
Design Space Exploration of a
Software Speculative Parallelization Scheme

Marcelo Cintra, Member, IEEE, and Diego R. Llanos, Member, IEEE

Abstract—With speculative parallelization, code sections that cannot be fully analyzed by the compiler are optimistically executed in
parallel. Hardware schemes are fast but expensive and require modifications to the processors and/or memory system. Software
schemes require no changes to the hardware of existing shared-memory systems, but can suffer from significant overheads involved
with the speculative execution. In fact, the performance of software schemes is highly dependent on application characteristics, the
design and implementation of the scheme, and the system configuration and size. This paper explores the design space of a recently
proposed software speculative parallelization scheme. In the process, we gain insight into the most beneficial features of software
schemes for speculative parallelization, as well as the most influential application characteristics. For instance, experimental results
show that, contrary to intuition, checking for data dependence violations on every speculative store, as opposed to at commit time,
leads to little performance degradation in the worst case and to significantly better performance with large configurations. Also,
scheduling policies based on windows can perform very close to fully dynamic policies with a fraction of the memory overhead. Finally,
experimental results show consistent speedups in the execution of loops that cannot be parallelized at compile time, both with and
without RAW data dependences, for 4 to 32 processors.

Index Terms—Speculative parallelization, thread-level speculation, parallel architectures.

�

1 INTRODUCTION

ALTHOUGH parallelizing compilers have proven success-
ful for a large set of codes, they fail to parallelize codes

when data dependence information is incomplete. Such is
the case of accesses through pointers or subscripted
subscripts, complex interprocedural data flow, or input-
dependent data and control flow. In these cases, runtime
parallelization in software has been explored under two
major approaches: inspector-executor ([14], [23]) and spec-
ulative parallelization ([6], [8], [9], [20], [22]). With the
inspector-executor scheme, an inspector loop is extracted
from the original loop with the purpose of computing the
cross-iteration data dependences to guide the execution of
the executor loop. This approach is effective when comput-
ing the address reference stream is cheap compared to the
actual computation. In many cases, however, the overhead
of the inspector loop limits the performance benefits of this
approach. Under the speculative parallelization (also called
thread-level speculation) approach, the code is specula-
tively executed in parallel while the reference stream is
monitored for data dependence violations. If a dependence
violation is found, the system reverts the state back to some
safe condition and threads are reexecuted.

While various degrees of hardware support for spec-
ulative parallelization on multiprocessors have been pro-
posed in the literature (e.g., [10], [15], [25], [28], [30], [31]),
these are costly and require modifications to the processors
and caches. In this paper, we focus on software-only

implementations of speculative parallelization. In this case,
the user application is augmented with code to perform all
the speculative operations. Software schemes, however, can
suffer from significant overheads involved with the spec-
ulative operation. In fact, the performance of software
schemes is highly dependent on application characteristics,
the design and implementation of the scheme, and the
system configuration and size.

The contribution of this paper is to present a compre-
hensive quantitative exploration of the design space of a
recently proposed software speculative parallelization
scheme [6]. In this way, we gain insight into the design
features more likely to impact performance as well as into
the application characteristics more likely to affect the
performance of software speculative parallelization. A
secondary contribution is to provide a proof of the correct
placement of memory fences in the scheme of [6] in order to
guarantee sequentially consistent execution of the protocol
in systems that support some relaxed memory consistency
model.

Experimental results show that, contrary to intuition,
checking for data dependence violations on every speculative
store, as opposed to at commit time, leads to better
performance on average, with little performance degradation
in the worst case. Also, scheduling policies based on windows
can perform very close to fully dynamic policies with a
fraction of the memory overhead. With fully dynamic
policies, the serialization of the commit can become a serious
bottleneck and mitigating techniques, such as partial com-
mits, should be used. Finally, all the configurations evaluated
with the speculative parallelization scheme provide good
speedups for configurations of 4 to 32 processors, even in the
presence of RAW data dependences.

The rest of the paper is organized as follows: Section 2
describes speculative parallelization, highlights the opera-
tions involved, and discusses in detail the design options

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

. M. Cintra is with the School of Informatics, The University of Edinburgh,
2505 James Clerk Maxwell Building, King’s Buildings, Mayfield Road,
Edinburgh, EH9 3JZ, United Kingdom. E-mail: mc@inf.ed.ac.uk.

. D.R. Llanos is with the Departamento de Informática, Universidad de
Valladolid, Edificio Tecnologı́as de la Información, Campus Miguel
Delibes, 47011 Valladolid, Spain. E-mail: diego@infor.uva.es.

Manuscript received 30 Apr. 2004; revised 12 Aug. 2004; accepted 31 Aug.
2004; published online 21 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0110-0404.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

available and their expected impact on performance.
Section 3 summarizes the speculative parallelization
scheme that we proposed. Section 4 describes our evalua-
tion methodology. Section 5 presents the experimental
results. Section 6 discusses related work and Section 7
presents some conclusions. Finally, the Appendix provides
a formal analysis of the races involved in our protocol.

2 SOFTWARE-ONLY SPECULATIVE

PARALLELIZATION

2.1 Basic Concepts

Under speculative parallelization, threads are extracted
from sequential code and run in parallel, hoping not to
violate any sequential semantics. The control flow of the
sequential code imposes an order on the threads. At any
given time during execution, the earliest thread in program
order is nonspeculative while the others are speculative. The
terms predecessor and successor are used to relate threads in
this total order. Stores from speculative threads generate
unsafe versions of variables, while loads from speculative
threads are provided with potentially incorrect versions. At
special points in time, data versions that have become safe
must be committed to safe storage.

As execution proceeds, the system tracks memory
references to identify any cross-thread data dependence
violation. Read-after-write (RAW) dependence violations
occur whenever a speculative thread consumes some
version of the data other than the one produced by the
proper store by a predecessor thread. When the memory
accesses of such dependences occur in order at runtime, a
violation can be prevented by forwarding the value
produced by the predecessor thread. Write-after-write
(WAW) and Write-after-read (WAR) dependences usually
do not cause violations as modifications by successor
threads are contained in their respective versions and
cannot be consumed by predecessor threads.

When data dependence violations are detected, the

offending thread must be squashed, along with any other

threads that may have an inconsistent state. These usually

include all successors of the offending thread. When a

thread is squashed, all the data that it speculatively

modified must be purged from the memory hierarchy and

the thread then restarts execution from its beginning.

During reexecution, the thread can be then provided with

the updated value. Fig. 1 shows how threads can be

speculatively executed in parallel.
With software speculative parallelization, the application

itself is augmented to perform the above operations. The

first step is then to identify and mark the speculative data.

