
scheme can be accomplished in the network by connecting the output elements to
each other via previewed negative, or inhibitory, connections. The output element
with the most activation along its connection becomes the highest active one and in
due course forces all other output elements to be inactive. A simple competitive
algorithm given by Rich and Knight (1991) is as follows.

(1) Provide a sample input from the training.
(2) Compute the initial activation for each output element.
(3) Let the output elements compete with each other for the input vector until only

one is active.

(4) Increase the weight on the connection between the active output element and
active input elements. This makes it more likely that the output element will be
active next time the pattern is repeated.

One problem with this algorithm is that one output element may learn to be active
all the time. A solution to this problem is described in Rumelhart and Zipser (1986).

Chapter 12
Multiagent Systems

12.1. INTRODUCTION

Many important computer applications such as planning, cooperating robotics, process
control, manufacruring, distributed sensing, avionics, collaborative design, health care
and diagnostis, require construcrion of computational processes, both hardware and
softWare, that are part of a larger system embedded in a physical environment. In such
a framework the computational process must be made aware of its environment,
continually monitoring the state of its world, choosing an appropriate action and
reacting to changed conditions of this world. These computational processes are largely
distributed and autonomous: we shall refer to them as agents.

In investigating the practical and theoretical foundations of these agents, a number
of critical issues need to be considered. These include: What representational
formalisms are to be developed and used to characterise the agent and the world?
How are activities and tasks are to be usefully distributed across cooperating agents?
How do agents communicate and cooperate to solve a goal? How does an agent
generate a plan and carry out actions to complete a task? What resources are
available to an agent and how are they used efficiently? How is it decided that a goal
has been reached? What is the relationship between an agent and the world? This
chapter attempts to answer some of these questions.

Distributed artificial intelligence (DAI) is a branch of Al that is concerned with the
cooperative solution of problems by a decentralised group of processes or agents.
These agents are loosely coupled but are logically independent of each other; they are
capable of sophisticated problem solving and are able to reason, plan and
communicate. DAI branches into three areas; distributed problem solving (DPS),
multiagent systems (MAS) and parallel artificial intelligence (PAI).

DPS is concerned with decomposing a problem among a number of cooperating and
knowledge-sharing modules which are specifically designed for a particular problem. In
contrast, MAS are characrerised by a number of autonomous generally heterogeneous
and potentially independent agents working together to solve a problem. These agents
are able to adapt to their environment, reacting to it and making changes to it. Agents
should be able to receive knowledge from other agents and the environment, interpret
and understand this knowledge, reformulate it if necessary, and store it internally in its
own knowledge base. In real-world domains, agents typically perform complex tasks
requiring a degree of cooperation, communication and ¡oint activities taking into
account the world around them, the temporal deadlines and resource limitation. These
inteIligent agents will require a range of skill~ to respond to unexpected events and

11.9. CONCLUSION

The ability to learn is a fundamental arrribute of intelligent behaviour. Progress in
the theory and practice of computer modelling of learning is not only relevant to
understanding intelligence but, jf successful, should have a profound impact on the
use of computing in scientific, industrial and commercial applications. The field of
machine learning is an interdisciplinary subject which includes computing, artificial
intelligence, cognitive science, information science, psychology, philosophy and other
related disciplines.

There is as yet no single unifying theory for machine learning; instead there exists a
range of methods, techniques and theories that have formed much of the research
into machine learning. In this chapter we have described a range of methods with
particular emphasis on induction learning and neural networks. This is because these
two approaches are well established and well understood and promise to make a
significant contribution to the area.

Induction learning is based on firm mathematical foundations of cIassicallogic and
its extensions. The new area of induction logic has the potential of an exciting
future. Further work here still needs to be done, and in particular on the possible
integration of PAC-Iearning and inductive Logic Programming.

As ne~ral netWork development move away from ad-hoc heuristics and brute-force
computation approaches to a more rigorous foundation based on dynamic system
theory, nonlinear mathematics, system science and statistical physics, and developing
learning formalisms and neural learning algorithms that can maintain performance,
then neural networks can become extremely useful in solving difficult problems in
nonlinear adaptive control, object recognitions and behavioural conditioning.
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resolve conflicts, and to be able to continue their joint efforr to carry out assigned tasks.
The third area (PAI) is concerned more with performance problems than with
conceptual advances. The emphasis is to develop parallel computation languages and
algorithms. However, a sharp distinction between these areas cannot be drawn as there
are no elear, commonly accepted delinitions of these concepts. In this chapter we focus
on MAS.

and Chapman, 1987), subsumption architectures (Brooks, 1986), reactive planning
(Georgeff and Lansky, 1987; Fox and Smith, 1984), action networks (Nilsson,
1989), universal plans (Schoppers, 1990), social conception of knowledge and action
(Gasser, 1991) and open information systems semantics (Hewitt, 1991).

12.4. THE SOCIAL NATURE OF MAS

12.2. WHY MAS? In attempting to build lirm theoretical and practical foundations for MAS, using the
structure of human society as the basis for these foundations, it is imporrant to
remember that almost all human activities and behaviour are social in character. A
human being can neither act nor survive in isolation. Ahuman being is in continuous
interaction with the world it inhabits. Its knowledge, beliefs, activitiesand actions are
totally shaped by this world. Understanding the social structure of agenthood
provides practical and theoretical guidelines for delining principies for an agent. In
the rest of this chapter we will address these principies, develop an agent
architecture, and provide a formal model for multiagent systems.

There are many good reasons for studying MAS:

. Distribution is a useful approach to controlling complexity. Large systems can be
decomposed inro multiple cooperating agenrs such that control can be
decentralised and rendered easier to deal with.

. Joint activities, interactions and cooperation are a natural approach for many. large evolutionary systems. These systems are subject to conrinuous change and
extension. MAS facilitate the design and implemenration of such systems.

. MAS provide foundations for increased reliability and robusrness. They normally
have a cerrain amounr of redundancy, that is some agents can solve the same task
as others or pieces of knowledge are known by several agenrs. Hence the system
becomes more robust against external influences or breakdown of some agenrs.
Generally the prospect for graceful degradation (soft fail) increases and the
system can guarantee higher reliability.

. MAS provide insights and understanding about information processing
phenomena occurring in the real world. Research inro computational methods
that take' the social inreraction between the agenrs themselves and with their
environment may shed light on how activities and actions are achieved in the face
of enormous complexity.

. The MAS approach is potenrially more efficienr,taking advanrage of parallelism.

12.5. CHARACTERISATION OF MAS

The foundations for MAS, based on their social structure, the world they inhabit,
and their interaction with this world has recently been studied by a number of
researchers (Agre and Chapman, 1987; Bond, 1990; Gasser, 1991; Durfee and
Lesser, 1987; Hewitt, 1991; Singh, 1990; Werner, 1990a). These researchers and
others in the lield have idenri/ied a number of lexicons such as commitmenr,
cooperation, social plans, joinr activities, conflict, negociation, belief and actions.
These primitives are used in forming foundational principIes on which computational
theories and practices of MAS are to be developed. These foundational principies are
addressed in Section 12.6, but /irst we will now examine these lexicons.

12.3. BASIC ISSUES AND FOUNDA TION OF MAS 12.5.1. The New lexicon

The traditional Al approach to agenrs has largely focused on a single-agenrconcepto
Limited considerations were given to the social structure of agents' society, the
world, and the interaction between them. Furrher, when the world was considered, it
was assumed to be stable, predictable and cerrain. In the real world, however, these
assumptions simply do not hold, and the approach has resulted in systems that are
inflexible, and unable to respond to changing environments. Joinr activities and
actions were severely restricted. Recently me area has made an imporrant move
towards a theory of agency with more realistic assumptions, taking inro
consideration that the world is dynamic, changing, uncerrain and unpredictable and
that the agenr does not have complete knowledge of its world. Research aimed at this
new approach ineludes proposals such as the BDI models (Rao and Georgeff, 1991),
situated automata (Rosenschein and Kaelbling, 1986), agency and structure (Agre

The new lexicon gives rise to the following issues:

(a) What role do cooperation and joinr activities play in MAS?
(b) Conflict is idenri/ied as a key aspect of MAS. Where and why does it arise? And

what is to be done about it?
(c) How can the semanricsof negotiations be formalised?
(d) What role does commitmenr play? How is joinr commitmenr arrived at? How

does commitment effect agenr behaviour?
(e) What are the atomic activities and actions in MAS?How can they be synrhesised

inro larger activitiesand actions? How do these actions affect the world?
(f) Communications: how do agenrs communicate with each other and the world,

and at what level? What is the semanrics of a message and how do we ensure
that an agenr understands the message?
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However, before examining these lexicons in more details, it may help the reader to
see how these notions appear and interact in a rypical application of MAS. The
application chosen is car manufacturing, representing a class of organisations which
market, design and produce product of any type.

In this scheme of things, the design of product, the car, requires experts on design,
manufacture, safety regulations, costs, potential markets, and so on. The type of car
to be produced is first identified by a business plan, which would normally include
marketing, sales and manufacture. The business plan is furrher expanded into a
design plan, and the design plan in turn into a process plan and a production plan.
Execution of the process plan and the production plan requires the purchase and
installation of resources such as machines, materials, labour and energy. These
activities proceed in parallel and interact strongly. Each task is normally decomposed
into a number of subtasks which are then translated into a set of activities and
actions carried out by a set of agents. These agents share a common world, but each
may have a different objective and view of it. Because of these different objectives
and views, agent's propose different actions of their own which may lead to conflict;
for example, conflict may arise by one agent wanting to cut manufacturing cost when
another agent's objective is to increase car reliability. These conflicts are negotiated
and resolved among agents and are then jointly committed to a joint plan. The joint
plan is a set commitments of actions and beliefs at different levels of abstraction and
for different time intervals. Commitments have associated resources; execution of a
commitment uses the resources associated with it. Joint actions often require stringent
synchronisation; agents need to track the success or failure of their planned actions
and inform other agents jf something goes wrong, an unexpected event occurs, or the
environment changes.

We are now ready to examine these lexicons in more details.

exchange among agents, and this communication should provide improved
robusrness, breadth and balance in the integrated solution.

The traditional approach to managing conflict is to avoid potential conflicts by
thorough analysis and consistency checking of knowledge at development time. This
approach, however, is difficult and costly; in addition, as agents' knowledge
increases and becomes more diverse and complex, the approach will no longer be
viable. Another model is the blackboard system, which provides a model of a
number of experrs working together. Cooperation among the experts occurs
implicitly through the incremental extension of globally available hypotheses.
Conflicts are not resolved explicitly, instead competing hypotheses coexist and
compete for processing resources to improve their viability. This model has been
shown to be too rigid and too sensitive to the problem-solving context, and may not
actually resolve a conflicto

Human negotiation and creative problem-solving models (Dean and Wellman,
1991; Fisher and Ury, 1981; de Bono, 1971) offer insight into possible strategies for
conflict resolution and for the use of conflict as a platform for creativity. However,
they cannot be applied directly to computational models because they use ahuman
motivation factor which cannot be either applied to or is relevant to machine agents.
Sycara (1989) presents a negotiation model which applies case based and utility
reasoning methods to conflicts. Klein (1990) has developed a hierarchy of conflict
types and resolution strategies in which conflicts are classified and mapped to specific
resolutions by a global controller. In these systems, conflict resolution is not sensitive
to the problem-solving contexto Lander, Lesser and Connell (1990) describe a system,
Conflict Experr Framework (CEF), in which conflict resolution techniques are chosen
based on the characteristics of the problem-solving state such as the flexibility of a
parricular agent and the amount of efforr that has been expended on a particular
solution to date. The approach is discussed furrher in Section 12.6.7.

