative reads and writes

One of the main advantages of the baseline speculative parallelization library
is that each thread only allocates the memory needed to store local copies of
the data being speculatively accessed. This design decision comes at the cost
of longer times to find the most-up-to-date value in speculative loads, and
longer times to detect dependence violations in speculative stores, since both
operations should traverse all the values accessed by all the predecessors and
successors, respectively. Being T the number of threads, and M the number of

Estebanez et al.

speculative load speculative store
App Input set TC TS TS/TC TC TS TS/TC

2D-Hull Disc 2.63×108 2.23×1010 87.39 4.39×104 2.63×107 598.10
Square 2.97×108 3.05×1010 102.86 6.65×103 4.90×106 737.35
Kuzmin 2.29×108 1.13×1010 49.35 1.65×103 5.30×105 320.64

Delaunay 100K 1.14×107 3.77×108 33.18 5.06×106 1.69×108 33.44
1M 1.47×108 8.17×109 55.42 5.28×107 3.29×109 62.32

Table 2 Profile of main functions with a single thread in the baseline TLS library.

speculative load speculative store
App Input set TC TS TS/TC TC TS TS/TC

2D-Hull Disc 2.74×108 4.00×1010 145.85 7.48×104 1.14×108 1526.99
Square 3.17×108 3.55×1010 111.86 2.40×104 3.30×107 1374.33
Kuzmin 2.35×108 1.18×1010 50.18 5.78×103 4.22×106 729.73

Delaunay 100K 1.14×107 1.42×109 124.83 5.07×106 7.51×108 148.09
1M 1.47×108 3.24×1010 219.89 5.28×107 1.31×1010 248.69

Table 3 Profile of main functions with eight threads in the baseline TLS library.

data elements stored locally (that is potentially very high), the search is done
in O(T ×M). Therefore, the performance figures for the baseline library with
this mechanism were severely limited. In fact, as we will see in Sect. 8, none of
the speculative executions of the applications described in the previous section
broke even in terms of speedup.

Tables 2 and 3 show the total calls to specload() and specstore() operations
for each benchmark. In this table, TC (total calls) is the total number of
calls to each function; TS (total searches) is the total number of accesses in
order to complete the corresponding call (getting the most up-to-date value in
specload(), and searching for potential dependence violations in specstore()).
These numbers are average values obtained in three real executions in our
target system.

Table 2 shows the values obtained when using the TLS library to exe-
cute each benchmark, but using just one thread. This means that all accesses
counted in TS were to the local version data. As it can be seen, this number of
accesses in speculative loads is high on average, from 33.18 to 102.86. The sit-
uation is much worse on speculative stores, with up to 737 accesses on average
in order to detect a potential dependence violation. Compare these numbers
with the single access needed by both reads and writes in a non-speculative
execution of the same algorithm.

Table 3 shows the same values when we speculatively execute the bench-
marks with eight threads. Both the costs of speculative loads and stores are
roughly doubled. The situation becomes even worse as we increment the num-
ber of cooperative threads.

These figures show that the main bottleneck and the most severe scala-
bility limitation come from the sequential traversing of version copies during
speculative loads and stores operations. One way to speed up these searches
is to switch to a different data structure to hold local version copies of data.
Instead of using a single table per thread as version copy data structure, we

New Data Structures to Handle Speculative Parallelization at Runtime

Pointer
to ref.
copy

Data
size

Offset
in local
version

Version
state

Version copy data structures of hash H-1

vector

&a 1 12 MOD1

2

M

H-1

Hash list

Pointer
to ref.
copy

Data
size

Offset
in local
version

Version
state

Version copy data structures of hash 0

vector

&b 4 8 EXPLD2

3

M

&c 8 0 ELUP10

1

2

Fig. 4 Hash-based version copy data structures.

have developed an simple but extremely powerful alternative, using a hash
function and H tables.