The compiler analysis required can be easily built on top of

the data dependence and data flow analyses of existing

automatic parallelizing compilers. All data that can poten-

tially be used by a thread before being modified by it have

to be marked as speculative. Once the speculative data are

identified, the compiler must identify all their uses and

definitions (the speculative loads and stores) and replace them

with special operations to maintain access information.
From the above discussion, we can summarize the main

operations required by speculative parallelization as follows:

1. schedule speculative threads,
2. maintain access information to speculative data (the

speculative access state),
3. buffer speculative data and commit it to safe storage

when appropriate, and
4. detect data dependence violations, squash, and

restart threads as necessary.

In the following sections, we give an overview of these

operations and discuss in more detail the main design

options available.

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 563

Fig. 1. Example of speculative parallel execution with forwarding and a RAW dependence violation.

2.2 Scheduling Speculative Threads

Traditionally, the basic scheduling options for parallel loops
are 1) static or 2) dynamic. With static scheduling, the
iteration space is partitioned into P chunks of iterations,
where P is the number of processors. With dynamic
scheduling iterations are dynamically assigned to proces-
sors at runtime. The simplest dynamic technique is self-
scheduling [29], where all the chunks are unit size. While
these schemes are simple and effective for parallel loops,
both are undesirable under speculative parallelization.
Static scheduling will perform poorly when there is load
imbalance or when there are data dependence violations.
Self-scheduling is not practical when the number of
iterations, T , is very large because the memory overhead
of the speculative structures is then proportional to the
number of iterations. This is because each thread requires
its own set of data structures for speculative execution, as
explained in Section 2.3.

Under speculative parallelization an alternative design
option is to use a 3) sliding window mechanism [5], [8]. In
these schemes, chunks of iterations are scheduled in
windows of size W at a time. At any time, there are only
W active threads and the memory overhead is proportional
to W , regardless of the total number of chunks, C. Such
schemes can better decouple the memory overhead and
tolerance to load imbalance and data dependence violations
from the number of iterations. This is because C can be
made very large without increasing the memory overhead
while the sliding of the window approximates the behavior
of a dynamic schedule across C.

There are two possible variations of sliding windows.
The first variation is to have a conservative mechanism and
only slide the window once all threads in the window
complete execution and commit [8]. The second scheme is
to slide the window every time nonspeculative threads
complete execution and commit [5]. Despite their larger
complexity and management overhead, we expect schemes
based on windows to perform better across a broad range of
situations.

2.3 Maintaining Access Information

To maintain multiple speculative versions and track data
dependences, special data structures are generated for
every user speculative data. To maintain multiple versions,
the user data structure must be replicated for each thread
that can be active at any given time (Section 2.2). These are
called the version copies of the user data. To track accesses to
different parts of the user speculative data structure, we
must create a speculative access structure that keeps per-
thread access information for each of such parts.

Typically, each entry in the speculative access structure
should record whether the corresponding part of the user
data structure has been: not accessed by the thread, modified
by the thread, exposed loaded by the thread, or exposed loaded
and later modified by the thread. Initially, all elements of the
speculative data structure are in state not accessed. An
exposed load occurs when a thread issues a load without
having previously issued a store to the same data. If
forwarding is supported, then the most up-to-date version
is located by searching the access structure backward for
the closest predecessor entry in state other than not accessed.

If forwarding is not supported or if no up-to-date
predecessor version is found, the last committed value
(called the reference value) is returned. Such loads can
potentially cause RAW data dependence violations. Upon
speculative loads and stores, the corresponding entry in the
access structure may be update, following the transition
state diagram shown in Fig. 2.

While variation of the high-level operations just described
is limited, a few design options exist with respect to the
implementation of the speculative access structure. These
will have a direct impact on the execution overheads of
checking for data dependence violations and committing. A
simple array of access state of sizeM for each active thread (M
is then the number of parts of the user data structure that can
be unambiguously tracked) is very efficient for checking for
data dependence violations on speculative memory opera-
tions since then the system knows exactly where to obtain the
relevant access information. However, this approach is very
inefficient when committing and when checking for data
dependence violations on multiple elements of the user data
structure since in these occasions all M access information
would have to be checked. When the user speculative data is
very large compared to the amount of data actually used by
each thread, we can reduce these overheads by complement-
ing the speculative access structure with a list of the indices of
the user data elements actually touched. With such a
structure, the search for violations and the commit of
modified data stop when the end of the list is reached.

2.4 Committing Safe Data

Speculative modifications to the user data are temporarily
stored in the version copies. At some point after becoming
safe, version copies must be committed to safe storage,
which is usually the user data structure itself. There are two
main design options here: 1) to commit all the safe
speculative modifications at once at the end of the
speculative execution (the final commit), or 2) to perform
intermediate partial commits, that is, committing intermedi-
ate versions of the speculative data modified during the
execution of the loop. Partial commits can be done at some
arbitrary points in time, but are usually done when the
nonspeculative thread finishes or, in a window-based
system (Section 2.2), when the window moves. Performing
intermediate partial commits frees up version storage,
offers some opportunity for overlapping the commit over-
head with computation by other threads, and reduces the

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 2. Transition state diagram for a datum speculatively accessed.

amount of data that has to be committed at the end of the
speculative execution. The main disadvantage of partial
commits is the execution time overhead. This includes the
need for some form of synchronization to guarantee orderly
commit.

In a window-based scheduling design, partial commits
are required in order to advance the window and recycle
the speculative data structures. Partial commits are not
required, but are still possible in a design without window.
However, even if partial commits are implemented in a
system without windows, the size of the speculative
structures must still be proportional to the size of the
iteration space to accommodate worst-case scenarios.

2.5 Checking for Data Dependence Violations and
Squashing Threads

Data dependence violations are detected by looking at the
speculative access structures: A RAW data dependence
violation has occurred whenever a thread has a datum in
state exposed loaded or exposed loaded and modified, while some
predecessor thread has the same datum in state modified or
exposed loaded and modified. Checking for violations regularly
can incur execution overheads but prevents processors from
performing much useless work in the presence of viola-
tions. In general, detecting data dependence violations can
be done: 1) on every speculative load and store, 2) when
threads commit, or 3) simply at the end of the speculative
section.

Checking for data dependence violations on every
speculative memory operation requires some sort of
synchronization to avoid races. However, this policy has
two major advantages. First, it allows for early detection of
violations, which can be exploited to eagerly squash and
restart threads. Second, in this case, we must only check for
violations on a particular element of the user speculative
data. Moreover, checks for violations can be overlapped
with computation by other threads. On the other hand,
checking for data dependence violations on commits or at
the end of the speculative section requires checking for
violations on at least all the elements exposed loaded by the
threads involved, and potentially on all elements of the user
speculative data, depending on the implementation of the
access structure. The cost of this operation is further
increased by the fact that commits are serialized.