(a) Cooperation

We define cooperation as the process by which parricipant agents generate mutually
dependent roles in joint activities. For example, in car manufacturing, business,
design and production agents cooperate to produce a caro Another example is
hospitals where patients, medical people and managers coopera te in the treatment of
a patient. Agents receive problems at a cerrain level of abstraction. The agent then
decomposes a problem into those that can be carried out at this location with
resources and knowledge available locally (those that can be solved by cooperation
with other agents at the same leve!) and those that involve sending goals, ideas and
plans to agents at other levels of abstraction.

A successful cooperation strategy must ensure a steady convergence towards a
solution. Werner (1990b,c) gives algorithms for cooperating agents.

(e) Negotiation

(b) Conf/icts

The subject of negotiation between agents has been of continuing interest in the
MAS community [Durfee and Lesser, 1988; Thomas and Martial, 1990; Smith,
1978; Sycara, 1989; Conry, 1988; Zlorkin and Rosenschein, 1990). The need for
negotiation is triggered by detection of a conflict between the actions of different
agents' plans and goals. Conflict may prevent one or more of the plans being
executed. The purpose of negotiation is to resolve the conflict such that a joint plan
for conflicting agents can be executed. Depending on the particular doma in and
goals involved, there may be the possibility that agents will actually be able to help
each other and thereby achieve goals with lower overall costo Interaction between
agents occurs in two consecutive stages: first the agents negotiate, then they execute
the joint plan that has been agreed upon. No divergence from the negotiated plan is
allowed. This sharp separation of stages has consequences, in that it rules out
cerrain negotiation on tactics that might be used in an interleaved process. A more
general negotiation framework, however, allows concurrent negotiation and
execution.

We assume that negotiation is an iterative process; at each step an agem offers a
proposal and at no point does an agent demand more than it did previously. In other

Conflict occurs when agents cooperate to solve a problem. It can occur as a result of
incorrect or incomplete local knowledge, different goals, priorities, solution
evaluation criteria, and resource comention. Ir should be viewed as a positive part of
the problem-solving process. The resolution of conflict involves information
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woros, each offers either repeats the previous offer or makes a concession to the other
agents. Negotiation can end up in one of the following ways:

. Agreement, which creates a new joint plant.

. Deadlock, when agents cannot reach an agreement. As a result of deadlock,
another negotiation may start with a different issue or alternative goal.

. Appeal, when the participating agents appeal to another agent acting as a
coordinator. The coordinator may modify goals, or offer comprises until a final
agreement is reached.

When agents negotiate, it is desirable that they converge to a Pareto optimal solution,
meaning that the only way the situation could improve for one agent would be to
worsen the situation of the other agent. It is also highly desirable that an agent's
negotiation strategy be in equilibrium: a strategy S is in equilibrium if, assuming your
opponent is using S, the best you can do is also to use S. Thus, no other agent will be
able to take advantage of that agent using a different negotiating strategy.

Zlotkin and Rosenschein (1990) present a scheme for negotiation and goal
relaxation.

Commitment from the social prospective is grounded in the actions of the agent's
many activities taken together. Ir is not a matter of individual choice; it is agents'
actions in relation to those of others (and vice versa) that maintain the agent's
participation in a course of action. Moreover, this social notion of commitment is a
basic concept, it does not rely on more primitive mental states such as belief, goal or
choice. This notion of commitment cannot be located within the individual, it is a
product of the interaction of agents and the world. Because of this, it extends in
varying degrees to objects as well as intelligent agents as active participants in
situations. For example, an agent wishing to travel by plane from one place to
another is engaged in a setting where the agent, the pilot, the plane and airport
authorities and facilities must together enter into a course of action that involves the
agent having a boarding pass and the plane, the pilot and air traffic control all being
in place. In other words, all these entities are committed to acting in that way for the
agent to travel from one place to another.

To compute commitment, Cohen and Levesque (1989) represent commitment
using the primitives "belief" and "goal"; then based on logical entailment of its
belief (i.e. persistence), an agent deduces whether it is still committed to a goal. This
approach, however, envisages commitment as private and local to the agent. In
contrast, commitment from the social perspective is based on system commitment;
that is, a group of agents and the world are committed together in that way. From
this perspective, computation of commitment will require that agents have models of
themselves and of each other and the world. This approach is a foundation of the
MACE system (Bond, 1990; Gasser et aL, 1987, 1989), it has been exploited in
DATMS (Mason and Johnson, 1989), PGP (Durfee and Lesser, 1987), and has
foundation in what Mead (1934) saw as a concept that could unify the individual
and society. This modelling can vary from a simple index, to a message received, to a
rich and complex model of another agent.

(~ Commitments

We define commitments as a set of constraints on actions and belief. Commitment is
a basic concept in MAS and forms the foundation of many other concepts such as
cooperation, negotiation, plans and goals. A number of researchers (Cohen and
Levesque, 1984, 1990; Fikes, 1982; Winograd and Flores, 1986; Levesque et aL,
1990) have studied commitment as an individual choice. For example, Levesque et al.
(1990) developed a notion of commitment based on what they called joint persistent
goals. Informally, a group of agents are committed to a common goal until one agent
in the group

. reaches the goal

. believes the goal can never be achieved, or

. believes motivation to achieve the goal is no longer valid,

whereupon the agent inforrns all other agents in the group that it is no longer
cornmitted to the goal. Although this approach has the advantage of specifying how
agents should behave in a joint activity and commitment to a common goal, its
disadvantage is that it does not specify how the goal state is reached. Further, this
definition of commitment is not a social commitment; for example, agents may agree
on a common goal but not agree upon a common solution. In contrast to Cohen and
Levesque, we believe that commitment is a social concepto An agent engages in several
but separate activities such as work, social life, travel, eating and sleeping over a long
period (a lifetime). In carrying out other activities, the agent is in continuous
interaction with other agents and objects in the world it inhabits. Commitment, in
this sense, is the outcome of joint activities. In this framework, goals reflect
cornmitment that must be accommodated regularly and steadily over an interval of
time and in the face of many constraints. We concur with Gasser's (1991) definition
of commitment: "In this setting the notion of commitment is distributed or social".

(e) Agents' interactions

Problems that need solutions are decomposed into subproblems for agents to solve.
To solve these problems and subproblems, agents generate plans, either statically or
dynamically. A plan for a goal is a set of commitments for an agent to discharge. The
plan then guides the activities and actions that must be performed. Actions can
themselves be decomposed into further subactions. Issues that need to be considered
are actions' precedence, identical actions and simultaneous actions, and how actions
are to be combined to produce a higher level action. Most agents need to engage in
several separate but interacting activities over a period of time. Interaction among
activities inelude

. subgoal interactions,

. competition for resources,

. sharing of resources,and

. jointaction.

A central problem in this area is to understand how an agent can organise and
manage these activities in an orderly manner to discharge its commitments. In short,
how does an agent organise and get on with its daily life in a social setting?
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(f) Communication (9) How sensors (vision, sound, etc.) affect agent activities.
(10) The joint qualification problem.
(11) How an abstract notion of action can be translated into action in the world.
(12) Planning.
(13) Engineering methods and practices in constructing MAS.

We now give a more detailed description of these issues.

Communication may be viewed as the maintenance of a collection of commitments
among agents. Agents make commitments using locally available knowledge as well
as information communicated by other agents. The goal is to provide a means by
which agents of different capabilities can communicate. Communication must,
therefore, be at several levels. To be of use to each other, agents must be able to
participate in a dialogue. Their role in this dialogue may be active, passive, or both.
In this way agents can function as master, slave or peer, respectively.

There is a link between representation and communication in that any knowledge
intended to be used non-Iocally must be converted into stable transportable FORM
(represented) and (re)interpreted in the local context where it is delivered. Werner
(1988) provides a theory of communication between agenrs by relating
communication to the intentions of agents. He developed a high level language that
allows communication between agents through directives that include commands,
demands and requests. Another model of communication, proposed by Gasper
(1990) presents a model relating communication to changes of belief of an agent.

12.6.1. Agency and the World: The Individualin the Mass

12.6. CHARACTERISTICSOF AGENCY

An important characterisation of MAS is that agenrs are autonomous: they have their
own goals, capabilities and knowledge. Agents with their own responsibility are
aware of their own actions, the world they inhabit, and the effect their actions have
on their world. Relationships and interactions between an agent and the world are an
on-going process; both the agent and the world affect and shape each other.

Recent work on agenthood has begun to address these issues. Agre and Horswill
(Agre, 1991) sketched out a computational theory of agency based on ideas of
cultural support for improvisation. In particular, two aspects were investigated: do
cultural artefacts (e.g. kitchen tools) have special properties that make them easy to
generate plans for them; that is do they fit our minds specially well. Drawing on
recent work in anthropology, they investigated formal properties of the tools and
materials found in kitchens and garages, together with some of the invariants of the
activities in these places (cooking an omelette). Another aspect of the investigation
was what we learn from other people that is easy enough to learn in one or two
demonsrrations (apprenticeship) and yet complex enough to consrrain our planning.
In addition to these cultural ideas, they drew on the more general idea of how the
environment external to the planner might supporr the planning process. Initial
results suggest that these aspects are all well-adapted to simple, computationally
straightforward policies for improvisation that probably achieve their goals without
any specific knowledge of the locations or states of objects.

Gasser (1991) looked at social conception of knowledge and action. His work
introduced a number of principies that underlie the social aspect of multiagent
systems. Hewitt (1991) was concerned with open information system (015)
semantics. 015 semantics provide a characterisation of deductive inference built on
concepts such as seIf-reliance and interdependence, trials of strength, commitments,
negotiation and conflicto 015 is inherently more "social", "grounded in large-scale
information systems" rather than individual agents, and provides a different account
of representational processes. Rosenschein and Kaelbling (1986) introduced situated
auromata built on concrete models of epistemic logic. In the situated automata
framework, the concept of knowledge is analysed in terms of logical relationships
between the state of a process (an agent) and its environment; not every state of the
process-environment pair is possible, in general. This world was based on axioms of
modal system SS, including consequential closure and positive and negative
introspection. Other researchers in the area include reactive planning (Georgeff and
Lansky, 1987), Nilsson active networks (Nilsson, 1989), and Schoppers universal
plans (Schoppers, 1990).

i,!

.

The concept of agency is defined as a society of agents embedded in a dynamic
world. An autonomous agent is a system of sensors, computational processes, and
actions structured in such a way that the sensors monitor the world, continuously
measuring the state of affairs. The computational processes interpret and reason with
information gathered and direct the next activities and actions to be carried out by
the agent, actions that affect the world. Changes in the world close the loop for
agent's sensors, introducing further sensing, computation, and action by the agent.
An agent cannot and does not opera te in isolation; an agent is embedded in the world
it inhabits. This world contains other agents, objects, concepts, laws, space and time
relationships, etc. Activity of the agent is to be understood and is organised in large
measure through the social structure of this world.

