
316 FININ, LABROU, & MAYFIELD

Genesereth, M., and Fikes, R. 1992. Knowledge lnterchange Format, Version 3.0, Refer-
ence Manual, Technical Repon, Computer Science Depanment, Stanford University.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software Agents. Communications of the
ACM 37(7): 48-53,147.

Kuokka, D.; McGuire, J. G.; Pelavin, R. N.; Weber, J. c.; Tenenbaum, J. M.; Gruber, T.;
and Olsen, G. 1993. SHADE:Technology for Knowledge-Based Collaborative Engineer-
ing. In Al and Collaborative Design: Papersji-om the 1993 AMI Workshop, eds. J. S. Gero
and M. L. Maher, 245-262. Menlo Park, Calif.: AAAI Press.

Labrou, Y., and Finin, T. 1994. A Semantics Approach for KQML-A General-Purpose
Communication Language for Software Agents. In the Third International Conference
on Information and Knowledge Management. New York: Association of Computing
Machinery.

Lehrer, N. 1994. The Knowledge Representation Specification Language Manual, Tech-
nical Report, ISX Corporation, Thousand Oaks, California.

MacGregor, R., and Bates, R. 1987. The LOOMKnowledge Representation Language,
Technical Report ISI/RS-87-188, USC/lnformation Sciences Institute, Marina del Rey,
California.

Mark, W., et. al. 1994. COSMOS:A System for Supporting Design Negotiation.Joumal of
Concurrent Engineering: Applications and Research 2(3).

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; and Swartout, W. 1991.
Enabling Technology for Knowledge Sharing. Al Magazine 12(3):36-56.

Newell, A. 1993. Reflections on the Knowledge Level. Artificiallntelligence 59:31-38.

Newell, A. 1982. The Knowledge Level. Artificiallntelligence 18:87-127.

Pastor, J.; McKay, D.; and Finin, T. 1992. View-Concepts: Knowledge-Based Access to
Databases. In Proceedings of the First International Conference on Information and
Knowledge Management. New York: Association ofComputing Machinery.

Shoham, Y. 1993. Agent-Oriented Programming. Artificiallntelligence 60:51-92.

Tenenbaum, M.; Weber, J.; and Gruber, T. 1993. Enterprise Integration: Lessons from
SHADEand PACToIn Enterprise lntegration Modeling, ed. C. Petrie. Cambridge, Mass.:
MIT Press.

Wilkins, D. 1988. Practical Planning: Extending the Classical Al Planning Paradigm. San
Francisco, Calif.: Morgan Kaufmann.

Chapler 15

An Agent- Based

Pramework for Interoperability

Michael R. Genesereth

T he software world today is one of great richness and diversity. Many
thousands of software products are available 10users today, providing a
wide variety of information and services in a wide variety of domains.

While most of these programs provide their users with adequate value when
used in isolation, there is increasing demand for programs that can interoperate
to exchange information and services with other programs, thereby solving
problems that cannot be solved alone.

Unfortunately, getting programs 10 work together often necessitates exten-
sive work On the part of users and developers. They must learn the characteris-
tics of completed programs and how to negotiate communication formats and
protocols for programs under development. What's more, the resulting systems
are usually very rigid: components often cannot be modified or replaced with-
out subsequent rounds of negotiation and programming.

Approaches to Software Interoperation

In order to deal with these problems, the systems community has developed
various pleces of technology to transfer the burden of interoperation from the
creators and users of programs to the programs themselves (figure 1).This tech-
nology includes such things as standard communication languages, subroutine
libraries to assist programmers in writing interoperable software, and system
services to facilitate interoperation at runtime.

Communication language standards facilitate the creation of interoperable
software by decoupling implementation from interface. So long as a program
abides by the details of the communication standards, it does not matter how it
is implemented. Today, standards exist for a wide variety of domains. For ex-

318 GENESERETH

x" -- -- -- - - -- ·X
& "'

~
JÍ &

I I
I I
I I
I I
I I

,~ "
X ..- -- -- - - - - -.X

AN ACENT-BASED FRAMEWORK FOR lNTEROPERARILITY 319

The goal is to establish communication between the two programs so that they
can exchange information about the positions of chips on a printed circuit
board. The problem is that they use different vocabularies for describing these

positions. In the Macintosh program, each position is characterized by a single
integer (65536*column+row). In the Unix program, each position is character-
ized by two quantities, a row and a column.

Now, it is a simple matter for two programmers to deal with this discrepancy.

They can either rewrite the programs so that they share a common notation for
positions, or they can interject some translation code between the programs.
The question of interest here, however, is whether this discrepancy can be dealt
with automatically. It is really a simple matter of having each program docu-
ment the coordinate system it uses. For example, the Macintosh program could

emit the equation relating its point notation to the alternative row and column
notation. After that, it should be able to continue to export point information,

leaving it to the system software to translate between this notation and that of
the Unix programo Unfortunately, none of the existing approaches to interoper-
ation supports this sort of interaction.

Figure 1. Programmer coordination vs. automatic coordination.

ample, eIectronic mail programs from different vendors manage to interoperate
through the use of mail standards like SMTP. Disparate graphics programs in-
teroperate using standard formats like GIF. Text formatting programs and
printers interoperate using languages like Postscript.

There is also a wide range of systems services. Directory assistance programs
help by providing a way for programs to discover which programs can handle
which requests and which programs are interested in which pieces of informa-
tion. Automatic brokers (such as the Publish-and-Subscribe capabilities on the
Macintosh, DDE, BMS, ToolTalk, OLE, and CORBA) take the directory no-
tion one step further: they not only compute the appropriate programs to re-
ceive messages but also forward those messages, handle any problems that arise,
and, where appropriate, return the answers to the original senders.

Unfortunately, this kind of technology is too limited to support the ideal of
automated coordination suggested in figure 1. To begin with, existing standards
are not sufficiently expressive to allow the communication of definitions, theo-
rems, assumptions, and the other types of information that programmers can
communicate with each other and that may be needed for one system to com-
municate effectively with another. Current subroutine libraries provide little
support for increased expressiveness. Directory assistance programs and brokers
are limited by the lack of expressiveness of the languages used to document re-
sources and their lack of inferential capability.

Furthermore, there can be inconsistencies in the use of syntax or vocabulary.
One program may use a word or expression to mean one thing while another
program uses the same word or expression to mean something entirely differ-
ent. At the same time, there can be incompatibilities. Different programs may
use different words or expressions to say the same thing.