3 COST-EFFECTIVE SOFTWARE SPECULATIVE

PARALLELIZATION

In this section, we briefly review the design of our scheme
for software speculative parallelization [6]. The purpose of
this description is twofold. First, it makes the discussions
from the previous sections more concrete. Second, by using
this implementation as the common baseline for our
experiments, we isolate the high-level design alternatives
discussed in Section 2 from effects of implementation
details.

3.1 Sliding Window

Our scheme implements in software a sliding window
mechanism similar to the hardware mechanism of [5]. The
sliding window mechanism consists of an array of

characters of length W containing a status descriptor for
each uncommitted (active) thread. Additionally, two in-
tegers mark the boundaries of the window at any time,
pointing to the nonspeculative and the most-speculative
threads (Fig. 3).

In the window array, thread slots can be in the following
states: FREE, meaning that there is no thread associated
with this slot at the moment; RUN, meaning that the thread
is still being executed; DONE, meaning that the thread has
been executed to completion; and SQUASHED, meaning that
the thread has been involved in a violation, directly or
indirectly, and must be squashed.

During speculative execution, the nonspeculative and
most-speculative pointers in the window structure are used
by speculative loads and stores to determine the section of
the speculative access array that must be checked. At the
end of a thread’s execution, the thread states in the window
structure are used to determine what threads must be
committed, if any, and what thread to run next.

3.2 Speculative Access Structure

To support both fast commits and fast checks for data
dependence violations upon memory accesses, we use a set
of three speculative access structures. The first structure is
an M �W array of characters, where W is the maximum
number of active threads (the window size). In our system,
M is equal to the total number of elements of the user
structure that can be independently accessed. We call it AM,
for Access Matrix (bottom part of Fig. 3). Each element in this
speculative access structure encodes the following four
states: not accessed data (NotAcc), exposed loaded data
(ExpLd), modified data (Mod), and exposed loaded and
modified data (ExpLdMod). This access structure allows for
quick lookups upon speculative loads and stores for any
particular element of the user structure.

The second speculative access structure is an M �W
array of integers where the first elements in each column
point to elements of AM in states other than NotAcc. We
call this structure IM, for Indirection Matrix (bottom part of
Fig. 3). The last element in each column of IM that
corresponds to an accessed element of AM is identified by
a tail pointer that is part of an array of W integers (bottom
part of Fig. 3). The IM access structure is traversed on
commits to quickly identify the user data actually used by a
thread.

To further speed up the search for data dependence
violations, we use a third access structure: a single array of
M logical values. Each element can be in state either ExpLd
(TRUE) or Safe (FALSE). The ExpLd state indicates that at
least some thread since the start of the speculative execution
has performed an exposed load to this particular datum,
while the Safe state indicates that no thread has ever
performed an exposed load to this datum. This access
structure is useful in applications where the memory
accesses of threads do not overlap at all, or overlap but
are write-first. We call this structure GlExpLd, for Global
Exposed Load (left part of Fig. 3).

3.3 Speculative Memory Operations

Figs. 4a and 4b show abridged implementations of our
speculative load and speculative store operations, respec-
tively, in a C-like syntax. From these figures, we can

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 565

highlight the following features of our scheme: Only the
first load to a datum requires special handling by the
protocol (line 1 in Fig. 4a). The search for predecessor
versions of the datum on loads only requires looking up one
element of AM per thread (lines 6 to 11 in Fig. 4a). Similarly,
the search for data dependence violations on stores only
requires looking up one element of AM per thread (lines 11
to 15 in Fig. 4b). The use of the GlExpLd structure avoids
searching for data dependence violations when no thread
has performed an exposed load to the datum (line 10 in
Fig. 4b). Also, the search for data dependence violations can
stop early if a successor thread is found to have modified
the datum without an exposed load (lines 12 and 13 in
Fig. 4b).

Note that squashes can only be triggered by stores since
forwarding is supported. The squash() operation simply
involves setting the window state of the successor threads
to SQUASHED and moving the most-speculative pointer
backward. Later, when the squashed thread finishes, it will
trigger the reexecution of the offending threads. Addition-
ally, to increase the chances of performing squashes as early

as possible, threads check their window state before every

speculative memory operation (code not shown) and

immediately terminate the execution if they find themselves

to have been squashed. In this way, the global squash

operation may start earlier and threads can be rescheduled

earlier.
In addition to speculative loads and stores, we also

implement a speculative reduction operation, shown in Fig. 4c.

This operation simply accumulates in the version copy the

contribution of the current thread to the global reduction

operation, according to the semantics of each particular

reduction operation. At commit time, the value is merged

appropriately with the main value stored in the user data

structure (code not shown). This speculative reduction

operation is necessary to guarantee correct execution in the

presence of squashes. Note that user data identified for

speculative reductions cannot be operated on by speculative

loads and stores, and vice-versa, and if this occurs the

error() operation is called.

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 3. Data structures used in our software speculative parallelization scheme. In the version copies, the single-striped boxes correspond to Mod

data and the double-striped boxes correspond to ExpLd data.

3.4 Commits

Fig. 4d shows an abridged implementation of the code
executed at the end of each thread, in a C-like syntax. This
code is divided in two main sections: the commit proper
(lines 3 to 16) and the assignment of a new thread (lines 22
to 29). From this figure, we can highlight the following
features of our scheme. Only the nonspeculative thread
performs commits (line 3), and it is responsible for
committing itself and all successor threads that have
already finished (lines 5 to 14). Committing the modified
data is limited to checking the elements accessed by the
threads, as identified by the IM structure (lines 10 and 11).
When the window is full, processors spin-wait without
contention until a thread slot is freed (line 22). Finally,
before starting a new thread, the AM structure is efficiently
cleared for reuse by using IM (lines 24 and 25). After
incrementing the most-speculative pointer and securing a
slot in the window, the processor is ready to grab another
thread to execute (code not shown for simplicity). The
do_squash() operation, in practice, simply requires
setting the window slot to FREE.

3.5 Protocol Races

As described so far, our protocol for detecting data
dependence violations and for partial commits suffers from
race conditions. These races are caused by uses of and
updates to the shared window structure and the shared
speculative access structures. Note that speculative reduc-
tions operate only on exclusive data and metadata, so there
are no races involving these operations.