In this section we will sketch some of the issues that a computational theory of
agency must face. These ideas are neither comprehensive or complete, they are rather
an attempt to bring together some of the latest research and developmenr in this
important area. They include the following:

(1) Relation and interaction betWeen the agency and the world.
(2) Formal representation and reasoning methods from a social point of view.
(3) Integration and adaptation of agency.
(4) The relation between local knowledge and action and global or common

knowledge and action.
(5) How an agent reasons about knowledge and action of other agenrs.
(6) How an agent operates in the face of resource limitation and constraints.
(7) Coherence and conflict resolution.
(8) Decomposition, task allocation, and synthesis of solution.
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12.6.2. Knowledge Representation and Reasoning in Multiagent
Systems

12.6.4. Local and Global Knowledge

,

MAS semantics uses concepts such as belief, commitment, conflict and negotiation.
To make these semantics computational and to prove their properties, they need to be
formalised and represented in a mathematical language. This language is principal
based on mathematical logic. This mathematicallogic should, in addition to elassical
logic, inelude modal logic, concept logic, epistemic and autoepistemic logic, non-
monotonic logic, meta-theories and constraint theories. Section 12.8 gives a glimpse
of a formal model for MAS.

Reasoning and deductive theories within this paradigm of logic, bearing in mind
the social structure of MAS, should take into account that agents are constrained in
their behaviour by other agents, by the world and by resources available to them. For
example, an agent's commitment is constrainted by commitments of other agents and
resources available. This social commitment limits the agent's field of choice. A
promising approach to computation in MAS is based on agents modelling one
another by exchanging self-description. This approach is the foundarion to the
MACE system (Gasser, 1992), DATMS (Mason and Johnson, 1989) and PGP
(Durfee and Lesser, 1989). An agent will also need to model the world it inhabits,
which ineludes objects, time and space, relationships, and interacrions. An alternative
reasoning for MAS which is not based on mathemarical logic is to reason
probabilistically and to use game theory (Russell and Lehner 1990; Jones, 1980;
Laskey, 1989; Pearl, 1990; de Kleer, 1986).

How does knowledge become global? How do rules, regulations and laws emerge and
how are they then used by agents across the same or different space and time? An
agent's knowledge and actions are concepts that are local and situated (Gasser et aL,
1989; Gasser and HiIl, 1990). But for knowledge to be useful, Le. to be used by other
agents in different settings, different locations and different times, the knowledge must
be made general. It is this genera lity that allows the propagation and distribution of
knowledge; and yet for general knowledge to be useful, it has to be applied in a local
setting, and made local again by instantiating the general variables which made
dimibution of knowledge possible. This scenario of local and global knowledge
would appear to lead to inconsistency. The problem is this: If the meaning of
knowledge is always local and situated, how can global knowledge become coherent
and consistent? One approach to this problem has been proposed by Rosenschein and
Kaelbling (1986); called local utility, it is based on agents building models of other
agents. The problem with this approach is how one does ensures the stability of these
models: thar is, if the meaning of knowledge is local and situated, how can we be
satisfied that uprooting this knowledge and transporting ir to another situation has
not somehow changed the meaning of this knowledge. Latour (1987, 1988) views
knowledge as an artefact, a utility, a tool that can be transported, copied and
interpreted in a local situation. Taking this viewpoint, for knowledge to be non-local,
hence transportable, ir must be made into a stable (preserving its useful qualities in
new contexts) mobile (transportable across contexts) form and then made local again
by reinterpreting it in a local situation where it is to be used. Information represented
digitally meets these requirements: that is, it is stable, mobile and combinable.

12.6.3. Integration and Adaptation

To suNive in its environment, an autonomous agent needs to find its role and
purpose in this environment (society); it needs what is called an integrated way of
life (Agre, 1991). In meeting its responsibilities and goals, an agent needs to be
engaged in a number of activities, some of which may be concurrent. The behaviour
of art agent requires capabilities for perception, cognition and action. Furthermore,
in a complex dynamic environment an agent's ability to respond to changes will
always be limited by the computational resources available to it. This is because the
computational requirement of tasks to be performed often exceeds the computational
resources available to the agent. While more efficient hardware and software may
solve this problem in a specific application, they will not solve the general problem of
limited resources. Because of these constraints, an agent needs to determine which
operations to perform next, which one to postpone and which one to disregard.
Moreover, we are interested in flexible agents that can accomplish a range of tasks
rather than in a rigid agent that has been optimised to perform a specific task and is
unable to respond to changes in its environment.

In effect an agent is continuously making decisions, within its role in the society,
requiring sophisticated control structure to guide its activities. Ir is this control
structure and adaptability that allows the agent to integrate and survive in its
environment over a long periodo

12.6.5. Reasoning about Knowledge and Actions of Other
Agents

In coordinating their actions, agents have to take into account, and reason about,
knowledge and actions of other agents. In this way an agent is constrained by other
agents and by its own environment. It is this web of constraints that shapes an
agent's commitments into a social commitment. A possible approach to this problem
is to pass a model of one agent to another. The model would inelude the agent's
beliefs, plans and resources. Models of agents are employed to predict their
behaviour, using search methods and/or game theory. Models of agents are also
usefui for evaluating the credibility, usefulness and reliability of similar data. In this
framework, it is important for an agent to avoid compromising its set of beliefs and
assumptions by integrating faulty or unreliable messages from other agents. Thus
each agent must maintain its local autonomy and arms-length relationships while
incorporating useful information generated by others. Mason and Johnson's (1989)
approach is to let each agent use non-local knowledge for the local focus of
attention. Another approach is the partial global planning (Durfee and Lesser, 1987,
1989; Durfree et aL, 1987) that was developed as a distributed control technique to
ensure coherent network problem-solving behaviour. Ir is a flexible approach to
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coordination that does not assume any particular distribution of subproblems,
expertise or other resources, but instead lets nodes coordinate in response to the
current situation. Each node can represent and reason about the actions and
interactions of groups of nodes and how they affect local activities. These
representations are called partial global plans (PGPs) because they specify how
different parts of the network plan to achieve more global goals. Each node can
maintain its own set of PGPs that it may use independently and asynchronously to
coordinate its activities.

A PGP contains a objective, a plan-activity map, a solution-construction graph and
.a status:

1989), but these relationships were not transmitted in the node plans. There was no
representation of temporal relationships between intermediate goals. The PGPlanner
reorders node activities by hill-climbing in the space of costs of the present ordering
of activities. The cost of an ordering is computed from relationships such as
redundancy reliability, predictiveness and independence of the activities.

12.6.6. Resource Limitations and Constraints

. The objective contains information about why the PGP exists, including its
eventual goal (the larger solution being formed) and its importance (a prioriry
rating or reasons for pursuing it).

. The p/an-activity map represents what the nodes are doing, including the major
plan steps the nodes are concurrently taking, their costs, and expected results.

. The so/ution-construction graph contains information about how the nodes
should interact, including specifications about what partial results to exchange
and when to exchange them.

. The status contains book-keeping information for the PGP, including pointers to
relevant information received from other nodes and when that information was
received.

A PGP is a general structure for representing coordinated activity in terms of goals,
actions, interactions and relationships.

When in operation, a node's PGPlanner scans its current network model (a node's
representation of the goals, actions and plans of other nodes in the system) to
identify when several nodes are working on goals that are pieces of some larger
nerwork goal (partial global goal). By combining information from its own plan and
those of other nodes, a PGPlanner builds practical global plans (PGPs) to achieve the
partial global goals. A PGPlanner forms a plan-activity map from the separate plans
by interleaving the plans' major steps using the predictions about when those steps
wil4 take place. Thus, the plan-activiry map represents concurrent node activities. To
improve coordination, a PGPlanner reorders the activities in the plan-activity map
using expectations or predictions about their costs, results and utilities. Rather than
examining all possible orderings, a PGPlanner uses a hill-climbing procedure to
cheaply find a better (though not always optimal) ordering. From the reordered plan-
activity map, a PGPlanner modifies the local plans to pursue their major plan steps in
a more coordinated fashion. A PGPlanner also builds a solution-construction graph
that represents the interactions between nodes. By examining the plan-activity map, a
PGPlanner identifies when and where partial results should be exchanged in order for
the nodes to be integrated into a complete solution, and this information is
represented in the solution-construction graph.

The PGPlanner, as was used for coordination in a distributed vehicle monitoring
task, relied on the fact that the level of abstraction at which the node plans were
communicated was a sequence of intermediate goals (times and locations in which to
extend a vehicle track). Each intermediate goal was an abstraction of the processing
and integration work that each node planned locally. These intermediate goals were
ordered by the local node planners on the basis of several criteria (Durfee and Lesser,

A critical consideration in the design of MAS is that agents are resource bound. AII
resources are finite and agents must reason and act within the resources available to
them. In addition to resource limitation, the MAS environment is characterised by the
presence of temporal constraints that give rise to tightly interacting subproblems.

Managing and optimising resources in a multiagent environment is characterised by
the following:

. AlIocation of limited resources among agents may give rise to conflicts.

. Conflicts over resources and criteria for optimality may result in a state where
optimal solution is not possible.

. There is no single agent which has a global system view.

. Agents do not have complete knowledge of their environment or other agents'
constraints.

. Because of the dynamic nature of world structure, an agent's problem-solving
context is continuously changing. In addition an agent's decision can produce
constraint violations for other agents which may lead to backtracking (Sycara
et al., 1990). Backtracking can have major ripple effects on the multiagent system
because it may invalidate resource allocations that have been made.

AlIocating resources to agents' activities is essentially a scheduling task that
synchronises activities tO avoid and resolve conflicts. The schedule is built in a
cooperative fashion through local computation and communication.

One approach to resource allocation was proposed by Bond (1990). In this
approach, commitments are used to allocate resources and optimise the overall cost
of projects. Agents have a joint plan which is a set of commitments tO actions and
beliefs. Each commitment in the plan has an associated set of resources; these
resources are consumed when commitments are discharged. The joint plan is used to
compute a total estimated cost of the problem, and it is this total cost that the ser of
agents jointly will try to optimise, irrespective of the cost to any individual agent.
Based on this optimised plan, each agent then updates its view of the joint plan and
continues tO search for further commitment that will move the goal closer to
solution. The agent is now constrained in its activity by the updated joint plan.
Commitment in this sense has future implications. An agent's use of resource may
constrain its, and others', choices in the future.

Another approach to resource allocation in MAS has been proposed by Sycara,
Roth, Sadeh and Fox (1990). Their approach is conducted in the doma in of job-shop
scheduling using constrained heuristic search (CHS), and relies on a set of textures
of the problem space being searched. Textures provide a probabilistic, graph-
theoretic definition of the complexity and importance of decisions in the local
problem space of each agent. In addition, textures provide a good predictive measure
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of the impact of local decisions on system goals. As a result, textures can be used to
make control decisions that reduce the search space required.

12.6.6.1. ConstrainedHeuristicSearch(CHS)

operator, a milling machine and a set of fixtures). Local constraint propagation
techniques are used to identify reservations that have become unavailable for an
unscheduled activity owing to the scheduling of another activity (e.g. a resource that
has been allocated to an activity over some time interval, or a start time that has
become infeasible owing to the scheduling of an earlier activity in a process plan).
Within this context, texture-based heuristics are concerned with such decisions as
which activity to schedule next, which reservation to assign to an activity, and which
reservation assignments to undo if the current partial schedule cannot be completed.