As a simple example of these inadequacies, consider two computer-assisted
design programs, one running on a Macintosh, the other on a Un ix workstation.

The Knowledge Sharing Effort Approach to Interoperability

Agent-based software engineering attacks these problems by mandating a uni-
versal communication language, one in which inconsistencies and arbitrary
variations in notation are eIiminated. There are two popular approaches to the

design of such a language: procedural and declarative.
The procedural approach is based on the idea that communication can be best

modeled as the exchange of procedural directives. Scripting languages (such as
TCL, AppleScript, Java, and Telescript) are based on this approach. They are
both simple and powerful. They allow programs to transmit not only individual
commands but entire programs, thus implementing delayed or persistent goals
of various sorts. They may typically be executed directly and efficiently.

Unfortunately, there are disadvantages to purely procedurallanguages. For
one, devising procedures sometimes requires information about the recipient
that may not be available to the sendero Secondly, procedures are unidirectional.
Much information that agents must share should be usable in both directions; for
example{to compute quantity from quantity at one time and to compute quan-
tity from quantity at another. Most significantly, scripts are difficult to merge.
This is no problem so long as all communication is one-on-one. However, things
become more difficult when an agent receives multiple scripts from multiple

agents that must be run simultaneously and may interfere with each other.
Merging procedural information is much more difficult than merging declara-
tive specifications or mixed mode information (Iike condition-action rules).

In contrast with this procedural approach, the declarative approach to lan-

guage design is based on the idea that communication can be best modeled as

320 GENESERETH

the exchange of declarative statements (definitions, assumptions, and the like).

To be maximaIly useful, a declarative language must be sufficiently expressive

to communicate information of widely varying sorts (including procedures). At
the same time, the language must be reasonably compact; it must ensure that

communication is possible without excessive growth over specialized languages.
As an exploration of this approach to communication, researchers in the ARPA

Knowledge Sharing Effort have defined the components of an agent communi-
cation language (ACL) that satisfies these needs.

In the approach to interoperation described here, programs (caIled agents) use

ACL to supply machine-processable documentation to system programs (caIled

ftcilitators), which then coordinate their activities. Since agents and facilitators

assume the burden of interoperation, application programmers are relieved of

this responsibility and can construct their programs without having to learn the
details of other programs in the runtime environment.

Facilitators and the agents they manage are typicaIly organized into what is

often caIled afederated system. Figure 2 iIlustrates the structure of such a system

in the simple case in which there are just three machines, one with three agents
and two with two agents apiece. As suggested by the diagram, agents do not

communicate directly with each other. Instead, they communicate only with
their local facilitators, and facilitators, in turn, communicate with each other. In

effect, the agents form a "federation" in which they surrender their autonomy
to the facilitators.

As with most other brokering approaches, messages from servers to facilita-

tors are undirected; i.e., they have content but no addresses. It is the responsibil-

ity of the facilitators to route such messages to agents able to handle them.
There can be an arbitrary number of facilitators, on one or more machines, and

the network of facilitators can be connected arbitrarily.

The federation architecture provides assisted coordination of other agents

based on a specification-sharing approach to interoperation. Agents can dynami-
caIly connect or disconnect from a facilitator. Upon connecting to a facilitator,

an agent supplies a specification of its capabilities and needs in ACL. In addition

to this meta-Ievel information, agents al so send application-Ievel information

and requests to their facilitators and accept application-Ievel information and

requests in return. Facilitators used the documentation provided by these agents

to transform these application-Ievel messagesand rolite them to the appropriate

agents. The agents agree to service the requests sent by the facilitators, and in
return, the facilitators manage the requests posted by the agents.

A major difference between the knowledge-sharing approach to software in-
teroperation and previous approaches lies in the sophistication of the processing

done by these facilitators. In some cases, facilitators may have to translate the

messages from the sender's form into a form acceptable to the recipient. In some
cases, they may ha ve to decompose the message into several messages, sent to

different agents. In some cases, they may combine multiple messages. In some

1
I

I
I

--

AN AGENT-BASED FRAMEWORK FOR INTEROPERAHILlTY 321

Figure 2. Federated system.

cases, this assistance can be rendered interpretively, with messages going
through the facilitators; in other cases, it can be done in one-shot fashion, with
the facilitators setting up specialized links between individual agents and then
stepping out of the picture.

The knowledge-sharing approach to software interoperation has been devel-
oped into a practical technology that has been put to use in a variety of applica-
tions nece~sitating interoperation.

In the next section, I introduce the ACL language and describe various ap-

proaches to building agents capable of communicating in ACL. In the Software
Agents section,I show how ACL can be used by agentsin communicating their
specifications to other agents. I then describe the implementation of facilitators
(Facilitatorssection)and give a detailed example of the federation architecture
(Example section). In the Applications section, I describe three applications of
the technology, and conclude in the final section with a discussion of remaining
issuesand a summary of key points.

QQQD QDQQ

(Facilitator A) (Facilitator e)

Internet

(Facilitator B)

@@@

322 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERARILITY 323

Agent Cornrnunication Language fifth column). Individual variables are distinguished by the presence of ? as ini-
tial character, and sequence variables are distinguished by the presence of an
initial @. There is a fixed set of operators. AlI others words are constants.

?xnot chipl sin prime
?res and theta cos left

The basis for the approach to interoperation described here is a language called
ACL (Agent Communication Language). The design of this language follows
the recommendations of the various committees involved in the Knowledge
Sharing Effort sponsored by ARPA.

ACL can best be thought of as consisting of three parts: an "inner" language
called KIF (Knowledge Interchange Format), its vocabulary, and an "outer"
language called KQML (Knowledge Query and Manipulation Language). An
ACL message is a KQML expression in which the "arguments'" are terms or
sentences in KIF formed from words in the ACL vocabulary.

The example below illustrates the use of ACL in an exchange of information
between an agent named Joe and an agent named Bill. Joe starts off by sending
a message to Bill asking him to store the fact that either p or q is true of every
object in the world. He then sends a second message asking Bill to store the fact
that p is not true of the object named a. In the third message Joe asks Bill for
some object ?x for which (q ?x) is true. Since either p or q is true of every object
and p is not true of a, then q must be true of a. In this example, it is assumed
that Bill is able to draw such conclusions, with the result that he responds to
Joe's request with the answer a.