6 A hash-based solution

We have devised an extremely simple solution that is capable of reducing the
number of accesses needed by a factor of one to three orders of magnitude,
while keeping the storage cost of local versions in O(1). In addition, the devel-
oped technique can be seen as a general solution that can be applied to most
TLS systems, not only to our baseline implementation. The solution works at
follows: At the beginning of each specload() and specstore() call, we perform
an AND operation of the address of the datum to be processed with a mask
composed by H 1s. Since many addresses are multiple of 4 or 8, the address
is first shifted three positions to its right, to avoid biased hash values. The
resulting value will be used as a hash value. Considering an address A, the
operation is:

hash = (A >> 3) ∧ 00...0

H︷ ︸︸ ︷
111...1

Instead of having just one table to keep local values, each thread maintains
H tables. The obtained hash is used to look into the H-th table of all predeces-
sors and successors, effectively speeding up the search by an average factor of
H without increasing the time needed to add a new row to the corresponding
table, leading to O(T × M

H) search times. Note that, while T is a relatively
small number (typically up to 64 for current shared memory architectures),

Estebanez et al.

speculative load speculative store
App Input set TC TS TS/TC TC TS TS/TC

2D-Hull Disc 2.62×108 3.46×108 1.32 4.39×104 1.47×105 3.34
Square 2.97×108 3.94×108 1.33 6.65×103 2.53×104 3.80
Kuzmin 2.29×108 2.78×108 1.21 1.65×103 3.45×103 2.08

Delaunay 100K 1.14×107 1.74×107 1.53 5.06×106 8.18×106 1.62
1M 1.47×108 2.35×108 1.59 5.28×107 9.02×107 1.71

Table 4 Profile of main functions with a single thread in the hash-based version of the
library.

speculative load speculative store
App Input set TC TS TS/TC TC TS TS/TC

2D-Hull Disc 2.74×108 4.47×108 1.63 7.24×104 4.55×105 6.29
Square 3.19×108 4.38×108 1.37 2.28×104 1.42×105 6.23
Kuzmin 2.34×108 2.85×108 1.22 7.18×103 2.16×104 3.01

Delaunay 100K 1.14×107 6.06×107 5.32 5.07×106 8.67×106 1.71
1M 1.47×108 7.43×108 5.04 5.28×107 1.08×108 2.05

Table 5 Profile of main functions with eight threads in the hash-based version of the library.

H can be set as big as needed to compensate for higher values of M . Fig. 4
shows the new hash-based version copy structure.

Tables 4 and 5 show the total calls to specload() and specstore() operations,
with the total accesses that each one of them needed to find the desired value,
and the average accesses per call, in the new hash-based solution with one and
eight processors respectively for each benchmark used. Compare the values in
both tables for TS/TC columns (up to 6.29 accesses) with the much higher
values (up to 1500) of the sequential searches shown in Tab. 2 and 3. Moreover,
this solution comes at no cost, since the hash function is extremely easy to
implement.

6.1 Memory consumption

New structures could seem to use more space than the previous ones, however,
the memory used are similar in both schemes: Let us suppose that in the first
approach each thread managed N rows to store intermediate values. If there
were T threads, the cost to store them was T × O(N). On the new scheme,
with H hash rows that contain M positions to store values, considering that
H ×M = N the cost to store them is T × O(H ×M). In the best case, if
values were uniformly dispersed throughout the hash rows, H ×M ≈ N . In
the worst case, if a single hash stored all the N values, the cost of the new
approach would be (T −1)×O(H×M)+T ×O(N) ≈ O(T ×N). So, required
memory to store the new approach will be similar to the previous one.

New Data Structures to Handle Speculative Parallelization at Runtime

7 Further improvements

7.1 Use of dedicated buffers

One of the problems detected was the excessive number of calls to the malloc()
and free() functions. To better understand the reasons, we will use an exam-
ple. Suppose that a thread executes a specload() or specstore() call. In both
functions, the first task carried out by the thread is to search in its version
copy matrix to check whether this address has been accessed by this thread.
Suppose that the datum has not been used yet, so it should be added to the
matrix. In this process of attaching the new datum to the matrix of the thread,
we have to allocate some memory to store the local copy, so malloc() should
be called (see step B of Fig. 3).