We can divide the races in two major cases: those that
appear due to the protocol itself when executed in strict
program order and when the memory operations follow a
sequential consistency memory model [1], and those that
appear when the compiler may reorder the operations in
the protocol and/or when the hardware only enforces some
relaxed memory consistency model that allows loads and

stores to bypass each other, as is the case in Sun’s SPARC
[26] and IBM’s PowerPC systems [17].

Previous work with software speculative parallelization
has dealt with these races by serializing these operations
through locks and/or critical sections. This leads to
unnecessary additional synchronization overheads and
reduces the amount of overlapped execution of these
operations. In our system, we carefully order the individual
actions in these operations to avoid races under a sequential
consistency model and we add a small set of memory
directives to guarantee this order under relaxed memory
consistency models. This allows us to use a single critical
section to guarantee exclusive access on commit and squash
operations (Fig. 4d). In the Appendix, we show that our
fences are the minimal set to guarantee that the protocol
execution appears as sequentially consistent even if the
system uses some relaxed consistency model.

4 EVALUATION METHODOLOGY

4.1 Applications

To evaluate our scheme, we choose four applications: TREE
from [3], WUPWISE from SPECfp2000 [27], MDG from the
PERFECT Club suite [4], and 2D-HULL from [7]. These
applications are representative of legacy as well as recent
sequential scientific programs. They spend a large fraction of
their sequential execution time on loops that cannot be
automatically parallelized by state-of-the-art compilers be-
cause they have dependence structures that are either too
complicated to be analyzed at compile time or dependent on
the input data. The loop in TREE takes up to 94 percent of
sequential execution time, the loops in WUPWISE take up to
41 percent, the loop in MDG takes up to 86 percent, and the
loop in 2D-HULL takes up to 99 percent. The first three
applications do not suffer from RAW data dependences at
run time. The fourth application, a two-dimensional Convex

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 567

Fig. 4. Abridged C-like code for (a) speculative loads, (b) speculative stores, (c) a speculative reduction, and (d) the code executed at the end of each
thread’s execution. In this figure, I is the index corresponding to the element of the user structure being operated on, tid identifies the thread
performing the operation, ref corresponds to the original user data structure, and lvalue and rvalue correspond to the variable or expressions
used in the original operations. red_op() corresponds to a reduction operation. The memory fence and critical directives are discussed in
Section 3.5 and the Appendix.

Hull solver, uses a randomized incremental algorithm, which
generates RAW data dependences every time a new point
causes the current convex hull solution to be expanded.

Table 1 shows, for each application, the loops that we
attempt to parallelize speculatively, the different input sizes
used, the size of the data accessed through speculative
references, the average number of iterations executed per
loop invocation, the fraction of threads that suffer data
dependence violations, and the number of times the loops
are invoked. In the case of WUPWISE, we obtain loops
muldeo_200’ and muldoe_200’ by merging the three outer
loops in loop nests muldeo_200 and muldoe_200, respec-
tively. For that, it is necessary to hoist some induction
variables and compute the loop indices appropriately,
which is within the capabilities of recent compilers.1

The input sets used with TREE, WUPWISE, and MDG
are the standard ones provided with the applications,
unless stated otherwise. For 2D-HULL, we evaluate six
different input sets that distribute the points inside a square
or inside a disc and contain different numbers of input
points. The shape of the distribution affects the expected
number of points that fall outside the incremental solution,
thus affecting the number of data dependences.

4.2 Parallel Execution Environment

We have run the applications described in Section 4.1 on a
48-processor Sun Fire 15K symmetric multiprocessor (SMP).
The machine is equipped with 900MHz UltraSPARC-III
processors, each with a private 64KByte 4-way set-associa-
tive L1 cache, a private 8MByte direct-mapped L2 cache,
and 48 GBytes of shared main memory. The system runs
SunOS 5.8. The system interconnect has a sustained
bandwidth of 9.6 GBytes/s. The SPARC V9 architecture
supports any of three different memory consistency models:
relaxed memory order (RMO), partial store order (PSO), and
total store order (TSO) [26]. The model enforced depends on
the actual configuration of the system. We developed our
code assuming RMO, as it is the most relaxed of the three

and a program that correctly executes in this model is
guaranteed to correctly execute in the other two.

The applications were compiled with the Forte Devel-
oper 7 Fortran 95 compiler using the highest optimization
settings for our execution environment: -O3 -xchip =

ultra3 -xarch = v8plusb -cache = 64/32/4:8192/

64/1. They had exclusive use of the processors during the
entire execution and we use wall-clock time in our time
measurements. For the execution time breakdowns, we use
the performance collector tool which is part of the Forte
development environment. In our experiments, the perfor-
mance collector introduced negligible execution overheads.

We used OpenMP 2.0 to parallelize the loops because of
its wide acceptance and portability. The memory fences
described in Section 3.5 were implemented using OpenMP
flush directives. The semantics of this directive enforce
that the local processor and memory have a consistent view
of some shared object specified in the directive. With proper
declaration and placement of these directives, we can
guarantee that all processors and memory have a consistent
view of the shared objects and then mimic the behavior of
the memory fences of Section 3.5. A more aggressive
implementation could use the more selective MEMBAR fence
provided in the SPARC processor [26].

4.3 Systems Evaluated

The goal of our experiments is to quantitatively evaluate the
discussed design trade offs of software speculative paralle-
lization schemes. The schemes that we evaluate are the
following.

sys1 uses a window scheme with partial commits when
the nonspeculative thread finishes, checks for data depen-
dence violations on every speculative store operation, and
supports forwarding. This is our baseline system described
in Section 3.

sys2 is a variation of our baseline scheme that only checks
for data dependence violations when threads commit and
does not support forwarding. We evaluate this system to
assess the cost of our dependence checking mechanism.

sys3 uses a window scheme with partial commits only
when all threads in the window complete, checks for data
dependence violations on every speculative store operation,

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

TABLE 1
Characteristics of the Applications and Input Sizes Used

1. Recently, as part of the SPEC OMP parallelization effort [2], loops
similar to muldeo_200 and muldoe_200 have been parallelized with help
from hand analysis. Such analysis is still beyond the capabilities of
automatic parallelization alone.

and supports forwarding. We evaluate this system to
compare our aggressive sliding window with a more
conservative one.

sys4 is a variation of sys3 that only checks for data
dependence violations when threads commit and does not
support forwarding. While the implementations are differ-
ent, this system is similar in concept to the SW-R-LRPD
scheme of [8] with respect to the high-level design options
discussed in Section 2.

sys5 has no window and no partial commits, uses
dynamic scheduling of iterations to processors, checks for
data dependence violations on every speculative store, and
supports forwarding. While the implementations are
different, this system is similar in concept to the scheme
of [22] with respect to the high-level design options
discussed in Section 2, except that we do not use locks for
speculative loads and stores.2

To show all the possible combinations of design options,
we also study three other systems: sys6 is a variation of sys5
that only checks for data dependence violations at the end
of the speculative execution, sys7 is a variation of sys5 that
has partial commits, and sys8 is a variation of sys6 that has
partial commits. Table 2 summarizes the characteristics of
the systems evaluated and their design decisions.