Joe to Bill:
(request :sender¡oe :receiverbill
:content (stash '(or (p ?x) (q ?x))))
Joe to Bill:

@Ior 123 + >

(request :sender ¡oe :receiver bill

:content (stash '(not (p a))))

Joe to Bill:

(request :sender joe :receiver bill :reply-with msg 1
:content (ask-one '?x '(q ?x))))

Bill to Joe:

(respond :sender bill :receiver ¡oe :in-reply-to msgl
:content a)

From words, we can build KIF terms to refer to objects in the universe of

discourse. In addition to variables and constants, the language includes opera-

tors to build complex terms, conditional terms, set descriptors, and quoted ex-

pressions (which refer to expressions).

(size chipl)
(+ (sin theta) (cos theta))

(if (> theta O)theta (- theta))
(setofall ?x (above ?x chipl))

(quote (above chipl chip2))

From terms, we can build sentences. These include simple sentences, as well

as logical sentences involving Boolean operators like "and," "or" and "= >" (the

implication operator).

(prime 565762761)
(> (sin theta) (cos phi))

(not (> sin theta) O))

(or « O(log h)) « (log h) 1))
(=> (> ?x O)(positive ?x))

Finally, there are rules and definitions. Rules differ from implications (sen-
tences involving the =» in that they can be used in only one direction. The
presence of the operator "consis" in the first part of a rule signals that the rule
can applied so long as the enclosed sentence is consistent with the database.
Without the "consis," the sentence must be contained in the database in order

for the rule to be applied. New object constants, function constants, and relation
constants can be defined using the appropriate definitional operators. Such
definitions are not essential in order for new constants to be used; however, they

provide a convenient grouping for the sentences defining those concepts and
allow one to distinguish facts that are true by definition from assertions about
the world.

(=» (consis(not (conn ?x ?y)))(not (conn ?x ?y)))(defrelation leq (?x ?y) := (not
(> ?x ?y)))

The semantics of the KIF core (KIF without rules and definitions) is similar to

that of first order logic. There is an extension to handle nonstandard operators
(Iike "quote," "if," and "setof'), and there is a restriction to models that satisfy
various axiom schemata (to give meaning to the basic vocabulary in the format).
Despite these extensions and restrictions, the core language retains the funda-

Knowledge Interchange Format (KIF)

As mentioned above, "arguments" in an ACL message are expressions in a for-
mallanguage called KIF (Knowledge Interchange Format). KIF is a prefix ver-
sion of the language of first order predicate calculus, with various extensions to
enhance its expressiveness.

The basic vocabulary of the language includes variables (the first column in
the examples below), operators (the second column), object constants (the third
column), function constants (the fourth column), and relation constants (the

r
324 GENESERETH AN AGENT-HASED FRAMEWORK FOR INTEROPERAHILlTY 325

mental characteristics of first-order logic, ineluding compactness and the
semidecidability of logical entailment.

The semantics of rules and definitions is not first order and leads to potential
noncompactness and potential nonsemidecidability. However, the extension is
upwardly compatible, so that these properties are guaranteed for any databases
without rules or definitions.

The expression shown below is the simplest possible KQML dialog. In this
case, there is iust one message: a simple notification. The sender is conveying
the enelosed sentence to the receiver. In general, there is no expectation on the
sender's part about what use the receiver wil1 make of this information.

A to B: (tell (> 3 2»

The fol1owing dialogue is a little more interesting. In this case, the first message

is a request for the receiver to execute the operation of printing a string to its
standard i/o stream. The second message tel1s the sender that the request has
been satisfied.

Ato B:(perform (print "Hello!" t»
B to A: (reply done)

In the dialogue shown below, the sender is asking the receiver a question in

an ask-if message. The receiver then sends the answer to the original sender in a

reply message.

Ato B: (ask-if(> (size chipl) (size chip2»)

H to A: (reply true)

In the fol1owing case, the sender asks the receiver to send it a notification
whenever it receives information about the position of an obiect. The receiver
sends it three such sentences, after which the original sender cancels the service.

Ato B: (subscribe (position ?x ?r ?c))
B to A: (tell (position chipl 8 10))

B to A: (tell (position chip2 846))
B to A: (tell (position chip3 8 64»
Ato B: (unsubscribe (position ?x ?r ?c))

In addition to simple notifications, commands, questions, and subscriptions,

KQML also contains support for delayed and conditional operations, requests

for bids, offers, promises, and so forth.

Vocabulary

In order for programs to communicate about an application area, they must use
words that refer to the obiects, functions, and relations appropriate to that ap-
plication area, and they must use these words consistently. One way to promote
this consistency is to create an open-ended dictionary of words appropriate to
common application areas. Each word in the dictionary would have an English
description for use by humans in understanding the meaning of the word, and
eachword would have KIF annotations for use by facilitatorsin mediating dis-
agreements of terminology.

Note that, in proposing such a dictionary I am not proposing that there be
one standard way of encoding information in each application area. Indeed, the
dictionary would probably contain multiple ontologies for many areas. For ex-
ample, we would expect it to contain vocabulary for describing three dimen-
sional geometry in terms of polar coordinates, rectangular coordinates, cylindri-
cal coordinates,and soon. Each program could use whichever ontologyis most
convenient. The formal definitions of the words associated with any one of
these ontologies could then be used by the facilitator in translating messages
using one ontology into messages using the other ontology. These issues are dis-
cussed in more detail in the section on translation.

Knowledge Query and Manipulation Language (KQML)

While it is possible to design an entire communication framework in which al1
messages take the form of KIF sentences, this would be inefficient. Because of
the contextual independence of KIF's semantics, each messagewould have to
inelude any implicit information about the sender, the receiver, the time of the
message, message history, and so forth. The efficiency of communication can be
enhanced by providing a linguistic layer in which context is taken into account.
This is the function of KQML.

As used in ACL, each KQML message is a list of components enelosed in
matching parentheses. The first word in the list indicates the type of communi-
cation. The subsequent entries are KIF expressions appropriate to that commu-
nication, in effect the "arguments."

Intuitively, each message in KQML is one piece of a dialogue between the
sender and the receiver, and KQML provides support for a wide variety of such
dialogue types.

Software Agents

In the approach to interoperation described he re, application programmers
write their programs as software agents. Like other agents, a software agent is

obliged tb communicate in ACL, but it does so in a particularly stylized way:

l. On start up, it initiates an ACL connection to the local facilitator.