CHS provides a methodology for solving constraint satisfaction problems (CSPs) and
constrained optimization problems (COPs).A CSP is defined by a set of variables, each
with a predefined doma in of possible values, and a set of constraints restricting the
values that can simultaneously be assigned to these variables (Montanari, 1971;
,Mackworth, 1985; Decker 1987; Decker et aL, 1989). A solution to a CSP is a
complete set of assignments that satisfies all the problem constraints. COPs are CSPs
with an objecrive function to be optimized. The general CSP is a well-known NP-
complete problem (Garvey, 1979). There are, however, cIasses of CSPs and COPs that
do not belong to NP and for which efficient algorithms existoThe CHS methodology is
meant for those CSPs/COPs for which there is no efficient algorithm. A general
paradigm for solving these problems consists in using Backtrack Search (BT) (Golomb,
1965; Bitner and Reingold, 1975). BT is an enumerative technique that incrementally
builds a solution by instantiating one variable after another. Each time a new variable is
instantiated, a new search state is created that corresponds to a more complete partial
solution. If, in the process of building a solution, BT generates a partial solution that it
cannot complete (because of constraint incompatibility), it has to undo one or several
earlier decisions. Partial solutions that cannot be completed are often referred to as
dead-end states (in the search space). Because the general CSP is NP-complete, BT may
require exponential time in the worst-case. CHS provides a methodology to reduce the
average complexity of BT by interleaving search with local constraints propagation and
the computation of texture-based heuristics. More specifically, we have the following.

(1) Local propagation techniques. Local constraint propagation techniques are used
to prune the search space of alternatives that have become impossible owing to
earlier decisions made to reach the current search sta te. By propagating the
effects of earlier commitments as soon as possible, CHS reduces the chances of
making deductions that are incompatible with these earlier commitments
(Mackworth, 1985).

(2t Texture-based heuristics. Typically, pruning the search space can only be done
, efficiently on a local basis (Nadel, 1988). Hence, local constraint propagation

techniques are not sufficient to guarantee backtrack-free search. In order to
avoid backtracking as much as possible, as well as reduce its impact when it
cannot be avoided, CHS analyses the pruned problem space in order to
determine critical variables, promising values for these variables, promising
search states to backtrack to, etc. The results of this analysis are summarised in
a set of textures that characterise different types of constraint interactions in the
search space. These textures are operationalised by a set of heuristics to decide
which variable to instantiate next (so-called variable ordering heuristics), which

J value to assign to a variable (so-called value ordering heuristics), which
assignment to undo in order to recover from a dead end, and so on.

For example, in the factory-scheduling doma in, variables are activities whose values
are reservations consisting of a start time and a set of resources (e.g. ahuman

12.6.7. Coherence and Conflict Resolution

The traditional approaches to managing conflict is to avoid potential conflicts by
thorough analysis and consistency checking of knowledge at development time. This
approach, however, is difficult and costly, and in addition as agents' knowledge
increases and become more diverse and complex, the approach will no longer be viable.
Blackboard systems provide a model of a number of experts working together.
Cooperation among the experts occurs implicitly through the incremental extension of
globally available hypotheses. Conflicts are not resolved explicitly; instead competing
hypothesis coexist and compete for processing resources to improve their viability.

Human negotiation and creative problem-solving models (Dean, 1981; Fisher and
Vry, 1981; de Bono, 1971) offer insight into possible strategies for conflict resolution
and for the use of conflict as a platform for creativity. However, they cannot be
applied directly to computational models because they use ahuman motivation factor
which cannot either be applied or be relevant to machine agents. Sycara (1989)
present a negotiation model which applies case-based and utility-reasoning methods
to conflicts. Klein (1990) has developed a hierarchy of conflict types and resolution
strategies in which conflicts are cIassified and mapped to specific resolutions by a
global controller. In these systems, conflict resolution is not sensitive to problem-
solving contexts. Lander, Lesser and Connell (1990) describe a system, Conflict
Expert Framework (CEF); in this work they identify a number of conflict resolution
strategies listed below.

. General random alternatives. In some types of problem solving, multiple
solutions exist and can be generated with little extra computational overhead. For
example, in a typical blackboard system, multiple solutions may exist at any given
time. A highly rated one is chosen as "the answer" but there may be others that
are rated equally or just slightly lower.
Compromise. Find an intermediate proposal that is within the acceptable range
of all agents using variable value relaxations. This strategy is the typical
compromise that is used in buy/sell or other numeric transactions. Numerical
optimisations or techniques based on the type of dimension can result in quick
and fair results.
Generate constrained alternatives. Generate new alternatives based on constraints

that are received from an inflexible agent or based on some other agent's parrial
solution.

Generate goal alternatives. The original proposals are abandoned. Alternative
proposals are generated by looking for alternative goal expansions. If necessary,
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some goals can be relaxed or relinquished. This can lead to substamially differem
proposals being generated at the level in which the conflict occurred. This strategy
is usefui for changing the focus of the system from a new plateau to a new area
of the search space.

. Case-based parameter set retrieval. Find a previous solution that succeeded in
resolving a conflict involving a similar set of parameters. Make the set of changes
rather than isolated modifications. This approach minimises oscillation that
occurs in the overall proposal rating when dependencies among parameter values
are not well understood.

. Revise and merge goals. Prioritise goals to relinquish unimportam subgoals. Build
a mutually defined goal structure that incorporates the most importa m goals of
all agems involved in the conflicto Generate a solution guided by the new
structure. This approach is computationally expensive and will only be used in
situations where no other technique seems promising, the system cannot produce
a feasible design, or where an innova tive proposal is explicitly requested by the
user. It is hoped that the mutual goal structure will cause a jump imo a new area
of the search space which would not be explored during the normal course of

proble~ solving.

Conflict resolution protocols are realised as formal dialogues with specific actions
that can be taken at each processing step. AlI agents know the protocols and can
formulate the messages required for their role in a particular conflict situation. For
example, an agene that is beginning a new respond to conflict task first analyses the
conflict from its own point of view and suggests a particular resolution method and
possibly a set of resolution values. It sends this message to all ocher agems involved
in the conflicto It then waits for confirmation from those agents. The other agents
must respond to the message; they accept the resolution method, accept the suggested
resolution, or propose a differene solution or method. The method is sometimes
changed because another agent has a local view which makes the suggested method
inappropriate. For example, the originating agent may suggest using compromise, but
the receiving agene may be too inflexible. The receiving agent might then suggest
generate constrained alternatives and send its inflexible constraines to the originating
agent. Sometimes the method is acceptable but a different solution is suggested. The
originating agene cannot consider the conflict resolved until all participating agems
have confirmed that a suggested solution is acceptable to them.

groups of nodes and how they effect local activities. These represemations specify
how differene parts of the network plan to achieve more global goals. A partial global
plan (PGP) is a general scructure for represeneing coordinated activities in terms of
goals, actions, imeractions and relationships. The PGP maintains a solution-activity
map which represenes what the nodes are doing, including the major plan steps the
nodes are concurrently taking, their costs and expected results. A solution-
construction plan is used to maimain information about how nodes should interact,
including specification of what partial results to exchange and when to exchange
them. By combining information from its own plans and those of other nodes, a
PGPlanner builds a PGP to achieve partial global goals. By examining the plan-
activity-map, a PGPlanner idemifies when and where goal partial results should be
exchanged in order for the nodes to integrate them ineo a complete solution.

12.6.9. Sensors and Agent Activities

Sensors (vision, sound, touch, etc.) provides an agene with information about its
world. These senors, affect agents' actions, which in turo influence the sensor. An
example is moving a camera to examine differem scenes. Treisman (1985) has
suggested that visual systems provide the agene with a set of operators that can
participate in visual routines. Agre and Chapman (1987) have shown how visual
routing might fit into an architecture for improvisation, and Whitehead and Ballard
(1990) have shown that visual routines can arise from unsurprised learoing. Ballard
(1989) and Horswill and Brooks (1988) have proposed that the visual system as
participating in time-extended dynamics is ineegrated ineo the larger struccure of the
activity.

12.6.10. The Frame Problem

12.6.8. Decomposition, Task Allocation and Synthesis of
Solution

Agenes operate in a changing world; changes occur as a result of an action or of an
evene. In a theory of change, one should specify what changes as a result of an
action and what remains unchanged. The problem of characterising the aspects of a
sta te that has not been changed by an action is called the frame problem, the frame
problem is a special case of default reasoning. The frame problem can and does lead
to prohibitively large numbers of consistency checks, rendering the system unusable
in practice. The reason for this may be demonstrated by the frame axiom

holds (A,S)I\...,ab(a,s)~holds (A, result(a,s)).

Informally, this axiom states that if a formula A holds in state s, and action a is not
abnormal in that it changes A when executed in state s, then A will continue to hold
after the action is completed. Ignoring the technical construction of the frame axiom,
the axiom can cause immense computational difficulties. Consider propagating a
number of formulae through a long sequence of actions. The application of the
axiom for each action and to each formula will result in a very large computation.
There have been various attempts at devising logics for default and non-monotonic
reasoning; Chapter 7 gives details. Recently Ginsberg (1990) provided a scheme
which reduces the computational demand of the frame problem. The scheme views

Many methods have been suggested for task decomposition and task allocation,
including functional, abstraction level and information hiding, data, or conerol
dependencies and interaction density.

Partial global planning (PGP) (Durfee and Lesser, 1989) was developed as a
disuibuted conerol technique to ensure coherent network solving behaviour. It was
designed to have a flexible approach to coordination that does not assume any
particular distribution of subproblems. Nodes coordinate in response to currene
situation, each node can represent and reason about the actions and imeractions of
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the truth values assigned to formulae as functions for temporal eIements as a set of
basic values and views temporal operators as functions on these functional truth
values. This is done in two separate ways. First the actual default behaviour assigned
to some formula A is encoded in a truth value such as that shown in Figure 12.1,
which explicitly records the default truth of the formula at intervals following times
when it is known to be true with certainty.

Consider the following sentence:

If an agent places a block on a table, then the block is on the table at that time,
and can be assumed by default to be on the table at subsequent times.

Note that although the truth value to be assigned to the conclusion of the rule (that
the block is on the table) is not the same as the truth value of the antecedent (that the
block is being placed on the table), this holds only instantaneously, whereas the
conclusion holds over a wide range of times. The future behaviour of any particular
formula (in this case, the location of the block) is determined not by applying a
frame axiom such as that in Figure 12.1, but instead by an axiom describing this
future behaviour when the formula is first asserted. This situation is handled by
introducing a modal operator m and writing

m(a):=>e,

where a is the antecedent and e is the consequent. The modal operator m changes the
truth value of a so that the truth value of e is modified correctly by the above rule.
The idea is that modal operators can be viewed truth-functionally, that is as

, functions on the truth values of the formulae on which they opera te. In Ginsberg,
(1990) it was pointed out that if truth values are taken from an arbitrary bilattice
instead from the set {T, F}, it becomes practical to view modal operators truth-
functionally. This construction is a generality of Kripke's structures. It extends the
notion of a modal operator to include temporal operators such as propagate and
de/ay. These modal operators may be used as semantic markers for points at which
the inference process can be suspended and an approximate answer computed. The
event-driven nature of the approach allows us to reason in a computationally viable
way about formulae thar change value only infrequently.

1 4 50 51 52 53 54

is rrue or false, rhe agent musr know what rhe symbols a and b refer to in the real
world, and will need to have access to rhe physical world in looking for a block with
label a on top of a block with label b. In addition it needs to be able to dynamically
creare, delete, compare, reason with, and manipulare references to rhese objecrs. The
problem will increase in complexiry if rhe real-world object is allowed to have
identical objects; for example, if rhe world has more rhan one block wirh identical
size, shape, colour and label. The rraditional approach to solving this problem has
been to create unique names rhar identify objecrs in the real world. However, if rhese
objects are not displaying their unique name in any way, the traditional approach
simply will nor work. The problem of associaring an abstract symbol in agent
memory with a physical object is not addressed by logic-based represenrations.