Once the thread has finishing the speculative execution of the chunk of it-
erations that has been assigned, it should free all its allocated memory. There-
fore, free() should be repeatedly called to deallocate each single version copy
of speculative data, in order to reuse the remaining data structures to handle
the execution of a new chunk of iterations.

It is easy to see that these operations are costly because they are called
very frequently. Moreover, the calls to malloc() are in the critical path of the
speculative execution. A solution to avoid these calls is to implement a con-
tainer for all the data used by each thread. Hence, a new, Local Version Data
dynamic vector was added to each thread. These vectors need an initial call
to the malloc() function to allocate them, and a single free() call to deallocate
them once the parallel loop has been executed entirely. If the vector is full, an
additional call to realloc() may be needed. This solution greatly improves the
performance observed.

This new structure, however, leads to changes in the basic structures of
the architecture. Initially we had an structure with four entries, where one of
them was a pointer to the local copy of the datum. Instead, the new solution
manages an offset for each datum. In this way, each datum will be stored in
the Local Version Data vector at the position pointed by its offset. Note that,
once stored, the datum will not be deleted until the entire vector containing
speculative data is committed, so fragmentation will not occur.

Also, each slot of the sliding window requires an additional pointer to the
first free position of its vector, to allow fast insertions. Hence, the sliding win-
dow is augmented with this additional datum. Fig. 5 shows a simple example
that reflects our solution. Note that, after executing a chunk of iterations, it
is not longer needed to free() this buffer, since it is enough to reset the index
that points to the beginning of the free space on it.

Being T the number of threads, and M the number of data elements stored
locally, the original solution came at a cost that was in T×O(M) ⊂ O(T×M).
With the new scheme, the space allocation is done in T × O(1) ⊂ O(T),
asymptotically improving the performance of the library.

Estebanez et al.

1

Non-spec window slot

b'c'

Pointer

to ref.

copy

Data

size

Offset

in local

version

Version

state

Slot 1 Slot 2 Slot 3 Slot 4

STATE

Pointer to version copy

Sliding window
float b

double c

23.4

32.88

speculative

variables

User-labeled

8&c ELUP0

&b 4 EXPLD8

Free

Version copy data structures

Free

Most-spec window slot

1

Running Free

Pointer to local version data

vector

Local version data structures

Actual first free position

12

128.215

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

18.997

Fig. 5 Reducing operating system calls: Example with the new data structures

#ifdef LP64 typedef struct datacell {
typedef unsigned long long int baseType; void ∗origPointer;

#else unsigned int copyOffset;
typedef unsigned long int baseType; short unsigned int size;

#endif short unsigned int state;
} datacell;

.
baseType matrix[HASH][4][ROWS]; datacell matrix[HASH][ROWS]
.

(a) (b)

Fig. 6 Implementation of a static example of the data structure in (a) the baseline solution,
and (b) the improved version.

7.2 Structures instead of buffers

We have also modified the implementation of version copy data structures in
order to improve data alignment [1] and the space needed by each version copy
data structure. The baseline representation is shown in Fig. 6(a). Although the
different elements in a row have different sizes, the declaration should allocate
space enough to store the biggest one, in our case the pointer to the original
data. This implementation requires 8 bytes for each value, that is, a total of
32 bytes for the representation of each row. Our new representation, shown
in Fig. 6(b), states variables as a struct. With this representation we achieve
two goals. First, we reduce the necessary memory to a half, since the memory
needed to store this new structure is 16 bytes (a void pointer needs 8 bytes,
an unsigned int needs 4 bytes, and each unsigned short int needs 2 bytes). Second,
this structure also exploits the memory representation of C structs because these
types are usually stored with the following patterns[1]: Structures between 1