2. It supplies the facilitator with a description of its capabilities.

3. It then enters normal operation: it sends the facilitator requests when it is

incapable of fulfil1ing its own needs, and it acts to the best of its abilities to
satisfy the facilitator's requests.

A software agent is a special kind of agent in that it surrenders its autonomy
to the facilitator. A general agent is not compel1ed to satisfy the requests of other

AN AGENT-HASED FRAMEWORK POR INTEROPERAHILlTY 327
326 GENESERETH

agents. It can accept them or decline them, or it can negotiate for payment. A
software agent does not have this freedom. After registering with its local facili-
tator and supplying its specification, the software agent is obliged to satisfy the
facilitator's requests whenever it can. Of course, this is a good deal in many
cases, since the agent gets the facilitator's services in return.

The following subsection describes how software agents speeify their capabil-
ities and needs; and the Agent Implementation Strategies subsection discusses
various strategies for building them, fram writing new pragrams to dealing
with legacy software.

ACL

ACL
ACL

1 i

Rewrite

Specifying Agent Capabilities and Needs

Wrapping

In order to provide services to other agents, an agent must communicate its ea-
pabilities to the facilitator in ACL. An agent specifies its capabilities by trans-
mitting "handles" facts to its facilitator. For example, an agent capable of an-
swering questions about the dealer of a vendor may transmit the following
specification to its facilitator:

(handles business-agent'(ask-one ,?variables(dealer ,¡dealer ,?vendor)))
(handles business-agent'(ask-all ,?variables(dealer ,?dealer ,¡vendar)))

These facts state that agent business-agent is capable of answering queries
about a single dealer for a vendor, or all the dealers for a vendor. The actual ca-
pability is a quoted KQML expression, such as '(ask-one ,?variables(dealer ,?dealer
,?vendor)) in the first example. This specification is similar to the object interface
specifications in CORBA's IDL.

If some other agent Al wants to know the dealers of NEC, it may communi-
cate the following request to the faeilitator:

(ask-all ?x (dealer ?x nee))

The faeilitator examines its knowledge base and determines that the busi-
ness-agent can handle the request. The faeilitator sends the request to the busi-
ness-agent, gets the answer, and passes it to Al' Agent Al is eompletely unaware
of the sequence of steps performed in servicing its request.

Capabilities can be more complieated, as in the following conditional
specification:

«= (handles business-agent '(ask-all ,¡variables (dealer ,?dealer ,?vendor))) (=
?vendor 'ibm))

This states that the business-agent can answer only queries about the dealers
of ibm. The specifications can have arbitrarily complicated preconditions.

An agent specifies its needs by transmitting "interested" facts to its facilitator.
For example, the following states that the agent es-manager is interested in all
facts regarding the release ofPC-compatible computers.

(interestedes-manager '(tell (released,?manufacturer PC ,?model)))

Similar to "handles" statements, "interested" statements can be conditional:

Figure 3. Three approachesto agent implementation.

«= (interested es-manager '(tell (released ,1manufaeturer PC ,?model)))(member
?manufacturer '(ibm roshibanee miero-international)))

This states that the es-manager agent is interested only in the release of PC-

compatible computers from 18M, Toshiba, NEC, and Micro-International.
If another agent transmits the following fact to the facilitator:

(tell (released micro-international PC 6500D))

then the facilitator will examine its knowledge base and find that the agent cs-

manager is interested in expressions of this form, and it will send the same
KQML expression to the es-manager. We will diseuss the specification of agent
needs and capabilities from the facilitator's point of view in the Content-Based

Routing subseetion that follows.

Agent Implementation Strategies

The eriterion for agenthood is a behavioral one. A process is a software agent if

and only if it acts like one. Any implementation that achieves this behavior is

aceeptable. Nevertheless, it is natural to ask whether there are any standard
strategies for converting legacy programs into software agents. In my work thus
far, I have taken different approaches in different cases (figure 3).

One approach is to implement a transducer that mediates between an exist-

ing program and the local facilitator. The transducer initiates eommunication
with the local facilitator. It supplies the program's specifieation to the facilitator.

It accepts requests from the facilitator, translates them into the program's native
eommunication language, and passes those messages to the programo It accepts

328 GENESERETH AN A<;ENT-BASED FRAMEWORK FOR INTEROPERAHILlTY 329

the program's responses, translates them into ACL, and sends the resulting
messages to the facilitator.

This approach has the advantage that it requires no knowledge of the pro-
gram other than its communication behavior. It is therefore especially useful for
sitUations in which the code for the program is unavailable or too delicate to
tamper with.

This approach also works for other types of resources, such as files and peo-
pie. It is a simple matter to write a program to read or modify an existing file
with a specialized format and thereby provide access to that file via ACL. Simi-
larly, it is possible to provide a graphical user interface for a person that allows
that person to interact with the system in a specialized graphical language,
which is then converted into ACL, and vice versa.

A second approach to dealing with legacy software is to implement a wrap-
per that, in essence, injects code into a program to allow it to communicate in
ACL. The wrapper can directly examine the data structUres of the program and
can modify those data structures. Furthermore, it may be possible to inject calls
out of the program into the code so that the program can take advantage of ex-
ternally available information and services.

This approach has the advantage of greater efficiency than the transduction
approach, since there is less serial communication. It also works for cases where
there is no interprocess communication ability in the original programo

The third and most drastic approach to dealing with legacy software is to
rewrite the original programo The advantage of this approach is that it may be
possible to enhance its efficiency or capability beyond what would be possible in
either the transduction or wrapping approaches.

The best examples of this approach come from the engineering domain.
Many traditional engineering programs are designed to work to completion be-
fore communicating with other programs. Recent work in concurrent engineer-
ing suggests that there is much advantage to be gained by writing programs that
communicate partial results in the course of their activity and that accept partial
results and feedback from other programs. By communicating a partial result
and getting early feedback, a program can save work on what may turn out to
be an unworkable alterna tive. The expressiveness of ACL allows programs to
express partial information. However, many existing programs are unable to
take advantage of this expressiveness and the concurrent engineering strategy.
In these cases, rewriting the programs is the only alterna tive.

Facilitators provide a collection of services, including:. White Pages: finding the identity of agents by name, for example, "What

agents are connected?" or "Is agent x connected?".Yellow Pages: finding the identity of agents capable of performing a task.
For example, "What agents are capable of answering the query x?"

. Direct Communication: sending a message to a specific agent.