Agre and Chapman (1987), and Agre (1990) proposed deicric representation to
address the problem of how an embedded agenr could manipulate objecrs. They
showed how to do rhis by allowing an agenr to esrablish indexicalffuncrional reference
to exrernal objects, and introduced interactionist deictic represenrarion over mentalisric
logic-based representation. They provided the agent with a ser of capabiliries called
marker control operators. These capabilities fell into five groups: marker comparison,
marker inspection, marker assignment, indexing, and objecr comparison. Marker
comparison and inspecrion operarors provide such abilities as rhresholding and disrance
between rwo tracked objecrs, resring whether two objects are approaching each other,
and tesring wherher rwo markers refer to the same object. The indexing and assignment
operators caused markers ro pick up objects of a specified type, or ro pick up objects
having a specified posirion relative ro another objecr already being tracked. The objecr
comparison operarors check wherher objecrs are adjacent, wherher objecrs are separared
by empry space, and wherher they are in a given direction from each other.

Schoppers (1990) described how to modify a universal plan execurion engine ro
provide indexicalffunctional reference capabilities, rhereby allowing universal plans
to inreract wirh physical objects. In their work Schoppers and Shu set up a modified
block world in which blocks have names, labels, colours and shapes. Each block's
name is unique and serves to identify the block. Block labels, e.g. a, are written on
the blocks and rhere may be any number of blocks wirh rhe same letter. Hence an
agent plan can name a specific block as usual, or can describe a desired block as one
having a given colour - there may be many blocks with rhe same colour. Again
blocks may be spherical, pyramidal or box-shaped. If a plan referred to a desired
colour or shape, the plan would be describing, nor naming, irs objects. Similarly, if a
plan referred to the labels printed on rhe blocks, the plan would be describing, not
identifying, blocks. Only the block names serve as designarors in the logical objective
sense. The agent was given a descripror-record thar contained sparial locarion
informarion of objects. This descriptor was dynamically updared by rhe agent's
perceptual interface using sensors such as a camera and contacr and position sensors
to reflect rhe current real-world situation. The agent was allowed access to the world,
to srore beliefs abour rhe posirions of blocks, and ro make use of existing beliefs to
re-loca te blocks. This use of beliefs solved two problems - a performance problem
and a comperence problem - reducing backtracking to a minimum. Objecr
descriprions were posed as a goal; for example rhe goal

cofour (X, red) /\ shape(X,sphere) /\ cofour (Y, blue) /\ shape( Y,box)/\ on(X, Y)

is ro find suirable objecrs for X and Y to refer to. The constraints on objects were
indefinite descriptions, or, in logical terms, existentially quantified formula. This

12.6.11. Abstraction Translatedinto Actions in the RealWorld

For an agent ro usefully operare in the actual world, ir musr be able to interacr wirh
and manipulate physical objecrs thar exist in rhis world. To do so rhe agent musr
somehow associate an abstract symbol in irs memory to a particular objecr in the real
world. For example, in the block world, to dererminewherher the relation on (a, b)

o

dt

u

FIGURE 12.1 A default frame axiom.
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means that, for the planner, object variables could have logico-objective semantics,
while for the plan executor they have indexical/functional semantics.

Other research in this area has ineluded Rosenschein and Kae1bling's (1986)
description of situation semantics which maintains the mode1-theoretic framework
oE traditional logic, as well as proposing axiomatisation of the causal networks in
which the agent is embedded in terms of information carried out by various physical
world states.

on(a, b)?
T)NO-OP
F)box(b)?

T)clear(b)?
T)holdings(a)?

T)over( b)?
T)LOWER
F)at(top)?

T)LATERAL
. F)RAISE

. F)(subplanto GRASPal
F)(subplanto CLEAROFFbI

F)FAIL

FIGURE 12.2 Decision me equivalent of ¡he STACK(a,b) plan.

12.6.12. Planning

Planning is a key component in the design and construction of an intelligent
autonomous agent. Given a problem to solve, the agent (except in the most simple
cases) will be interested in how to arrive at a solution, that is how to develop a plan.
A plan describes a way to arrive at a goal sta te from a given initial state.

The planning problem may be expressed as follows. Given a set of goals
G =(g¡, ..., g.ln ~ 1, an initial state of the world So, and a set oE operators (a;), find

a sequence of the a; that will cause all the g¡ to be true if executed with the initial
state at So.The operations can be external (moving objects) or internal (manipulating
symbols), and either primitive (move an arm up or down) or complex (stack one
block on another). The agent proceeds by iterating through the following steps:

As stated, in the elassical deve10pment of a theory of planning, emphasis was put
on exhaustive pre-planning, with the view to being able to ensure that an optimal or
near optimal plan would be found if one existed. Planning in this paradigm required
cenain assumptions to hold:

. The world will be stable; it will behave as projected.

. The time allocated to the planning stage is independent of the time that can be
allocated to execution.

. The information available to the planner is complete.

. Any initially correct plan will rema in correct and can be carried out.

In the real world, however, these assumptions simply do not hold. As the assumptions
are re1axed, new issues arise which lead to a new set of constraints, which inelude the
following:

. An agent does not have complete knowledge of the world and the effects of its
own actions.

. An agent does not always know all of its goals in advance.

. Planning time is limited, and is shared with execution time.

. The mapping from an action in a plan to an action in the world is non-trivial.

. Projection over all possible worlds is theoretically and practically intractable.

. The goal of an agent is to act, not simply to plan.

More sophisticated systems of elassical planning interleave planning and execution;
they perform "execution monitoring" in which the planning phase records the
expected state of the world between actions. The execution phase then monitors the
execution of the plan, making sure that the world satisfies the descriptions of the
expected intermediate states. lE it does not, the system reverts to the planning phase
with a description of the current state of the world as the initial state. Chapman
(1987) has shown that the planning phase in such a system is, in the general case,
undecidable. However, this problem can be solved, in particular cases, by restricting
operator description (Kae1bling, 1990).

Examples of elassical planners inelude the following.

. STRIPS (Nilsson, 1980), generates a sequence of actions for manipulating
objects. The current state of the world is kept in a database and a goal description

(1)
(2)

.. (3)

Generation: Generate a set of candidate operations.
Selection: Se1ectan operation from the set of candidate.
Relevance: Determine whether the se1ected operation will achieve the required
goal/subgoal.
Execution: Execute the se1ected operation.(4)

Different planning systems depend on how the four steps are to be performed. In
general, however, planning systems may be grouped into four broad categories:
elassical planning, reactive planning, combined systems, and case planning.

12.6.12.1. ClassicalPlanning

In this approach, sometimes referred to as the static approach, there is a strict
separation between plan generation and plan execution. Before execution, the plan is
created explicitly and handed out to the executor. Planning algorithms will try to
prove (in principie at least) that the resulting state either probably satisfies or
probably fails to satisfy all goals. Traditional deve10pment of the theory of planning
emphasised exhaustive pre-planning with view to being able to ensure that an optimal
or near-optimal plan would be found if one existed; thus the problem faced by
traditional planners is one of search. The generated plan consists of a set of
operations or actions, which can be specified at various leve1sof detail; for example,
pan of the plan for STACK (a,b) is shown in Figure 12.2 be1ow. Ineluded in the
plan are constraints or conditions which should not be satisfied for an action to be
executed. For example, constraints may determine the resource allocated to the action
or its spatial location may identify shared objects, or may establish temporal
re1ationships between objects.

.
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on a goal stack. Using search, enrries of the goal stack are matched with enrries in
the database. The computation terminates when all enrries in the goal stack are
matched.

. NOAH (Sacerdoti, 1975, 1977) uses a least eommitment search strategy based on
a hierarehieal represenration of plans in which actions may be partia/ly ordered.

. Non/in: introduced the norion of goal struetlire as a means of recording the
rationale behind actions in the plan, and also the use of typed preconditions as an
aid to search space control. A deelarative task formalism (TF) was also used to
provide a description of applications to the planner.

. Deviser (Vere, 1981) was derived from Nonlin but was extended to handle time
and events.

. Molgen (Stefik, 1981) is notable for its ability to perform object selection using
least eommitment principies. This is supported by constraint formulation and
propagation techniques.

. MeDermott (McDermott, 1978) provides the notion of defining a plan to
encompass the decisions on plan structure already taken and outstanding
problems still to be handled by the planner.

. OPM (Hayes-Roth and Hayes-Roth, 1979) provided an opportunistie planning
framework in a blaekboard architecture. It introduced the concepts of cognitive
specia/ists that can make certain kinds of decisions to alter the plan as it is being
built and showed how a measure of the worth of invoking these specialists could
be utilised.

. O-Plans (Tate, 1990) seeks to provide a more coherent set of mechanisms to
enable the planning and control system builder to select suitable implementation
methods for controlling the flow and ordering of choices.

12.6.12.2.Reactive Systems

Classical planning systems have focused entirely on a single agent, which operates in
an unchanging world, has complete knowledge of its environment, and has relatively
few constraints on planning and execution times. In MAS, when the concept of
agency (a society of agents embedded in a dynamic world structure) becomes a
central issue, agents' plans have to contain steps of sensing the world and reacting to
it. It has been argued that such systems are more suited to guiding the agents'
behaviour over long stretches of time.

Reactive systems are characterised by the following general procedure: At regular
intervals (the granularity of time may be varied), the agent scans its environment, or a
specific pan of it, selects an action from a finite set of actions, and then executes the
action. The action could be an internal action (changing the state of the agent) or an
external action (changing the state of the world). These steps are iterated unril a goal is
satisfied, the goal fails, or the agent has exhausted its resources. Reactive planning
systems are implemented by increasing the capabilities of the execution module,
allowing plan generation to provide a high-Ievel description of operations required to
achieve a goal, and assuming that the execution model will fill in the required details.
The generation of such high-Ievel plans should be less computationally complex than
the generation of detailed plans. Increasing the power of the execution model allows it
to deal with contingencies that cannot be accounred for by the planning module.
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Reactive planning has a number of drawbacks, ineluding the following.

. How do we know that the agent will achieve its goal? With eIassical planners, the
goal is proved to be satisfied. In a dynamic, changing world such a proof is much
harder.

. In a complex environmenr, the execution module cannot determine the effect of
its actions and whether some actions that it decides to execute may fail. Hence it
cannot rely on the results of those actions.

. Unless the situation is routine, the execution module will be unable to focus on
which aspects of a high-Ievel operations are most appropriate.

Some examples of reactive systems are listed and described below.

SAMUEL (Grefensteme, 1990). SAMUEL Is a system that uses competition-based
machine learning to develop reactive plans. It incorporates several assumptions
selected to make the system broadly applicable to real-world problems. The system's
perception facilities are limited to a fixed set of discrete, possibly noisy, sensors.
There is also a fixed a set of control variables that may be set by the decision-making
agenr. The system's decision rules are limited to simple conditionfactions of the
form

if (and el'" en)
then (and al'" a..)

where each e¡ is a condition on one of the sensor and each action a¡ specifies a setting
for one of the control variables. A reactive plan in SAMUEL comprises a set of such
decision rules.

Phoenix (Moehlman and Lesser, 1990). Phoenix provides a real-time environment
for study of cooperative planning and decenrralised negotiation. Phoenix is a fire-
fighting system and is concerned with bringing about the actions needed to assess and
contain simulated fires. Each agent is responsible for fires occurring in a predefined
geographicaI area. Spatially distributed agenrs having only local views negotiate to
plan a globally acceptable resource configuration. To realise the negotiation, a three-
phase framework was created: negotiation to find bulldozers (to fight the fire),
decision to delay goals, and negotiation for delaying goals.