New Data Structures to Handle Speculative Parallelization at Runtime

0

1

2

3

4

5

6

7

 1 3 5 7 9 11 13 15

S
p

e
e

d
u

p

Number of processors

Baseline version
Improved version

Cintra and Llanos’ version

 1 3 5 7 9 11 13 15

Number of processors

Baseline version
Improved version

Cintra and Llanos’ version

(a) (b)

0

1

2

3

4

5

6

7

 1 3 5 7 9 11 13 15

S
p

e
e

d
u

p

Number of processors

Baseline version
Improved version

Cintra and Llanos’ version

(c)

Fig. 7 Performance comparison for 2D-Hull benchmark with three different input sets: (a)
Disc, (b) Square, and (c) Kuzmin.

and 4 bytes of data are usually padded so that the total structure is 4 bytes;
Structures between 5 and 8 bytes of data are padded so that the total structure
is 8 bytes; structures between 9 and 16 bytes of data are padded so that the
total structure is 16 bytes; and structures greater than 16 bytes are padded
to 16 byte boundary. A different order of the variables would add paddings
because the compiler may decide to store them in 4-bytes places. Therefore,
our new structure is optimized to minimize the memory space needed, thus
reducing the number of cache misses.

8 Experimental results

Figs. 7 compare the performance results of the speculative parallelization of
the 2D-Hull with input sets. Both the baseline version of the library and our
new solution are compared. While the baseline system is not able to obtain
speedups in any case, the new solution leads to a maximum speedup of 1.681×
for the Disc input set (representing a 28× performance increment with respect
to the baseline TLS library), 3.094× for the Square input set (14.19× perfor-
mance increment) and 4.188× for Kuzmin (8.63× performance increment). To

Estebanez et al.

0

1

2

3

4

5

6

7

8

 1 3 5 7 9 11 13 15

S
p

e
e

d
u

p

Number of processors

Baseline version
Improved version

Cintra and Llanos’ version

 1 3 5 7 9 11 13 15

Number of processors

Baseline version
Improved version

Cintra and Llanos’ version

(d) (e)

Fig. 8 Performance comparison for Delaunay benchmark with an input set of (a) 100K
points, and (b) 1M points.

put these results into perspective, we also show the best speedups obtained
by Cintra and Llanos with their speculative runtime system. Recall that their
solution, while effective, is constrained by many limitations, and it is not gen-
eralizable to any applications. Results show that our solution allows to deliver
a good percentage of the maximum speedup attainable (up to 68%), while
offering a speculative solution applicable in many more cases.

Figs. 8 compares the performance results of the speculative parallelization
of the Delaunay triangulation with two input sets. The new solution is again
clearly better, with a maximum speedup of 3.646× for the 1M-points input
set (representing a 3.58× performance increment with respect to the baseline
TLS library), and 3.873× for the 100K-points input set (5.40× performance
increment). Again, our solution is compared to the tailored library of Cintra
and Llanos, obtaining, on average, a 75% and a 68% of their maximum speedup
in the 1M-points and the 100K-points input sets, respectively.

9 Conclusions

In this paper, we have shown a solution to a problem that is common to any
software-based TLS library: How to reduce search times when accessing to
remote versions of speculative data. To mitigate this problem, we have im-
plemented some optimizations such as the use of an extremely-simple hash
function to avoid the need of traversing all version data, the reduction in the
number of memory management system calls, and the development of new
data structures to reduce memory consumption and cache misses. Our exper-
imental evaluation with non-synthetic benchmarks on a real, shared-memory
multiprocessor clearly shows that these improvements have a dramatic im-
pact on performance: All applications tested had far better execution times
than those obtained in the baseline version, and the performance results are
a significant fraction of those obtained with a system specifically designed to
handle these benchmarks.