. Content-based Routing: the facilitator is given the responsibility of handling

a request. It makes use of the specifications and other information provid-
ed by the agents to do this, thereby giving the il1usion that it is the sole
provider of al1services.

. Translation: agents may use different vocabulary. In order to interoperate,

the facilitator may have to translate the vocabulary of one agent into the
vocabulary of another.

. Problem Decomposition: handling a complex request may require breaking

it into sub-problems, getting the answers to the sub-problems, and then
combining these answers to obtain the answer to the original request. As
in content-based routing, the facilitator makes use of the specifications and

application-specific information provided by the agents to accomplish this.

. Monitoring: when an agent informs the facilitator of a need, the facilitator

monitors its knowledge to determine if the need can be satisfied. For ex-

ample, an agent may specify the need "1 am interested in facts about the
position of chips in design x."

The responsibility of the facilitator on each machine is to assist the agents

running on that machine to col1aborate with each other and, indirectly, with the
agents running on other machines. In this section, I describe the communication
services a facilitator needs to provide, and I discuss ways in which the facilitator

can help agents set up direct communication amongst themselves in order to
eIiminate the overhead inherent in communicating through the facilitator. I

give an overview of the reasoning program in the next subsection, fol1owed by
il1ustrations of how it is used in content-based routing, translation, synthesis,

buffering, matchmaking, and connectivity.

Facilitators

Overview of the Implementation

The top-Ievel program of the facilitator is a loop that accepts messages from
the agents and facilitators to which it is connected. On receipt of a message, it

passes the message to its message handler and goes back to listening for addi-
tional messages.

In handling a message, the message handler uses an automated reasoning

program on its knowledge base of specification information. Our reasoning pro-
gram is a variation on the method used in Prolog. There are two primary dif-

Facilitators are the system-provided agents that coordinate the activities of the
other agents in the federation architectUre. Each facilitator keeps the other facil-
itators in the network informed of which agents are connected to it and what
facts have been communicated by them.

330 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERABlLlTY 331

ferences. First of aIl, it handles KIF syntax rather than Prolog syntax. Seeondly,

unlike Prolog, it is sound and complete for fuIl first-order predieate ealculus: it

is based on the model elimination rule of inferenee, the unifieation algorithm
does an oeeureheek, the restrietion to Horn clauses is removed, and the seareh is

done in iterative deepening fashion.

A fuIl description of the program is beyond the seope of this paper. However,

a simple example should convey suffieient detail for readers to foIlow the exam-

pIes in the foIlowing subseetions.

Consider a database with the sentenees shown below. The predieate p holds

of three pairs of objeets-a and a, a and b, and b and e. The predieate q is also

true of three pairs of objeets-a and b, b and e, and e and d. The predieate r is

defined to be true of two objects if there is an intermediate objeet sueh that p is

true of the former objeet and this intermediate objeet and q is true of the inter-

mediate objeet and the latter objeet.

(p a a)

(p a b)

(p be)

(q a b)
(q be)

(q ed)

must be a binding for ?y for whieh (p a ?y) is true. The program first finds (p a

a) and binds ?y to a. Ir then tries to prove (q a e). Unfortunately, this fails. So,
the program baeks up and tries to find another way to satisfy (p a ?y). In so
doing, it diseovers the fact (p a b) and binds ?y to b. Again it tries to prove (q b
c) and in this case sueeeeds. Sinee both eonjunets are proved, the eonjunetion is

proved; and, sinee the eonjunetion is proved, the original sentenee is proved.
This program is both sound and complete. In other words, if the program

manages to prove a result, then that result must 10gieaIly foIlow from the sen-
tenees in the database; and if a conclusion 10gieaIly foIlows from the database,

the method wiIl prove it.
Unfortunately, as with aIl sound and complete reasoning methods for the fuIl

first-order predieate ealculus, the method does not neeessarily terminate. If a
eonclusion does not folIow from the database, the method may spend forever

trying to prove it. While this situation does not often arise, it is a real danger for
a pieee of system eode.

In order to deal with this difficulty, the facilitator uses a preproeessor to

screen sentences before they are added to the faeilitator's database. The faeilita-
tor adds a sentenee if and only if it can prove that doing so will not cause an
infinite loop.

Note that the problem of making this determination is itself undecidable; so
it is not possible to know in aIl cases whether a sentenee wilI cause an infinite
loop. Our facilitator eircumvents this diffieulty by taking a eonserv ative ap-
proaeh to proving the "safeness" of a set of sentenees: it uses a variety of tests to
determine whether an inferenee wilI terminate. If a database passes the tests,
termination is assured. If not, the database may or may not be safe. Fortunately,

the tests are eheap, and they eover a very large fraetion of the kinds of sentenees
that programmers writing eommunieation speeifications wilI need.

One example of a test is the requirement that a database be funetion-free. If
there are no funetion eonstants, then the database reduces, in effeet, to proposi-

tional ealculus, for whieh there is a known deeision proeedure. The sentenee
shown below would not pass this test, because of the embedded funetion f, and

it is easy to see how the method deseribed above would enter an infinite loop in
using this sentence to prove a simple conclusion like (p a).

« = (p ?x) (p (f ?x)))

Even if a database contains funetions, it is possible to show termination pro-
vided that the database contains no recursion. For example, the first sentenee

below would pass this test, whereas the seeond would fail, sinee p is dependent

on p

+ «= (r?x ?z)(p?x ?y)(q?y ?z))
x «= (p?x ?z) (p?x ?y)(p?y ?z))

Even if the database has reeursion and funetions, it is possible to show ter-

mination provided that every reeursive ealI diminishes the complexity of its

1

11,

'i"

«=(r?x?z)

(p ?x ?y)
(q ?y ?z))

Suppose now, we wanted to know whether r was true of a and c. The trace

shown below shows how the reasoning program derives this resulto
Call: (r a e)?

Call: (and (p a ?y) (q ?y e))
Call: (p a ?y)

Exit: (p a a)

Call: (q a e)
Fail: (q a e)
Call: (p a ?y)
Exit: (p a b)

Call: (q b e)

Exit: (q b e)
Call: (and (p a b) (q be))
Exit:(r a e)

The desired conclusion (r a e) unifies with the conclusion of the last sentenee

in the knowledge base with the variable ?x bound to a and the variable ?z

bound to e. The program thus reduces the original question to the subquestion

on the seeond line-in effect the question of whether there is a binding for the

variable ?y for whieh the conjunetion is true. In arder for this to be true, there

I
i

332 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROI'ERAHILITY 333

arguments. For example, the following database passes this test, beca use the

recursive calls to r all concern a subpart of the original expression.