If

\1

I

Explanation-based control (de Jong, 1990). The approach here relied on
eXplanation-based learning (EBL) over a plausible and qualitative doma in theory to
learn about and exploit doma in characteristics. Learning produces new planning
constructs which are the continuous analogue of EBL-acquired schemata.

i
I

12.6.12.3. Combined Systems

Recently much effort has been made in combining eIassical planning and reactive
planning with a view to bringing positive aspects of the two systems into one (Agre
and Chapman, 1987; Brooks, 1986; Hammond et al., 1990; McDermott, 1990;
Mitchell, 1990; Schoppers, 1987; Zweben, 1990). Examples of combined systems
inelude the following.
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Theo-Agent (Mitchell, 1990). This is a robot control architecture which combines
a stímulus-response subsystem for rapíd reactíon wíth a search-based planner for
handling unanticípated sítuations. The robot agent contínually chooses which actions
to perform, using the stimulus-response subsystem when possible, and fallíng back
on the planning subsystem when necessary.

The design of the Theo-Agent archítecture is primarily driven by the goal of
combíníng the complementary advantages of reactíve and search-based systems.
Reactíve systems offer the advantage of quick response. Search-based planners offer
the advantage of broad scope for handling a more diverse range of unanticipated
worlds. The Theo-Agent architecture employs both, and uses eXplanation-based
learning to incrementally augment íts reactíve component whenever forced to plan. In
addítion, the architecture makes wídespread use of caching and dependency
maíntenance in order to avoid needless recomputation of repeatedly accessed belíefs.
The prímary characterístics of the Theo-Agent are as follows.

(1) Ir continually reassesses what actíon it should perform. The agent runs in a tight
loop ín whích ít repeatedly updates íts sensor ínputs, chooses a control action,
begins executíng ít, then repeats this loop.

(2) Ir reacts when ít can, and plans when it must. Whenever it must choose an
acrion, the system consults a set of stimulus-response rules which constitute íts
reactíve component. If one of these rules applies to the current sensed ínputs,
then the corresponding action is taken. If no rules apply, then the planner is
ínvoked to determíne an appropríate action.

(3) Whenever forced to plan, ít acquires a new stimulus-response rule. The new
rule recommends the actíon the planner has recommended ín the same situatíons
(í.e. those world states for which the same plan justification would apply) but
can be ínvoked much more efficiently. Learning is accomplíshed by an
explanation-based learníng algoríthm EBG (Mírchell et aL, 1986) and provides a
demand-dríven incremental compilation of the planner's knowledge ínto an
equívalent reactíve strategy, guíded by the agent's experiences.

(4) Every belief that depends on sensory input ís maintaíned as long as íts
explanation remaíns valid. Many belíefs ín the Theo-Agent, íneluding íts belíef
of whích actíon to perform next, depend dírectly or índirectly on observed
sense data. The architecture maíntains a network of explanatíons for every
belief of the agent, and deletes belíefs only when theír support ceases. This
caching of belíefs significantly ímproves the response time of the agent by
elímínatíng recomputatíon of beliefs in the face of unchanging or irrelevant
sensor ínputs.

(5) Ir determínes whích goal to attend to on the basis of the perceived world state, a
predefined set of goal actívatíon and satisfactíon conditions, and gíven prioríties
among goals.

TCA consists of a task-índependent central control process and utilíties for
communícatíng between the central control and task-specific process. More
ímportantly, TCA provídes facilities for maintaining, scheduling and executing
híerarchical plans, for coordinating concurrent monitors and exception-handling
strategies, and for managing physical and computational resources. The facilities
were designed by analysing the requirements for several mobile robot systems. Several
important capabilítíes were needed to extend the planníng framework to achieve the
necessary reactivity. These capabilities inelude the following.

(1) lnterleaving planning and execution. While the world is in general too complex
and uncertain to plan down to primitive actíons, there are often times when
advance planníng ís desírable, or even necessary. Robot systems need flexíbílity
ín specífying when to plan and when to act. Thís flexibilíty can be achieved ín a
hierarchícal planning framework by placing temporal consrraints on the
planning and execution of tasks.

(2) Detecting changes. Reacting to change ís basic to survival. In rich environments,
however, ít is often dífficult to continuously check all relevant features. To
manage wíth limited sensors, systems must select which features to monitor on
the basís of their current tasks and envíronment.

(3) Error recovery. Purely reactive systems do not perform error recovery since they
treat each situation afresh. Planning systems, however, must notice when plans
are goíng astray and modífy them accordíngly. In addition, reflexive behaviours
should be provided to safeguard the robots.

(4) Coordinating multiple tasks. Unexpected opportunities and contingencies may
give rise to multíple tasks. Robot systems must decide whether tasks can occur
concurrently and, if not, in which contexts one task has priority over anorher.
In addítíon, they should be able to ínterrupt lower-prioríty task and move
smoothly to new ones.

XFRM (McDermott, 1990). XFRM provídes a transformation to planníng
capabílitíes on top of a reactive plan ínterpreter for a robot delivery truck. Planníng
ís ímplemented by way of a set of critícs and schedulers that anticipate problems
wíth the plan by projecting it ahead of time and seekíng to transform the plan to
remove these problems.

Decomposition abstractions (Martín and AlIen, 1990). This approach combines
reactive and elassícal planníng systems. Statístical methods are used to gather data
from executions of plan s to guide the appropriate level of plan description. The plan
ís elaborated until the strategic planner is sufficiently confident that this plan wíll
índeed achíeve íts goals on the basis of the previous behavíour of the executor. The
plan is then given to the executíon module. To address the problem of how to decide
what the planner needs to reason about and what problems the reactive execution
system can deal with, a techníque based on decomposition abstractíon was used. Thís
technique provídes a method of decíding what aspects of the planning problem the
reactíve executíon module ís capable of handling on íts own on the basis of the príor
performance of that execution module. Ir uses statistics on the execurion module's
príor performance to consrrain the probability that the executíon module can
accomplísh a panícular task. If ít can, the planner need not reason about that task. If

TCA (Simmons, 1990). The task control archítecture extends the elassícal planning
framework to ínelude capabilitíes for ínterleavíng, planning and executíon,
monítoríng, error recovery, and handling multíple tasks. The system was desígned to
facilitate buildíng and the control of mobile robot systems that have multíple
complex tasks, have limíted sensors relative to their task, and opera te in dynamic but
relatívely benígn environments.
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it cannot, the planner must discover the likely causes of failure and specify a plan
that avoids them.

environments. The special feature of RATMAN is the specification of such agents
with hierarchical knowledge bases. AOP (Shoham, 1990) developed a language called
agent-oriented programming which can be viewed as a specialisation of object-
oriented programming. In this language, the sta te of an agent consists of components
called beliefs, choices, capabilities and commitments. The language uses standard
epistemic logic. MACE (Gasser et aL, 1987) stands for multi-agent computing
environment. The computing units in MACE, the agents, build an organisation of
problem solvers. Agents run in parallel, communicate via messages and have facilities
for knowledge representation. Other systems inelude test beds such as DUMT
(Durfee and Lesser, 1987), integrative systems like ABE (Erman, 1988), and
reflective systems such as BBI (Hayes-Roth, 1990), SOAR (Rosenbloom et aL, 1990),
and CAGE/POLIGON (Nilsson, 1989).

12.6.12.4. Case-BosedPlanning

The case-based approach to planning is an attempt to deal with interactability of
proofs in complex domains present in elassical planning. The idea is to develop a case
database of plans which can be constructed and used incrementally. In this way a
search is used to locate an appropriate sto red plan that can satisfy the current goal.
One way that a case-based planner can improve itself over time is to combine
planning and learning such that the agent would have an understanding of its own
success and failure within a given domain, then either modify or increment an
existing plan to satisfy an unexpected goal or changes in the environment
(Hammond, 1989; Kolodner and Simpson, 1984; Martin, 1990; Owens, 1990;
Schank, 1982). Case-based planning suggests that the way to approach the
combinatorics of planning and projection is to let experience (past histories) guide
the planner as to when and where things work and do not work: rather than re-
planning, re-use plans. This framework suggests seven basic case-based planning
process modules (Hammond et aL, 1990):

(a) Prediction: predicts planning problems on the basis of similar past cases.
(b) Retrieve: to search memory for a plan that satisfies, or partially satisfies current

goals.
(c) Modify: to modify a retrieved plan, and satisfy remaining goals not yet satisfied

by the current plan.
(d) Projection: uses cases indexed by planning solutions, rather than problem based

as in the case with the predication module.
(e) Indexing: places new plans in memory, indexed by the goals they satisfy and the

problems to be avoided.
(f) Re-plan: this module is called if a plan fails; causal knowledge may be applied

here.

(g) Assign: uses causal explanation built during re-plan to determine features which
will predict this failure in the future. This knowledge is used to index the failure
for later anticipation.

In conelusion, planning is an important but still not soundly developed area of
artificial intelligence. It needs to be integrated into a theory of agency which
incorporates the different planning behaviour discussed above. We need to remove the
sharp distinction of planning and execution phases prominent in elassical planning,
learning methods and experimental methods.

12.7. AGENT ARCHITECTURE

In this section we define agent architecture as a number of components representing
the mental state of an agent and the interaction between them. We emphasise that
this is not a unique correct model, and that different applications may require spe~ific
agent structure. The architecture comprises a number of different hierarchical levels
as shown in Figure 12.3.

12.7.1. Sensors and Effectors

Sensors are the means by which an agent senses its world; they inelude vision, sound,
touch, and signals, the form of input to the agent. Effectors are the means by which
an agent affects the world, e.g. moving an object from one place to another, sending
a message to another agent. Effectors form agent output.

12.7.2. Communication Processor and Perception Interfaces

In this component, input and output information are analysed, sorted and sent to the
relevant knowledge base of agent memory structure.

12.7.3. Knowledge Bases

12.6.13. Engineering Methods and Practices in MAS

Knowledge bases comprise the following:

. Objects. This knowledge base stores information about objects in the world and
relationships between them. For example, in the block world, knowledge about
shape, size, colour, weight, material, and their special relationship are
represented.

. Time. This knowledge base represents information about the topology of time -
linear, branching, point, interval, bounded, etc. Axioms characterise the properties

How do we design and develop practical MAS systems? How do we develop
methodologies and tools in support of the construction of such systems? A number
of technologies have been built, ineluding RATMAN (Bürckert et aL, 1991), which
consist of a workbench of the definition and testing of rational agents in multiagent
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. P/anning. This component specifies planning methods (e.g. cIassical, reactive,
case, combined) available to the agent.

. Learning. This component contains algorithms by which an agent can update its
knowledge bases (e.g. induction, explanation-based learning).

. Control. This top-Ievel control can be thought of as a meta-system and conrains
information on what the agent knows, control the search space, and how to apply
integrity constraints that ensure consistency of knowledge bases.

. Reasoning. This is a complex component made of several subcomponents that
allow the agent to reason at different levels of the hierarchy. The reasoning
mechanism should in addition to cIassicallogic reasoning, include non-monotonic
reasoning and reasoning about beliefs, time, space and actions.
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12.8. A FORMALMODEL FOR MULTIAGENT
SYSTEMS

The formal model presented in this section is very cIose to similar work of Rao,
Georgeff and Sonnenberg (Rao and Georgeff, 1991), Singh (1990), Shoham (1990)
and Rosenschein and Kaelbling (1986). The model is based on the three primitive
modalities of belief, goal and commitment. More complex modalities are defined in
terms of these primitive modalities. Two kinds of agents are considered: single agenrs
and group agems. A group agent is an abstract entity that not only denotes individual
agents but may also include other subgroups. From the outstde, a group agenr may be
thought of as a single social agent. We use standard first order logic, modallogic, and
branching-lime modal temporal logic to describe situations, and dynamic logic to
describe planning. The semantics of the model is based on an extension of standard
Kripke interpretatíon of possible worlds, where each possible world is a temporal
structure. A joim plan by a group agent involves a commitment from all members of
the group that each one will satisfactorily discharge its commitment. Such joint
commitments are formalised as constraints on actions and belief. A ¡oint plan is a set of
¡oint actions; joint actions oflen involve strict synchronisation conditions.