5 EXPERIMENTAL RESULTS

5.1 Baseline Speedups

We start by presenting the execution time breakdowns and
speedups of the speculative sections only for all the systems
described in Section 4.3 for configurations of 4 to 24 proces-
sors. For the window-based systems, the window size is set
equal to the number of processors (minimal size). Fig. 5 shows
the results. On top of each bar, we show the speedups relative
to sequential execution time. The bars are normalized to the
sequential execution time and are broken down into the
following components: Busy is the execution time of the
original loop body plus OpenMP overhead; Spin is the idle
time due to load imbalance when waiting for other threads to
complete in order to advance the window (e.g., line 22 in
Fig. 4d) plus idle time due to load imbalance at the end of the
speculative section; Memory ops. is the overhead time spent on

speculative loads, stores, and reductions, excluding the
original memory operation (e.g., all of Fig. 4a except line 8
or line 13, all of Fig. 4b except line 1, and all of Fig. 4c except
lines 2 and 8); Commit is the overhead time of the commit
operations and setting up of a new thread (e.g., lines 2 to 19
and 28 to 29 in Fig. 4d) plus initialization time of the
speculative access structures at the beginning of the spec-
ulative sections and, for the window based systems, when
these structures are reassigned to new threads (e.g., lines 24 to
27 in Fig. 4d); and Contention is the idle time waiting at the
locks and barriers required by the different schemes.

From the figure, we can draw the following general
observations:

. It was not possible to run WUPWISE or 2D-HULL on
our Sun platform with the systems without window-
based scheduling (sys5 to sys8) because of the large
memory overhead (Table 1). Thus, dynamic systems
are not suitable when the user data structure and/or
the iteration space are very large.

. Despite its overheads, fairly good speedups can be
achieved with software speculative parallelization
for medium configurations (8 to 16 processors).
However, efficiency drops significantly with larger
configurations due mainly to contention, which can
hinder the scalability of these software schemes.
Another reason for the scalability problems is the
spin-wait in the window-based systems (sys1 to
sys4), an effect that can be alleviated with larger
window sizes, as shown in Section 5.2. Finally, the
conservative window and fully dynamic schemes
have more smooth performance degradation than
the aggressive window systems (e.g., sys3 and sys5
versus sys1).

. Checking for data dependence violations on every
speculative store (sys1, sys3, and sys5) can sometimes
degrade performance compared to the corresponding
systems that only check for violations at commit (sys2,
sys4, and sys6) for smaller configurations, but leads to
better performance for larger configurations with
TREE, MDG, and 2D-HULL. This is due to the added
contention due to the longer commit operation. With
WUPWISE, checking for violations on speculative
stores consistently leads to better performance. The
reason for this is the much larger size of the user data
structure in this application. Also, in the presence of
data dependence violations, checking for violations on
every speculative store and eagerly squashing threads
can reduce the amount of useless work performed by
squashed threads, as evidenced by the difference in
Busy time between sys1, sys2, and sys3 and sys4 for 2D-
HULL with 7.35 percent and 10.63 percent violations.

. The more aggressive window-based schemes (sys1
and sys2) consistently outperform the less aggressive
ones (sys3 and sys4) due to a large reduction in load
imbalance overhead. The schemes with fully dy-
namic scheduling (sys5 and sys6) perform as well as,
or better than, the window-based schemes with such
a minimal window size for TREE, but not for MDG.
This is because of the slightly larger speculative data
set size of MDG, which increases the commit time
and its associated contention overhead.

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 569

2. In [22], a parallel implementation of the final commit is proposed to
reduce its cost when only an access structure equivalent to our AM is used.
This optimization is complicated with the use of the IM structure, but it then
becomes somewhat redundant as the IM structure already cuts to a
minimum the amount of searching for data to commit.

TABLE 2
Characteristics of the Systems Evaluated

. Partial commits can significantly reduce the commit

overheads of dynamic systems, as can be seen by

comparing sys5 and sys6 with their counterparts

with partial commits, sys7 and sys8. In fact, the latter
systems consistently outperform all other systems
for TREE and MDG.

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 5. Speedups and execution time breakdowns for the speculative sections only. Window sizes (where applicable) are equal to 1x the number of

processors.

A detailed comparison of the performance of these
schemes against hardware-based schemes is difficult
because the applications used do not usually overlap and
hardware-based papers tend to report numbers for the
speculative parallelization of the whole applications. Never-
theless, we were able to find reported numbers for a very
optimized hardware scheme for TREE in [19]: approxi-
mately 7-fold and 14-fold speedups for 8 and 16 processors,
respectively. Such performance numbers are clearly better
than those achieved by software schemes, but come at the
cost of additional dedicated hardware.

5.2 Scheduling Policy and Window Size

To evaluate the effects of the policy for scheduling threads,
we compare the schemes that vary in their scheduling
policies: sys1, sys3, sys5, and sys7. For the window-based
systems, we vary the window size to evaluate its impact on
the load imbalance overhead, commit overhead, and
execution times. Fig. 6 shows the execution time break-
downs and speedups of the speculative sections only with
different window sizes.

From the figure, we can draw the following observations:

. Increasing the window size from one time to twice the
number of processors for both sys1 and sys3 improves
the performance of these schemes significantly (com-
pare with Fig. 5), with only a few exceptions. For sys1,
further increases in window size lead to only small
incremental performance gains, as a window size of
twice the number of processors already practically
eliminates all load imbalance overhead. The less
aggressive window scheme, sys3, however, can still
benefit from larger window sizes, especially for
smaller configurations of 4 or 8 processors. The
exception to this occurs with 2D-HULL running on
larger number of processors, where the large window
size leads to poorer performance for sys3. This is
mainly due to the increase in the time taken to scan
predecessor and successor access state information at
the speculative memory operations. This effect is not
so noticeable for sys1 as the dynamic commits mean
that the average window size is smaller than the
nominal size.

. Within the small range of values evaluated, the
window size has very small impact on the commit
overhead.

. With small window sizes of two to four times the
number of processors, sys1 performs very close to the
systems with dynamic scheduling for TREE and MDG
(recall that it was not possible to run the dynamic
scheduling systems for WUPWISE and 2D-HULL).