(r O)

«= (r (Iistof?x ?y» (r ?x) (r ?y»

Of course, other tests are possible. The problem of provable termination has

been studied extensively in the database and automated reasoning communities.
With additional work, more tests can be employed, thus enlarging the set of
sentences the facilitator can handle.

Translation
I
.':1

Content-Based Routing

Agents in a system may interoperate even when they are not created using the
same programming language or development framework. Like programming
"objects," agents define message-based interfaces that are independent of their
respective internal data structures and algorithms. The translation capability of
facilitators extends this significantly by making interoperation independent of
the agent interface (the KQML expressions the agent can handle). An agent can
be replaced with a more capable implementation with a different interface. By

providing translation mies to map the old interface to the new, the agent can
provide its old functionality in addition to the new and improved one.

There are two parts to the translation process: lIocabula¡yand logical.The need
for lIocabulalYtl'anslationarises because of differences between the abstractions in-
herent in the implementations of different agents. For example, one agent may
work with rectangular coordinates, while another works with polar coordinates.

The need for logical tl'anslation arises because of limits imposed by agents on
the logical structure of messages in which they are interested. Some agents are
capable of accepting any message in ACL. Other agents are more selective. For
example, a Prolog agent might restrict its interest to Horn Clauses; a relational
database might restrict its interests to ground atomic formulas.

As an example of translation, consider a situation in which the facilitator re-
ceives the message shown below. As before, it is being told via one particular en-
coding that the position of a particular chip on a printed circuit board is located
in the tenth row and sixteenth column.

¡I'
i

From an application programmer's point of view, communication in a federa-

tion architecture is undirected: application programs are free to send messages
without specifying destinations for those messages. Ir is the job of the facilitator
to determine appropriate recipients for undirected messages and to forward the
messages accordingly. In so doing, the facilitator functions as a broker for the
services provided by the servers in its community.

In order to see how this is done, consider how the facilitator handles the mes-

sage shown below. Ir is being told via one particular encoding that the object
named chipl is indeed a computer chip.

(tell '(member chipI chips»

The facilitator is connected to three agents, named layout, domain-editor, and

board-editor. These agents have given the facilitator the specification informa-
tion shown below.

(interested layout '(tell (position ,?x ,?r ,?c)))

« =(interested domain-editor '(tell (member ,?x ,?y»)
(symbol ?x)

(symbol ?y»

« = (interestedboard-editor '(tell (= (,?f ,?x) ,?y)))
(member ?f (setof'row 'col»
(symbol ?x)

(natural-number ?y»

In order to determine which agents are interested in this message, the facili-

tator forms the query (interested ?a '(tell (member chipI chips))) and uses its reason-

ing program to find a binding for variable ?a. In this case, there is just one, the

domain-editor. Consequently, the facilitator sends the message to this agent.

(tell '(member chipl chips»

Note that in making the determination that the domain-editor agent is inter-
ested, the facilitator must not only match the partern in the first line of its

specification but also verify properties of the bindings of the variables, in partic-
ular that they are both symbols.

(tell '(= (pos chipl) (point 10 16»)

The facilitator's agent catalog mentions that an agent named layout is interested
in receiving messages of the form (position ..), where .. and .. are natural
numbers.

«= (interested kb (tell'(position ?x?m ?n»
(natural-number ?m)
(natural-number ?n»

Since the incoming sentence does not have the form specified in this interest,
content-based routing alone would not cause any message to be sent to layout.
However, let us suppose that the facilitator also has information relating pos
and position, as in the following sentence:

«=> (= (pos ?x)(point ?row ?col»
(position ?x ?row ?col»

Using this sentence together with the sentence (= (pos chipl) (point 10 16)),
the facilitator is able to deduce the sentence (position chipl 10 16). In other
words, it can translate from one form to the other. Ir then checks whether any
agent is interested in this information, finds layout, and sends the message
shown bclow.

l
..,.,

334 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERABILlTY 335

(tell '(position chipl 10 16»

An important issue in translation is knowing when to make the effort. When

the facilitator receives a message, how does it know that translation willlead to a

new message that is of interest to one of its agents without doing the translation?

Randomly generating conclusions from the information in the message is im-
practically expensive. A better alternative is derivation of conclusions after filter-

ing with the results of some connectivity analysis. Given a set of interests and a

data base ofaxioms relating differing vocabularies, it is possible to distinguish

lines of reasoning that lead to potentially interesting conclusions from those lines

that cannot possibly lead to interesting conclusions. This analysis is efficient and

needs to be done ¡ust once, before the facilitator rece ives any messages.

question to board-editor; then, on getting an answer, it would send in the col

question; and, on getting that answer, would be able to answer the original

question.

Synthesis

The example of translation in the preceding subsection is particularly simple.
One incoming message leads to one outgoing message. In some cases, an incom-
ing message can be handled only by sending multiple messages to multiple
agents. In order to handle such messages, the facilitator must be able to synthe-
size a multi-step communication plan to handle the incoming message.
As an example of this type of message handling, consider the message shown
below. As in the last example, the facilitator is being told the position of a par-
ticular chip.

(tell '(= (pos chip1) (poinr 10 16)))

One difference in this example is that the facilitator's agent catalog contains

the information shown below, documenting an agent interested in row infor-

mation and col information but not pos information.

«= (interested board-editor (tell '(= (,?f ,?x) ,?y)))
(member ?f (setof 'row 'col))
(symbol ?x)

(natural-number ?y))

As before, let us assume that the facilitator's library contains a sentence relat-
ing the two vocabularies.

«=> (= (pos ?x) (point ?row ?col))
(and (= (row ?x) ?row) (= (col ?x) ?col)))

In this case, there are two conclusions from the original sentence. The facili-
tator discovers these two conclusions and sends them on to the board-editor

agent.

(tell '(= (row chipl) 100))
(tell '(= (col chip1) 160))

Note that if the incoming message had been an ask-if message, the facilitator
would have been able to reduce this to two questions: one about the row of the
chip and another about the column. In this case, it would first send the row

Buffering

Another important issue in translation is buffering. In some cases, it may not be

possible to transform a message into a form that is acceptable to any agent, yet it
is possible to merge the information from two or more messages to form an ac-
ceptable result.