The World

FIGURE12.3 Agent archirecrure.

of time, the temporal constraims on objects, and temporal relationships betWeen
agents, objects and the world.
Spatia/. This is similar to the time knowledge base but is applied to spatial
information.

Expert know/edge. This knowledge base contains expert knowledge about a
specific domain. It is the agent's "know-how".
Know/edge abollt other agents. This knowledge base contains information about
other agents, i.e. a model of other agents, that this agent needs 10 know.
Know/edge abollt the wor/d. This knowledge base describes what may be termed
common-sense information (e.g. if you drop a cup of coffee, then it is very likely
that the coffee will be spilled; or the fact that a car is used for transport).
Resources. This knowledge base comprises resources available to the agent,
including computational resources.
Actions. This knowlcdge base contains information on the set of primitive
actions (operations) that the agent is capable of performing.
Be/ief, commitments, goa/s. These knowledge bases contains primitive modalities
of belief, commitments and goals describing the agent's mental state. These
primitive modalities are the basis by which other mental states of agents are
defined; they include mutual and common belief, commitment and action.

.

.

.

.

.

.

.

12.8.1. Syntax

12.8.1.1.joint Plans

A ¡oint plan is a pair (precondition, body). The precondition is a set of well-formed
formulae that have to be satisfied before the body of the plan is executed. The body
of the plan is a set of plan expressions; plan expressions are formulae in dynamic
logic with extension 10 specify the agent having the plan. Plans, or more specifically a
plan type, is an abstract structure that when executed by an agent results in the
occurrence of an action in the real world; this action will often result in a state
change of the world.

A primitive plan expression is a pair consisting of a plan type and an agent. More
complex plan expressions may be constructed using the dynamic logic operator (;) for
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sequencing; (11) for parallelism; (,.) for iteration and (1) for non-deterministic
choice. The operators ? and !, operate on well-formed state formulae to convert them
imo plan types. ?a is a plan that tests whether the condition a is crue and !a is a plan
type that achieves a.

Action formulae are a result of the execution of a plan by an agem. These action
formulae describe whether the execution was a success or a failure, and whether it
occurred in the past or will occur in the future.

State formulae are defined as follows.

. Any first order formula is a state formula.

. If 1/>.and 1/>2are state formulae and x is an individual or plan variable, then ,1/>..
1/>.v 1/>2>and 3xl/>'(x) are sta te formulae.

. If 1/>is a well-formed action formula then 1/>is also a state formula.

. If 1/>is a state formula and y is an individual agent then BEL(y 1/», GOAL(y 1/»
and COMT (1/»are state formulae.

. If 1/>is a state formula and y is a social agem then MBEL(y 1/», jCOMT(y 1/»
EBEL(y 1/», EGOAL(y 1/», EGOAL(y 1/», and ECOMT(y 1/»are state formulae.

. If tp is a path formula, then optional (tp) and inevitable (tp) are a sta te formulae.

Path formulae can be defined as follows.

. Any state formula is also a path formula.

. If tp¡ and tp2are path formulae, then ,tp.. tp. v tplJOtpIJOtpl are path formulae.

12.8.3. Semantics
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Definition 12.1 (Rao and Georgeff, 1991)

. If P is a plan type and y is an agem (an agem is either a single or group agem)
then (p y) is a well-formed plan expression.

. If a is a well-formed formula and y is an agem, then (!ay) and (?ay) are well-
formed plan expressions.

. If XI and X2 are well-formed plan expressions, then (XI; X2), (x. 11X2), ex¡},
(XdX2) are well formed-plan expressions.

Definition 12.2. If X is a well-formed plan expression then (x), (x)" (x}f, Ix], (x],
and (x] f are well-formed formulae.

12.8.2. Temporal and Modal Operators

Definition 12.3. An imerpretation Mis defined to be a tuple, M =(W, lA, GA, PP, P,
PLANS, MEMBERS, T, <, U, jPS, PSA, B, G, 1,<I>)where W is a set of worlds, lA
is a set of individual agems, GA is a set of group agems, PP is a set of primirive
plan rypes, P is a ser of plan rypes, T is a ser of rime poims, < is a binary relarion on
time poims, U is the universe of discourse, and jPS is the ser of all joim plan
srrucrures. PSA is a plan srructure assignmem function thar maps a plan type to a
joim plan structure. PLANS is a funcrion from individual or joim agems to a ser of
plan types. Imuirively, rhis funcrion provides rhe plan library of rhe agem.
MEMBERS is a relation berween group agems and other groups and individual
agems. More formally, MEMBERS!: GA( GA U lA}. The accessibility relarions, B,
G and 1 map an individual agem's currem situarions to his belief, goal, and
commitmem accessible worlds, respecrively. More formally, B ~ lA x W x T x Wand
similarly for G and l. <1>is mapping of first-order emities to elemems in U for any
given world and time poim.

:1

The firsr three action formulae denote immediate future execurions, and the last three
indicate immediare past executions. The subscripts ..s" and ..f' denores success and
failure of execurion, respectively. Without rhe subscripr, the execution can be either a
success or a failure.

... '''j
The temporal structure of the model is described using computation cree logic CTL"
(Emerson, 1989). The temporal scrucrure CTL" is a tree with branching future and a
single pasr. A distinction is made between state formulae and path formulae: state
formulae are evaluated at specified time poims in a time tree, whereas parh formulae
are evaluated over a specified path in a time tree. Two modal operators, optional and
inevitable, opera te on path formulae. A path formula tp is said to be optional if at a
particular time poim in a time cree, tp is true of at least one path emanating from that
poim, it is inevitable if tp is crue of all paths emanating from that poim.

The standard temporal operators O (next), O (evemually) and O (always) operate
over state and path formulae. Two types of arcs between time poinrs are inrroduced:
success arcs and failure arcs. If the atc is a success arc, the primitive plan type is said
to be successful; if it is in a failure arc, the primitive plan is considered to have failed.

The modal operators BEL, GOAL and COMT are used to denote individual
beliefs, goals and commitments. The corresponding joim attitudes - namely, mutual
beliefs, joinr goals, and joinr commitmenr - are denoted by MBEL, jGOAL, and

jCOMT, respectively. We also use the operators EBEL, EGOAL and ECOMT to
denote the beliefs, goals and commitmenr of all the members of a social agenr. AII
joinr propositional attirudes are defined in terms of the individual propositional
attitudes.

Definition 12.4. A joinr plan strucrure is a tu pie (l/>prePbod),where I/>preis any well-
formed formula and P¡"',dyis any well-formed plan expression. We also have the
functions pre and body which, given a plan type, return the appropriate argumem of
the above tu pIe.

~ti

;1

ir

Definition 12.5. Each world w of W, called a time tree, is a tuple (Tw, <w,SW,F,J,
where Tw!: T is a set of time poinrs in the world w and <w is the same as <, restricted
to time poims in T,v. A (It//path in a world w is an infinite sequence of time poims
(to,t ) such that 'v'i(t¡,ti+dEAw. We use the notation (w'o'w",...) to make the
world of a particular fullpath explicit. The arc functions Sw and Fwmap time poinrs
to a primitive plan type. More formally, Sw:Tu.x twH 2"P and similarly for F"..The
domains for Swand F",are disjoinr. Inruitively, for any two time poims for which the
arc function S", is defined, its value represems the primitive plan that successfully
occurred (or was performed by agenr(s)) between those time poims. Similarly, the
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M, v(w", ...) ~ 1jJ.
3k, k ~o sueh that M, v, (w,., ...) ~ 1jJ.
there exists a fullpath (w,., w",...) sueh that
M, V(ltI", ...) ~ 1jJ.

The formula inevitable(1jJ) is defined as -,()ptional(-.1jJ) and 01jJ is defined as -.0-.1jJ.

M, V, (w,., W", ...) ~01jJ
M, V, (w,., w", ...) ~01jJ
M, V, w,. ~optional(1jJ)

iff
iff
iff

been exeeuted sueeessfully, the preeondition held at some time in the past when the
exeeution of the body started, and there was no other sueeessful exeeution of the
body in between.

M, v, w,. ~ [(p y)). iff
(a) 3to, to< t. sueh that M, v, (w,., ...) ~(pre(p) 1\(p y),;
(b) M, V, w,. ~ [body(p)).; and
(e) 13t"to< t¡< t. sueh that M, v, w" ~ [body(p)),.

The body of a plan eould eontain an expression to aehieve or test for a eertain
eondition. An agent y is said to aehieve sueeessfully the eondition a if there is plan
type p whose purpose is to aehieve a, and the plan is exeeuted sueeessfully. Similarly
for testing a eondition. More formally, if x stands for (!a y) or (?a y), we have

M, v, (w,., w", ...) ~(x), iff there exists a plan type p sueh that
(a) M, V, w,. ~ has-plan(p(p x)) and
(b) M, V, (w,., w", ...) ~(py),.

We say that a sequenee of two primitive plans is sueeessfully exeeuted if eaeh
primitive is exeeuted sueeessfully one after the other. Two parallel primitive plans are
sueeessfully exeeuted if both of them are sueeessfully exeeuted at the same time, i.e.
both label the same are. Two non-deterministie primitive plans are sueeessfully
exeeuted if either one of them is sueeessfully exeeuted. More formally, the sueeessful
future exeeutions can be stated as follows:

M, v, (w,., w",...) ~«(el a.); (e2a2), iff
M, V, (w,., w",...) ~«(el a.), and M, v, (w", ...) ~«(e2a2),'

M, v, (w,., w", ...) ~«(el a.) 11(e2a2)), iff
M, V, (w,., w", ...) ~«(el a.), and M, v, (w,., w", ...) ~«(e2a2),'

M, v, (w,., w",...) ~«(e. al) I (e2a2), iff
M, V, (w,., w", ...) ~«(e. al), or M, v, (w,., w", ...) ~«(e2a2),'

The failure of exeeution and past exeeutions of a sequenee of primitive plans,
parallel primitive plans and non-deterministie primitive plans can be stated in a
similar manner.

Finally, we eonsider the sueeess or failure of exeeution of primitive plan types.
This is straightforward: a primitive plan is sueeessfully exeeuted if it labels a sueeess
are and fails if it labels a failure are. If e is a primitive plan type then we have the
following semanties:

M, v, (w,., w", ...) ~(e), iff for some tI>eE S"'(tot.).
M, V, w" ~ [e). iff for some to, eE S"'(tot.).
M, V, (w,., w", ...) ~(e), iff for some tI>e E Fu,(tot.).
M, V, W'I~ [e),iff for some to, eE Fu,(tot.).

We define attempting an exeeution as either a sueeessful exeeution or a failure of
exeeution, i.e. (e) e::>(e), v (e), and similarly for past exeeutions.

Using these definitions we can distinguish between having and exeeuting a social
plan. More formally, the following formulae are satisfiable in our logie:

. Having a plan and not exeeuting the body of the plan:

has-plan(p x) I\-.(body(p)).