New Data Structures to Handle Speculative Parallelization at Runtime

Acknowledgements The authors would like to thank the anonymous reviewers for their
helpful comments. The authors would also like to thank Mr. Sergio Aldea for his help in
this work. This research is partly supported by the Castilla-Leon Regional Government
(VA172A12-2); Ministerio de Industria, Spain (CENIT OCEANLIDER); MICINN (Spain)
and the European Union FEDER (MOGECOPP project TIN2011-25639, CAPAP-H3 net-
work TIN2010-12011-E, CAPAP-H4 network TIN2011-15734-E).

References

1. Bryant, R., David Richard, O.: Computer systems: a programmer’s perspective. Prentice
Hall (2003)

2. Ceze, L., Tuck, J., Torrellas, J., Cascaval, C.: Bulk disambiguation of speculative threads
in multiprocessors. In: Procs of the 33rd intl symposium on Computer Architecture,
ISCA ’06. IEEE Computer Society, Washington, DC, USA (2006)

3. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative parallelization
on multiprocessors. In: Proceedings of the SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2003)

4. Cintra, M., Llanos, D.R.: Design space exploration of a software speculative paralleliza-
tion scheme. IEEE Trans. on Paral. and Distr. Systems 16(6), 562–576 (2005)

5. Cintra, M., Mart́ınez, J.F., Torrellas, J.: Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. In: Proc. of the 27th intl. symp. on
Computer architecture (ISCA), pp. 256–264 (2000)

6. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental con-
structions. Comput. Geom. Theory Appl. 3(4), 185–212 (1993)

7. Dai, W., An, H., Li, Q., Li, G., Deng, B., Wu, S., Li, X., Liu, Y.: A priority-aware
NoC to reduce squashes in thread level speculation for chip multiprocessors. In: Procs
of the 2011 IEEE 9th Int. Symposium on Parallel and Distributed Processing with
Applications, ISPA ’11. IEEE Computer Society, Washington, DC, USA (2011)

8. Dou, J., Cintra, M.: Compiler estimation of load imbalance overhead in speculative par-
allelization. In: Procs of the 13th Int. Conf. on Parallel Architectures and Compilation
Techniques, PACT ’04. IEEE Computer Society, Washington, DC, USA (2004)

9. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: Desarrollo de un motor de par-
alelización especulativa con soporte para aritmética de punteros. In: Proceedings of the
XXIII Jornadas de Paralelismo. Elche, Alicante, Spain (2012)

10. Gao, L., Li, L., Xue, J., Yew, P.C.: SEED: A statically-greedy and dynamically-adaptive
approach for speculative loop execution. IEEE Transactions on Computers 62(5) (2013)

11. Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukotun, K.: The
stanford Hydra CMP. IEEE Micro 20(2), 71–84 (2000)

12. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions. In:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, pp. 14–25. ACM, New York, NY, USA (2006)

13. Jimborean, A., Clauss, P., Dollinger, J.F., Loechner, V., Martinez Caamao, J.: Dynamic
and speculative polyhedral parallelization using compiler-generated skeletons. Interna-
tional Journal of Parallel Programming pp. 1–17 (2013)

14. Kelsey, K., Bai, T., Ding, C., Zhang, C.: Fast track: A software system for speculative
program optimization. In: Procs of the 7th annual IEEE/ACM Intl symp on Code
generation and optimization, CGO ’09 (2009)

15. Krishnan, V., Torrellas, J.: A chip-multiprocessor architecture with speculative multi-
threading. Computers, IEEE Transactions on 48(9), 866–880 (1999)

16. Kulkarni, M., Burtscher, M., Inkulu, R., Pingali, K., Casçaval, C.: How much parallelism
is there in irregular applications? In: Procs of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’09. New York, USA (2009)

17. Kulkarni, M., Carribault, P., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K.,
Chew, L.P.: Scheduling strategies for optimistic parallel execution of irregular programs.
In: Procs of the 20th Annual Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’08, pp. 217–228. ACM, New York, NY, USA (2008)

Estebanez et al.

18. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commuta-
tivity lattice. In: Procs of the 32nd ACM SIGPLAN Conf on Programming Language
Design and Implementation, PLDI ’11. ACM, New York, NY, USA (2011)

19. Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Chew, L.P.: Opti-
mistic parallelism benefits from data partitioning. In: Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, pp. 233–243. ACM, New York, NY, USA (2008)

20. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Opti-
mistic parallelism requires abstractions. In: PLDI 2007 Proceedings. ACM (2007)

21. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Opti-
mistic parallelism requires abstractions. Commun. ACM 52(9), 89–97 (2009)

22. Lee, D., Schachter, B.: Two algorithms for constructing a delaunay triangulation. In-
ternational Journal of Computer & Information Sciences 9(3), 219–242 (1980)

23. M. Gupta and R. Nim: Techniques for speculative run-time parallelization of loops.
Supercomputing (1998)

24. Marcuello, P., Gonzalez, A., Tubella, J.: Speculative multithreaded processors. In: Procs
of the 12th Intl conference on Supercomputing, ICS ’98. ACM, New York, USA (1998)

25. Mehrara, M., Hao, J., Hsu, P.C., Mahlke, S.: Parallelizing sequential applications on
commodity hardware using a low-cost software transactional memory. In: Procs of the
2009 conf on Prog. language design and implementation, PLDI ’09. NY, USA (2009)

26. Méndez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassaan, M.A., Kulkarni, M.,
Burtscher, M., Pingali, K.: Structure-driven optimizations for amorphous data-parallel
programs. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’10, pp. 3–14. ACM, New York, USA (2010)

27. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for soft-
ware thread-level speculation. In: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, SPAA ’09. ACM, New York, USA (2009)

28. Prabhu, M.K., Olukotun, K.: Using thread-level speculation to simplify manual paral-
lelization. In: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’03. ACM, New York, NY, USA (2003)

29. Raman, E., Vahharajani, N., Rangan, R., August, D.I.: Spice: speculative parallel it-
eration chunk execution. In: Procs of the 6th annual IEEE/ACM Intl symposium on
Code generation and optimization, CGO ’08. ACM, New York, USA (2008)

30. Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization of
loops with privatization and reduction parallelization. SIGPLAN Not. 30(6) (1995)

31. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D., Keckler, S.,
Moore, C.: Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
In: Procs of the 30th Annual Intl Symp on Computer Architecture, ISCA ’03 (2003)

32. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-level
speculation. In: Proceedings of the 27th annual international symposium on Computer
architecture, ISCA ’00, pp. 1–12. ACM, New York, NY, USA (2000)

33. Tian, C., Feng, M., Gupta, R.: Supporting speculative parallelization in the presence of
dynamic data structures. In: Procs of the 2010 ACM SIGPLAN conf on Programming
language design and implementation, PLDI ’10. ACM, New York, NY, USA (2010)

34. Tian, C., Feng, M., Nagarajan, V., Gupta, R.: Copy or discard execution model for
speculative parallelization on multicores. In: Procs of the 41st annual IEEE/ACM Intl
Symp on Microarchitecture, MICRO ’41. Washington, DC, USA (2008)

35. Tian, C., Feng, M., Nagarajan, V., Gupta, R.: Speculative parallelization of sequential
loops on multicores. Int. J. Parallel Program. 37(5), 508–535 (2009)

36. Yiapanis, P., Rosas-Ham, D., Brown, G., Luján, M.: Optimizing software runtime sys-
tems for speculative parallelization. ACM Trans. Archit. Code Optim. 9(4) (2013)

37. Zhao, Z., Wu, B., Shen, X.: Speculative parallelization needs rigor: probabilistic analysis
for optimal speculation of finite-state machine applications. In: Procs 21st Intl Conf on
Parallel architectures and compilation techniques, PACT ’12. New York, USA (2012)