As an example of how the facilitator handles these cases, considei- the incom-

ing message shown below. In this case, the incoming information involves the
row of a chip. No col information is provided.

(tell '(= (row chip!) 10))

The facilitator's agent catalog contains information about an agent layout
that is interested in pos information.

(interested frame-editor '(tell (= (pos ,?x) ,?y))

The facilitator's library contains information relating row and col to pos, just as
before.

«=> (= (pos ?x) (poinr ?row ?col))
(and (= (row ?x) ?row) (= (col ?x) ?col»

Unfortunately, in this case, it is unable to complete its translation since there
is no col information. But all is not lost. From looking at its agent catalog and Ii-

brary, the facilitator knows that sentences involving row can lead to sentences
involving pos; and it knows that there are agents interested in pos sentences.
Also from an examination of its agent catalog, it can conclude that there are no

agents that handle requests to store row sentences. Given these two conditions,
the facilitator decides to save the incoming fact in its information buffer for po-
tential further use.

(= (row chip!) lO)

Now suppose that, at some point after this, the facilitator receives the missing
col information in a message like the following:

(tell '(= (col chip!) 16))

Putting this information together with the preceding fact, it can conclude a pos
sentence; and it sends the derived sentence onto the layout agent.

(tell '(= (pos chip!) (poinr 10 16)))

Note the importance he re of knowing when to buffer information and when
to discard. If the facilitator were to save every piece of information it receives, it

would quickly run out of space. By saving only those pieces of information that
are of potential use and that are not being stored elsewhere, the amount of in-
formation that must be saved remains manageable.

336 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERABILlTY 337

Matchmaking

As described above, content-based routing, translation, and buffering are all
performed by the facilitator. This is necessary for maximum flexibility, thus al-
lowing for agent substitutions, changing interest lists, system reconfiguration,
and so forth. However, performing these services at runtime can be needlessly
costly from a computational point of view.

As an example of this, consider the case of two agents running on a single
machine, one a database program and the other a database editor. Whenever the
user of the editor makes a change, the results must be propagated to the
database programo The editor must format an appropriate message; the facilita-
tor must route and translate the message; and the database program must un-
format the message in order to make the appropriate changes to the database.

Fortunately, under certain circumstances, it is possible to eIiminate this over-
head by moving portions of the computation to server initialization time. Sup-
pose, in the example, that we know that a database program and editor are the
only two agents interested in the information they are exchanging (at least for
the time being). In this case, the facilitator can request that the agents imple-
ment their communication via remote procedure call, giving each the address of
the other and taking itself out of the picture.

Of course, in order to preserve flexibility, it is essential that the facilitator re-
tain the ability to request that the agents terminate or modify such connections
in the event that the environment changes in an incompatible way. Although
this check carries with it a certain amount of overhead, the advantage of this ap-
proach is that it eIiminates the overhead associated with the transmission of
messages; instead, the overhead is paid only when there are changes in system
configuration, agents' interests, and so forth.

Fully interconnected - capabilities and ¡nterests 01local agents only

Figure 4. Fu// intercannectian architecture.

Connectivity

Our final facilitator-related topic concerns the issue of connectivity between fa-
cilitators and agents and between facilitators and other facilitators.

Since remote communication is more expensive than local communication,
there is good reason for having at least one facilitator on each machine. Other-
wise, in order for a program to communicate with another program on the same
machine, it would have to send a message to a remate machine!

On the other hand, there is really no reason to have more than one facilitator
per machine. Anything that can be handled by two facilitators can be handled
by one facilitator. There can be no computational advantage, unless the two fa-
cilitators are running on different processors with the same machine.

What about the connection of agents to facilitators? While it is possible to
consider a situation in which every agent is connected to every facilitator, this
is impractical in settings, like the Internet, where there are likely to be many
agents and many facilitators. For this reason, in federation architecture, I as-

sume that every agent is connected to one and only one facilitator.

Finally, there is the issue of inter-facilitator connectivity. Here, there are mul-
tiple choices, each with advantages and disadvantages.

The simplest sort of architecture is full interconnection, as suggested by

figure 4. In this architecture, every facilitator is connected to every other facilita-
toro Since these connections are logical connections and not physical wires, this
sort of architecture is feasible, though not necessarily desirable.

The disadvantage of this approach is the cost of interconnectivity. On a large
network, like the Internet, the number of facilitators could be very large, and
under this scheme every one would have to know about every other one.

An alternative that alleviates this difficulty is a spanning tree architecture, as

suggested in figure 5. In this approach, facilitators are connected in such a way
that there is a path from every facilitator to every other facilitator but there are
no loops.

This approach is good because it allows connectivity without the cost of nu-
merous connections. It has the disadvantage ofbeing susceptible to failure when

one of the nodes goes down, as this can break the network into disconnected

components.
Finally, there is the general connectivity architecture. In this architecture,

every facilitator is connected at least indirectly with every other facilitator, as in
the spanning tree architecture, but there is no restriction that the connectivity be
loop free.

Like the spanning tree architecture, a general connectivity architecture can
be more economical of connections than a full interconnection architecture. It

338 GENESERETH
AN AGENT-BASED FRAMEWORK FOR INTEROPERABILITY 339

Example

This section presents a simple example of the federation architecture. Instead of
focusing on the details, I present a broad picture of the types of software inter-
operation made possible.

First, a brief overview of the scenario. There is a computer systems manager

in a publishing company who wants to upgrade the computers used by the sales
staff to portable Pentium-based machines. The computer systems manager in-
forms the facilitator of his interest in Pentium laptops. Sometime later, the com-

puter product agent notifies the facilitator of the availability of a Pentium lap-
top, and this information is passed on to the computer systems manager by the
facilitator. The computer systems manager asks the meeting scheduling agent to

set up a joint meeting with the managers of the sales and finance departments to
discuss the purchase of the new machines. The meeting scheduling agent gets
the available times from the calendar agents for the sales and finance managers
to schedule a meeting. We fill in some ofthe details below.