11

value of the are funetion F,o represents the failure of a primitive plan oeeurring
between those time points.

12.8.4. Semanticsof Temporal Modalities

The semanties of temporal modalities is straightforward. Both 01jJ and 01jJare path
formulae and are evaluated over a particular path. The formula optional(1jJ) is a state
formula and is true if there is at least one path where 1jJis true. More formally, we
have

r

I

'1

12.8.5. Semantics of Joint Plan Executions

A group or individual agent has a library of plans. AII plans serve a purpose, whieh
is either to aehieve a eertain eondition (as in la) or to test for a eertain eondition
(as in ?a).

We say that an agent y has a plan type p to aehieve the eondition a if, whenever
the plan has been sueeessfully exeeuted, the eondition a holds. We also require that
the plan be in the agent's plan library.

M, v, w,.~ has-plans(p(lay)) iff
(a) pE PLANS(y) and
(b) M, V, w,. ~inevitable O([(py)),=> a).

(has-plan(px), p denotes a plan, and x denotes what the plan aeeomplishes, and
who has the plan.)

Having a plan to test for a eertain eondition is very similar. We say thar an agent y
has a plan type p to test for eondition a if, prior to the sueeessful exeeution of the
plan, the eondition a holds. As before we require that the plan be in the agent's plans
library.

M, V, w,.~ has-plan(p(?ay)) iff
(a) p E PLANS(y) and
(b) M, V, w,. ~inevitable O((py),=> a).

Next we eonsider what it means for an agent to exeeute a plan type. We say that an
agent y sueeessfully exeeutes a plan type p if the preeondition of the plan is satisfied
and the body is exeeuted sueeessfully.

M, v, (w,., w", ...) ~«(py), iff
M, v(w,., w", ...) ~ pre(p) 1\(body(p),.

The past exeeution of plans is somewhat more eomplieated to speeify. We say that
a plan type p has been sueeessfully exeeuted by agent y if the body of the plan has
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. Execuring rhe body of rhe plan bur nor execuring ir successfully:

(body(p) I\-.(body(p),.

. Execuringrhe bodyof rhe plan and nor inrendingro execurerhe body of rhe plan:

(body(p) I\-.COMT (a(body(p)).

In rhe above case x can be a plan express ion ro achieve or resr a certain condirion.
The lasr property is rhe same as execurion failure of rhe body of p.

Nexr we examine rhe semamic of all members of a social agem believing a
formula. The formula EBEL(y 4» is sarisfiable if all members of rhe social agem y
believe in 4>.If rhe member is an individual agenr, rhe agenr believes in ir; if rhe
member is anorher social agenr, all members of rhar social agenr believe in ir. As
previously, rhe definirion of "everyone believes" is recursive.12.8.6. Semantics of Mutual Beliefs and Joint Goals

Belief is modelled in rhe convenrional way using KD45 modallogic. Thar is, insread
of one world, we have a ser of differenr possible worlds. A particular rime poim in a
parricular world is called a situation. For each sitUarion we associare a ser of be/ief-
accessib/e, goa/-accessib/e and intention-accessib/e worlds; imuirively, rhose worlds
rhar rhe agenr be/ieves ro be possible, desires ro bring abour, or commits ro
achieving, respecrively. Unlike mosr convenrional models of belief, however, each
belief-, goal- and imenrion-accessible world is a rime rree. Mulriple possible worlds
resulr from rhe agenr's lack of knowledge abour rhe srare of rhe world. Bur wirhin
each of rhese possible worlds rhe branching furure represems rhe choice of acrions
available ro rhe agenr. Moving from belief ro goal ro inrenrion worlds amoums ro
successively pruning rhe parhs of rhe rime tree; inruirively, ro making increasingly
selecrive choices abour one's furure acrions.

The belief relarion maps a possible world ar a rime poinr for a particular agenr ro a
ser of belief-accessible worlds. We say rhar an agenr a has a belief 4>, denored
BEL(a 4», ar rime poim t if and only if 4>is rme in all rhe belief-accessible worlds of
rhe agenr ar rime t. We use B;"(a) ro den ore rhe ser of belief-accessible worlds of
agem a from world w and rime t, i.e.

B;"(a) = (w' IB(awtw')}.

The semanrics for beliefs can be defined formally as follows:

M, v, w, ~BEL(a 4» iff 'v'w'E B;"(a)M, v, w; ~ 4>.

The semanrics of goal and imenrions are defined analogously by using rhe relarions G
and l.

The main semamic consrrainr imposed on rhe belief, goal and imention relarion is
rhar for each belief-accessible worlds rhere exisrs a sub-world which is goal-accessible
and, in rurn, for each goal-accessible world rhere exisrs a sub-world which is
inrention-accessible. This semanric constrainr is called srrong realism and is formalised
elsewhere. Defining o-formulae ro be well-formed formulae rhar contain no posirive
occurrences of inevitable (or negarive occurrences of optional) ourside rhe scope of
belief, goal, or modal operarors, we have rhe following axiom of srrong realismo

Having commirments towards rhe body of a plan is differem from having a plan
and also differenr from executing rhe body of rhe plan. In other words, having a plan
does not entail imention to execure rhe body of rhe plan srrucrure and executing rhe
body of rhe plan srrucrure does nor enrail an inrention to do so. More formally, rhe
following formulae are sarisfiable in rhis logic.

. Having a plan and nor inrending ro execure rhe body of rhe plan:

ha-p/an(p!(a a)) I\-.COMT(a(body(p)).

EBEL(y 4»= A IJlmtmb"'¡YJI J.dJ NIA)BEL(a 4»

1\ A,.1m b"'(Y.¡ J.d. NSA)EBEL(z 4».

The satisfacrion of EGOAL and COMT is defined likewise.

Now the murual belief 4>of a group agent is defined as all members of rhe group
agenr believing 4>and all of rhem believing rhar x is murually believed. The joinr goal
4>of a group agent is defined as all members of rhe group agenr having rhe goal 4>
and murually believing rhar 4>is held as a joim goal. Joinr commirments are defined in
rhe same way as joim goals.

MBEL(y4»=EBEL(y 4»I\EBEL(yMBEL(y 4».
jGOAL(y 4»=EGOAL(y 4»I\MBEL(yjGOAL(y 4»).
jCOMT(y 4»=ECOMT(y 4»I\MBEL(yjCOMT(y 4»).

Nore rhe asymmerry berween rhe definirions of MBEL and jGOAL; while MBEL
allows arbirrary nesrings of BEL operarors, jGOAL allows arbirrary nesrings of BEL
operarors wirh rhe innermosr operaror being a GOAL operaror. However, rhere is a
symmerry berween rhe delinirions of jGOAL and jCOMT, borh allow arbirrary
nesrings of BEL operarors wirh rhe innermosr operaror being GOAL and COMT,
respecrively.

The above delinirions rogerher wirh rhe srrong realism axiom yields rhe following
important rheorem (Rao and Georgeff, 1991).

Theorem 12.1. ~jCOMT(ytp)~jGOAL(ytp)=>MBEL(ytp), where tp is any 0-
formula.

This rheorem srares rhar, if a group agenr is joinrly commirred ro an O-formula, rhe
group agenr also has ir as a joinr goal and also murually believes ir.

As wirh individual commirmenr, ir can be shown rhar having a joint commitmellt
rowards rhe body of a joinr plan is differenr from having a joinr plan and also
differenr from executing rhe body of the joinr plan. More formally the following
formulae are sarisliable in rhe logic.

. Having a plan and nor joinrly inrending ro execure rhe body of rhe plan:

has-p/an(p! (a y)) I\-.jCOMT(y(body(p )).

. Execuringrhe body of rhe plan and nor joinrlycommirredro execurerhe bodyof
the plan:

(body(p) 1\-.jCOMT (y(body( p))).
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12.8.7. Multiagents poim of view, by the construction of computational processes - both hardware and
software - that are parr of a larger system embedded in a physical environmem. We
argued that the behaviour of agems should be viewed as an on-going arrempt to
discover, crea te, and maintain a stable relationship with the world they inhabit. The
relationship between the agem and the world is necessary for the generation of goals,
plans and actions such that agems can affect and be affected by their world. The
concept of agency rests on the idea that general-purpose imelligence is only possible
if agems can be autonomous and capable of learning, planning, and work to
establish functional correspondence between the world and their conception of it.
This approach is differem from traditional Al, which tended to produce either a
"general-purpose" system that proved to be inadequate in solving problems in
differem domains, or to sacrifice genera lity by concemrating on domain-dependenr
programs that are effective in their own areas because of the skills of programmers
rather than their own inrernal structures.

This chapter should be viewed as an arrempt to study agency. Much work is still
awaited and needs to be done. The study must rest on the premise that imelligenr
behaviour is a long-term activity, and efforr must be aimed at developing a theory of
knowledge, learning, action and communication. Some work toward this end has
already starred as shown in this chapter.

Whenever an agem is committed to the body of a plan structure, then the agent must
have a goal towards the purpose of the plan and the preconditions must be believed.

~ has-plan(p(!a a)) /\ COMT (a(body(p)) ~GOAL(a«(!a a),) /\BEL(a(pre(p))

However, this requirement alone is not sufficient for the agenr to form commitmenrs
and act on them. We need additional constraints that would force the agent to form
commitments. The stronger version of the means-end reasoning axiom can be stated
as follows: If an individual agenr has a plan p and has acquired the goal towards the
purpose of this plan, and believes in ,the precondition of the plan, he is commirred to
execute the body of the plan. The body of the plan may comain other achievemem
plan expressions. An agenr committed to such an achievemenr plan expression would
then be forced to have a goal to achieve it. This goal may result in furrher
commitmenrs to execute the body of other plan structures. This hierarchical planning
proceeds unril the agent has executed the body of its top-level plan structure. Thus,
for an individual agenr a, we have the following axiom for means-end reasoning:

~ has-plan (p (!aa)) /\ GOAL(a( (!aa) ,/\ BEL(a pre(p)) ~ COMT (a(body(p))

Note that, whenever the premise of the axiom is true, the agenr is going to COMT
the body of the plan structure. However, the agem may not act on all such
commitments: an agent acts only if its immediate commitmem is towards a non-
deterministic action. In other words, if the agenr has multiple presenr-directed
commitmem it needs to deliberate and choose the best possible action before acting.
The agenr is allowed to have multiple future-directed commitmenrs as it can continue
postponing deliberation umil forced to act.

The scenario for multiple agenrs is very similar - one considers joinr attitudes
rather than individual attitudes. Thus, if a group agenr has a plan p and has acquired
the joim goal towards the purpose of this plan, and mutually believes in the
precondition of the plan, then the agenr will iointly be committed to execute the
body of the plan. This joinr intemion would trigger the group agent to acquire other
joint and individual goals, which might trigger further joinr commitmenrs, and so on.
As before, if the group agenr has successfully executed the body of the group plan
structure we can say that the group agenr mutually believes the p condition. Thus for
a group agenr y we have the following axiom for hierarchical planning:

~ has-plan(p(!a y)) /\JGOAL(y«(!a y).) /\MBEL(ypre(p)) ~ JCOMT (y(body(p))

The above axioms also hold when the agenr has a plan to test for a cerrain condition.
This exposition of a formal model is only preliminary, as Rao indicates, and much

work needs to be done to formalise joinr commitments, negotiations and conflicts.

12.9. CONCLUSION

In this chapter we described the new and exciting area of multiagem systems (MAS).
We argued that many importam applications ranging from process comrol and
manufacturing to health care and diagnostics can only be tackled, from computation
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