In Section 5.1 and Fig. 5, we observed that checking for
violations on memory operations does not lead to sig-
nificant overheads and, in fact, can lead to better perfor-
mance for larger system configurations. We have evaluated
the impact of the window size on the relative performance
of the different policies for checking for violations. We do
not show results due to space limitations, but our
experiments show that the relative performance variation
between sys1 and sys3 and their counterparts with less
aggressive checks for data dependence violations, sys2 and
sys4, does not change noticeably with the window size.

5.3 Effects of Problem Size

To study the effect of problem size in the performance of
our baseline system (sys1), we compared the speedups
obtained in the execution of the applications with different
problem sizes. The problem sizes used lead to changes to
the iteration space, the number of times the speculative loop
is executed, and the amount of speculative data. Fig. 7
shows the execution time breakdowns and speedups of the
speculative sections only for the different problem sizes.
With TREE and WUPWISE, we set the window size to twice
the number of processors, while with 2D-HULL we use a
minimal window size equal to the number of processors, as
the window size had negligible impact for this application.

From the figure, we can draw the following observations:

. Larger problem sizes lead to slightly better perfor-
mance. For TREE and WUPWISE, this is mainly due
to better workload division, better locality of data,
and reduced contention. For 2D-HULL, this is also
due to a reduction is the relative number of
violations and squashes.

. Our system produces good speedups even with
problem sizes that can be considered unrealistically
small for these applications, and even when data
dependence violations are relatively frequent.

6 RELATED WORK

Runtime speculative parallelization in software was intro-
duced in the LRPD test [20]. Data dependence violations are
checked at the end of the tentative parallel execution, and
the loop is reexecuted sequentially if a violation is detected.
Thus, this scheme can only handle fully parallel loops. The
scheme in [9] proposed a series of runtime tests, also at the
end of the tentative parallel execution. They are tailored for
different access patterns and rely on the compiler to identify
the most likely behavior. More recently, [8] extended the
LRPD work with two new mechanisms. The most aggres-
sive, SW-R-LRPD test, uses a sliding window mechanism
somewhat similar to ours. This system differs from ours in
three ways: The window only moves when all threads in
the window complete, checking for data dependences only
occurs after all the threads within a window are finished,
and the threads in a window are statically partitioned and
assigned to processors. The scheme in [22] applied in
software many of the ideas of hardware-based speculative
parallelization, such as checking for data dependence
violations on memory operations and forwarding. It differs
from ours in two ways: No window is used and either locks
or a nonscalable byte-vector implementation of the access
structures are used to avoid races in the protocol. The work
in [18] takes a different approach to software speculative
parallelization by placing most of the operations in the
software distributed coherence engine. In [6], we proposed
our scheme with an aggressive sliding window, with checks
for data dependence violations on speculative stores with
reduced synchronization constraints, and with fine-tuned
data structures. This current work performs a more
complete evaluation of that scheme and quantitatively
explores a larger section of the design space.

Several hardware approaches for speculative paralleliza-
tion have been proposed (e.g., [10], [25], [31]). While these
alleviate many of the overheads of speculative parallelization

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 571

by moving some of the operations to hardware, they require

significant changes to the hardware structures, such as

caches, protocol controllers, and even the processors.

Alternatively to speculative parallelization, inspector-

executor schemes ([14], [23]) precompute the reference

stream and use the dependence information to execute the

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 6. Behavior of window-based approaches with respect to no-window solutions.

loop in parallel with explicit synchronization where
necessary. This approach works well only when computa-
tion of the reference stream is cheap compared to the actual
loop computation.

Finally, speculative parallelization is also related to
optimistic concurrency control and synchronization ([11],
[13]), including hardware-assisted schemes ([12], [16], [21]).
Under these schemes, which target explicitly parallel code,
threads are allowed to speculatively enter critical sections
simultaneously or speculatively proceed past a barrier before
all threads have reached it. In these, there is no need to enforce
a total order on the memory accesses to shared objects, but
only that such accesses satisfy some valid partial order
(mutual exclusion in the case of critical sections or prebarrier
before postbarrier accesses in the case of barriers). Spec-
ulative parallelization schemes, on the other hand, tackle a
more general problem that requires enforcing a total order of
accesses that satisfies the execution semantics of the original
sequential code.

7 CONCLUSIONS

In this paper, we discussed in detail the design options
available for a recently proposed software-only specula-
tive parallelization scheme, and quantitatively evaluated
the performance implications of these options. We also

correlated the design choices and their performance to
application characteristics and system size (i.e., number of
processors). From the experimental results, we conclude
the following:

. Checking for data dependence violations on every
speculative store, as opposed to at commit time,
leads to little performance degradation in the worst
case and to significantly better performance with
large configurations.

. Scheduling policies based on windows can perform
very close to fully dynamic policies with a fraction of
the memory overhead.

. The serialization of commits can become a signifi-
cant bottleneck for fully dynamic systems when
applications have nontrivial speculative data set
sizes. Mitigating techniques such as partial commits
and parallel commits (the latter is not evaluated in
this paper) can reduce this overhead significantly.

. Our baseline scheme delivers speedups even in the
case of an application with RAW data dependences
where up to 15 percent of the threads suffer data
dependence violations.

. The speculative execution overheads were not
significantly affected by changes in the problem

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 573

Fig. 7. Effects of different problem sizes with sys1. S, M, and L correspond to the Small, Medium, and Large problem sizes listed in Table 1,

respectively.

size, even for unrealistically small problem sizes,
which were expected to stress the relative impact of
these overheads.

. Despite drops in efficiency for larger system config-
urations, most of the design choices evaluated for
our software speculative parallelization scheme
provide good speedups.

. While these speedups are lower than those obtained
with hardware-based schemes, they come at no extra
hardware costs.

Overall, we conclude that with an efficient software
speculative parallelization scheme such as the baseline
system we propose and some of its variants evaluated here,
speculative parallelization is an attractive technique to
parallelize irregular loops that cannot be parallelized at
compile time.

APPENDIX

PROTOCOL RACES

In [6], we appealed to intuition to identify all the races in
our protocol and to show that the set of memory fences we
proposed is appropriate and minimal to guarantee sequen-
tially consistent execution of the protocol. Here, we use the
more formal delay set analysis of [24] to prove these
assertions. The first step in the delay set analysis is to
consider pairwise the routines that could be executed

simultaneously by any two threads. In our case we, must

consider the following pairs of threads:

1. Speculative Load versus Speculative Load,
2. Speculative Load versus Speculative Store,
3. Speculative Load versus Commit,
4. Speculative Store versus Speculative Store, and
5. Speculative Store versus Commit.3

The next step is, for each pair of routines, to compute the

conflict relation (C), which is, informally, the set of pairs of

conflicting memory operations.4

Fig. 8 shows from the codes in Fig. 4 only the memory

accesses that can potentially conflict. For instance,

“Ld2 : write A” and “St10 : read A” in Fig. 8b refer to the

store and load of the same element of GlExpLd in line 2 of

the speculative load operation (Fig. 4a) and in line 10 of the

speculative store operation (Fig. 4b), respectively. Ob-

viously, if the speculative load and store operations are to

different data, then they will access different elements of

GlExpLd and there will be no conflict. Similarly,

“Ld3 : write A” and “Ld7 : read A” in Fig. 8a refer to the

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 8. Conflicting accesses: (a) between two speculative loads, (b) between speculative loads and stores, (c) between speculative loads and

commits, (d) between two speculative stores, and (e) between speculative stores and commits. As in [24], we represent program order dependences

as solid arrows and memory access conflicts as dashed lines.

3. The squash() operation in line 15 of Fig. 4b updates the most-
speculative pointer, which is also accessed by the speculative store
operation in line 11 of this figure. This, however, can only cause the store
to search for data dependence violations on already squashed threads, and
we do not consider this conflict further.

4. Two memory operations conflict if they access the same memory
location and at least one is a write.

store and load of the same element of AM in lines 3 and 7 of
the speculative load operation (Fig. 4a). Note that for this
conflict to occur, the thread performing the store to AM
must be less speculative than the thread performing the
load to AM.

After computing C, the next step is to compute all the
cycles in the union of C with the program order relation (P),
which is, informally, the set of relations on memory
operations required by program order inside threads. Cycles
in the union of C and P correspond to data races in the
program. Finally, from the cycles of P

S
C, we select those

that are critical cycles5 and pairs of operations from the same
thread that occur in some critical cycle are considered
critical pairs. The set of critical pairs then corresponds to the
minimal set of orderings that must be explicitly enforced
and is thus called the delay set (D):

. Speculative Load versus Speculative Load: Fig. 8a
shows the potentially conflicting memory accesses
between concurrent speculative load routines. The
resulting conflict relation is: C = fðLd3, Ld7Þ, ðLd8=13,
Ld8Þg. Note that line 8 contains both a load and a
store, which can conflict. There are no critical cycles
and, thus, there are no races and there is no need to
insert fences.

. Speculative Load versus Speculative Store: Fig. 8b
shows the potentially conflicting memory accesses
between concurrent speculative load and speculative
store routines. The resulting conflict relation is: C =
fðLd2, St10Þ, ðLd3, St12=14Þ, ðLd7, St4=8Þ, ðLd8, St1Þg.
The critical cycles in P

S
C are: ðLd2, Ld8, St1, St10,

Ld2Þ, ðLd2, Ld7, St4=8, St10, Ld2Þ, ðLd3, Ld7, St4=8,
St12=14, Ld3Þ, and ðLd7, Ld8, St1, St4=8, Ld7Þ, which
lead to the following critical pairs: D = fðLd2, Ld8Þ,
ðLd2, Ld7Þ, ðLd3, Ld7Þ, ðLd7, Ld8Þ, ðSt1, St10Þ, ðSt4=8,
St10Þ, ðSt4=8, St12=14Þ, ðSt1, St4=8Þg.

To enforce the ordering imposed by the relation
D, it suffices to add full memory fences after Ld3,
Ld7, St1, and St4=8. However, as the ordering of Ld7
and Ld8 is enforced by a control dependence it is safe
to remove the memory fence after Ld7.

. Speculative Load versus Commit: Fig. 8c shows the
potentially conflicting memory accesses between
concurrent speculative load and commit routines.
The resulting conflict relation is: C = fðLd6, Cm15Þ,
ðLd13, Cm11Þg. The critical cycle in P

S
C is: ðLd6,

Ld13, Cm11, Cm15, Ld6Þ, which leads to the following
critical pairs: D = fðLd6, Ld13Þ, ðCm11, Cm15Þg.

To enforce the ordering imposed by the relation
D, it suffices to add full memory fences after Ld6 and
Cm11. However, as the ordering of Ld6 and Ld13 is
enforced by a control dependence, it is safe to
remove the memory fence after Ld6.

. Speculative Store versus Speculative Store: Fig. 8d
shows the potentially conflicting memory accesses
between concurrent speculative stores. The resulting
conflict relation is: C = fðSt4=8, St12=14Þg. There are no
critical cycles and, thus, there are no races and there
is no need to insert fences.

. Speculative Store versus Commit: Fig. 8e shows the
potentially conflicting memory accesses between
concurrent speculative store and commit routines.
The resulting conflict relation is: C = fðSt11, Cm29Þ,
ðSt12=14, Cm25Þg. The critical cycle in P

S
C is: ðSt11,

St12=14,Cm25,Cm29, St11Þ, which leads to the following
critical pairs: D = fðSt11, St12=14Þ, ðCm25, Cm29Þg.

To enforce the ordering imposed by the relation
D, it suffices to add full memory fences after St11
and Cm25. However, as the ordering of St11 and
St12=14 is enforced by a control dependence it is safe
to remove the memory fence after St11.

This analysis shows that the set of fences described in
Section 3.5 and shown in Fig. 4 is enough to guarantee a
sequentially consistent execution of the protocol in systems
that support some relaxed memory consistency model.

ACKNOWLEDGMENTS

This work was supported in part by the European
Commission under grants HPRI-CT-1999-00026 and RII3-
CT-2003-506079, and by EPSRC under grant GR/R65169/
01. The authors would like to thank the anonymous referees
for their valuable suggestions. They also thank Michael
O’Boyle, José Martinez, Pedro Trancoso, and Belén Palop
for their helpful comments on earlier drafts of this paper.
Finally, they would like to thank the Edinburgh Parallel
Computing Center (EPCC) for the main computing
resources used in this work and its support staff, in
particular, Mark Bull and Catherine Inglis.

REFERENCES

[1] S.V. Adve and K. Gharachorloo, “Shared Memory Consistency
Models: A Tutorial,” Computer, vol. 29, no. 12, pp. 66-76, Dec. 1996.

[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.B. Jones, and
B. Parady, “SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance,” Proc. Workshop OpenMP Applica-
tions and Tools, pp. 1-10, July 2001.

[3] J.E. Barnes, Inst. for Astronomy, Univ. of Hawaii, ftp://
ftp.ifa.hawaii.edu/pub/barnes/treecode/, 2004.

[4] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R.
Roloff, A. Sameh, E. Clementi, S. Chin, D. Schneider, G. Fox, P.
Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, L.
Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin, “The
PERFECT Club Benchmarks: Effective Performance Evaluation of
Supercomputers,” Int’l J. Supercomputer Applications, vol. 3, no. 3,
pp. 5-40, Fall 1989.

[5] M. Cintra, J.F. Martı́nez, and J. Torrellas, “Architectural Support
for Scalable Speculative Parallelization in Shared-Memory Multi-
processors,” Proc. Int’l Symp. Computer Architecture, pp. 13-24, June
2000.

[6] M. Cintra and D.R. Llanos, “Toward Efficient and Robust
Software Speculative Parallelization in Multiprocessors,” Proc.
Symp. Principles and Practice of Parallel Programming, pp. 13-24,
June 2003.

[7] M. Cintra, D.R. Llanos, and B. Palop, “Speculative Parallelization
of a Randomized Incremental Convex Hull Algorithm,” Proc. Int’l
Workshop Computational Geometry and Applications, pp. 188-197,
May 2004.

[8] F. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops,” Proc. Int’l
Parallel and Distributed Processing Symp., pp. 20-29, Apr. 2002.

[9] M. Gupta and R. Nim, “Techniques for Run-Time Parallelization
of Loops,” Supercomputing, Nov. 1998.

[10] L. Hammond, M. Wiley, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 58-
69, Oct. 1998.

CINTRA AND LLANOS: DESIGN SPACE EXPLORATION OF A SOFTWARE SPECULATIVE PARALLELIZATION SCHEME 575

5. A cycle is critical if it is a simple cycle of P
S
C and has no chords in P .

[11] M. Herlihy, “Apologizing versus Asking Permission: Optimistic
Concurrency Control for Abstract Data Types,” ACM Trans.
Database Systems, vol. 15, no. 1, pp. 96-124, Mar. 1990.

[12] M. Herlihy and J.E.B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” Proc. Int’l Symp. Computer
Architecture, pp. 289-300, May 1993.

[13] H.T. Kung and J.T. Robinson, “On Optimistic Methods for
Concurrency Control,” ACM Trans. Database Systems, vol. 6, no. 2,
pp. 213-226, June 1981.

[14] S.-T. Leung and J. Zahorjan, “Improving the Performance of
Runtime Parallelization,” Proc. Symp. Principles and Practice of
Parallel Programming, pp. 83-91, May 1993.

[15] P. Marcuello and A. González, “Clustered Speculative Multi-
threaded Processors,” Proc. Int’l Conf. Supercomputing, pp. 365-372,
June 1999.

[16] J.F. Martı́nez and J. Torrellas, “Speculative Synchronization:
Applying Thread-Level Speculation to Explicitly Parallel Applica-
tions,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 18-29, Oct. 2002.

[17] The PowerPC Architecture: A Specification for a New Family of RISC
Processors, C. May, E. Silha, R. Simpson, and H. Warren, eds.,
Morgan Kaufmann Publishers Inc., San Francisco, second ed.,
1994.

[18] S. Papadimitriou and T. Mowry, “Exploring Thread-Level Spec-
ulation in Software: The Effects of Memory Access Tracking
Granularity,” Technical Report CMU-CS-01-145, School of Com-
puter Science, Carnegie Mellon Univ., July 2001.

[19] M. Prvulovic, M.J. Garzaran, L. Rauchwerger, and J. Torrellas,
“Removing Architectural Bottlenecks to the Scalability of Spec-
ulative Parallelization,” Proc. Int’l Symp. Computer Architecture,
pp. 204-215, June 2001.

[20] L. Rauchwerger and D. Padua, “The LRPD Test: Speculative Run-
Time Parallelization of Loops with Privatization and Reduction
Parallelization,” Proc. Conf. Programming Language Design and
Implementation, pp. 218-232, June 1995.

[21] R. Rajwar and J.R. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” Proc. Int’l Symp.
Microarchitecture, pp. 294-305, Dec. 2001.

[22] P. Rundberg and P. Stenström, “An All-Software Thread-Level
Data Dependence Speculation System for Multiprocessors,”
J. Instruction-Level Parallelism, vol. 3, Oct. 2001.

[23] J. Saltz, R. Mirchandaney, and K. Crowley, “Run-Time Paralleliza-
tion and Scheduling of Loops,” IEEE Trans. Computers, vol. 40,
no. 5, pp. 603-611, May 1991.

[24] D. Shasha and M. Snir, “Efficient and Correct Execution of Parallel
Programs,” ACM Trans. Programming Languages and Systems,
vol. 10, no. 2, pp. 282-312, Apr. 1988.

[25] G. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar Processors,”
Proc. Int’l Symp. Computer Architecture, pp. 414-425, June 1995.

[26] The SPARC Architecture Manual Version 9, SPARC Int’l Inc.,
Englewood Cliffs, N.J.: Prentice Hall PTR, 2000.

[27] Standard Performance Evaluation Corp., http://www.spec.org/,
2004.

[28] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry, “A Scalable
Approach to Thread-Level Speculation,” Proc. Int’l Symp. Compu-
ter Architecture, pp. 1-12, June 2000.

[29] P.Y. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple-
Nested Parallel Loops,” Proc. Int’l Conf. Parallel Processing, pp. 528-
535, Aug. 1986.

[30] J.-Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P.-C. Yew, “The
Superthreaded Processor Architecture,” IEEE Trans. Computers,
special issue on multithreaded architectures, vol. 48, no. 9, pp. 881-
902, Sept. 1999.

[31] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for
Speculative Run-Time Parallelization in Distributed Shared-
Memory Multiprocessors,” Proc. Int’l Symp. High-Performance
Computer Architecture, pp. 161-173, Feb. 1998.

Marcelo Cintra received the BS and MS
degrees from the University of Sao Paulo in
1992 and 1996, respectively, and the PhD
degree from the University of Illinois at Urbana-
Champaign in 2001. He is an assistant professor
of computer science at the University of Edin-
burgh. His research interests span parallel and
multithreaded architectures and optimizing com-
pilers. He is a member of the ACM, the IEEE,
and the IEEE Computer Society. More informa-

tion about his current research activities can be found at http://
www.homepages.inf.ed.ac.uk/mc.

Diego R. Llanos received the MS and PhD
degrees in computer science from the University
of Valladolid, Spain, in 1996 and 2000, respec-
tively. He is a recipient of the Spanish govern-
ment’s national award for academic excellence.
Dr. Llanos is an associate professor of computer
architecture at the University of Valladolid, and
his research interests include parallel and
distributed computation, computer system per-
formance evaluation, and automatic paralleliza-

tion of sequential code. He is a member of the IEEE and the IEEE
Computer Society. More information about his current research activities
can be found at http://www.infor.uva.es/~diego.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