The computer systems manager sits at his terminal with a graphical user in-
terface (GUI) and tells the facilitator that he is interested in being told of the
availability of PC-compatible Pentium laptops. The GUI commands are trans-
lated into the following KIF fact, which is transmitted to the facilitator:

«; interestedes-manager '(tdl (available,rmanufaeturer ,rmodd-name)))
(; (denotation rmodd-name) rmodel); the model from its name
(computer-familyrmodel PC)
(laptop rmodel))

There is a product agent that can answer queries about the computer family a
product belongs to (e.g., PC, Apple) and which computers are laptops. It has
specified its capabilities by transmitting the following facts to the facilitator:

(handles produet-agent
'(ask-one ,rvariables (computer-family,rcomputer ,?family)))

(handles produet-agent '(ask-if (Iaptop ,reomputer)))

Whenever a new piece of information is added to the product agent's knowl-
edge base it notifies the facilitator of the fact. A new Micro-International 36000
computer is announced, and information about it is added to the knowledge
base of the product agent. The product agent communieates the following
KQML message to the facilitator:

(tell (available Miero-International 3600D))

The facilitator performs inference to see if any agent is interested in this fact.
It finds that the cs-manager agent is interested, but only if the computer family
of the 36000 is PC, and if the 36000 is a laptop. The facilitator cannot answer

these questions locally. However, it forwards the queries to the product-agent,
who can answer them. The product-agent responds positively to both queries,
and the cs-manager is notified of the previous availability of the 36000. A mes-

Spanningtrae ~pabililjes and inlereslSIocalagentsanclother neighbors

Figure 5. Spanning free architecfure.

has the added advantage that a failure of a node or connection does not neces-

sarily disconnect different segments of the network.
Unfortunately, it has the disadvantage of possible loops. If one facilitator

sends a message to a second and the second passes it on to a third and the third
passesit on again, it might end up back where it started.

Fortunately, loops of this sort can be caught by adding sender information to

eachmessage(as in many mail protocols,for example)and checking for this in-
formation when a message is received. It can also be handled by having each fa-
cilitator save information about which messages it has sent. Either way the

loops can be broken. The programming cost is a little higher, but the efficiency
and reliability of the approach recommend it highly.

Another complexity in the spanning tree and general connectivity architec-
tures stems from the need of facilitators to merge the interests of other facilita-

tors in with those of their own agents in complicated ways. In a full connectivity

architecture, each facilitator simply aggregates the interests of its local agents
and passes those interests on to all other facilitators. Each facilitator uses this in-

formation to handle incoming requests. In the other two architectures, the in-
terests passed on to neighbors are more complicated. A facilitator connected to
two other facilitators must blend the interests of its first neighbor into the inter-

ests of its local agents in the specification it sends to its second neighbor; and it

must blend the interests of its second neighbor into the interests of its local

agents in the specification it sends to its first neighbor.

340 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERABILlTY 341

sage indicating this pops up on the GUI ofthe computer systems manager.
The computer systems manager uses his GUI to ask the facilitator to sched-

ule a one hour meeting with the managers of the sales and finance groups dur-
ing the week of Oecember 12th to 16th. The GUI transmits the following
KQML message to the facilitator:

(schedule-meeting (Iistof sales-manager finance-manager)
(intervaI12-12-9412-16-94)
60)

There is a scheduling agent that can schedule meetings. It previously trans-
mitted the following fact to the facilitator:

(handlesscheduler '(schedule-meeting,?people ,?interval ,?meeting-duration))

The original meeting request is passed on to the scheduler agent by the facili-
tator. The scheduler is not able to schedule a meeting directly, since it does not
have access to the calendars of the sales and finance managers. Therefore, the

scheduling agent passes on the following query to the facilitator:

(ask-one ?x (calendar sales-manager (intervaI12-12-94 12-16-94) ?x))

There is a datebook agent for the sales manager that records his calendar. It

had previously notified the facilitator of its capability with the following fact:

(handles sales-manager-datebook
'(ask-one ,?x (calendar sales-manager ,?interval ,?x)))

Similarly, there is a synchronize agent that can answer queries regarding the
calendar of the finance manager.

The facilitator passes on the two queries of the scheduler to the sales-manag-
er-datebook agent and the finance-manager-synchronize agent. The calendars
returned by these agents are sent to the scheduling agent, who schedules the
earliest possible meeting. The first available meeting time is transmitted to the
facilitator, who finalIy forwards the results to the cs-manager.

This example illustrates a collection of points: anonymous interaction of
agents through the use of a facilitator, interoperation of a variety of program
types, different types of agent implementations incorporating legacy code, and
the dual nature of agents as both cIients and servers.

Some programs in the example are based on legacy code, such as the product
agent which uses an SQL database for recording data about computers, the
datebook calendar program, and the synchronize calendar programo Other pro-
grams are written from scratch, such as the scheduling agent that computes the
intersection of available times for a group of meeting participants.

Oifferent techniques are used to incorporate legacy codeoThe product agent
uses an SQL database for recording facts, and it is "agentified" by providing a
transducer to convert ACL into SQL commands and vice versa. The datebook

calendar program is agentified by a wrapper: the source code is modified to sup-
port ACL communication. The meeting scheduling component of the datebook

and synchronize programs was rewritten in the scheduling agent to support a
more general notion of time.

Finally, the example also illustrates the dual nature of agents as both

providers and consumers of services. For example, the meeting scheduling
agent can handle a request to schedule a meeting. However, in order to service
this request, the scheduling agent must ask the facilitator for the calendars of

the participants.

Applications

In this section, I describe some experiments designed to assess the power and

limitations of the knowledge-sharing approach to software interoperation.
While knowledge-sharing technology has potential value in many different ap-

plication areas, I chose to concentra te my experiments on two particular appli-
cation areas: computer-aided engineering and heterogeneous distributed infor-
mation access.

Designworld

Oesignworld is the result of the first integration effort. In its current form, Oe-
signworld is an automated prototyping system for small scale electronic circuits
built from standard parts (TTL chips and connectors on prototyping boards).

The design for a product is entered into the system via a multimedia design
workstation; the product is built by a dedicated robotic cell-in effect, a micro-
factory. If necessary, the product, once built, can be returned to the system for

diagnosis and repair.
The Oesignworld system consists of eighteen processes on six different ma-

chines (two Macintoshes and four HP workstations). Each of the eighteen pro-

grams is implemented as a distinct agent that communicates with its peers via
messages in ACL. Any one of these programs can be replaced by an ACL-
equivalent program without changing the functionality of the system as a
whole. Any agent can be moved to a different machine (with equivalent capa-
bilities). Any agent can be deleted and the system wilI continue to run correctly,
albeit with reduced functionality.

In the development of the system, there was virtually no communication be-
tween programmers, except at the very end; the discussion, when it occurred,
\Vas limited to negotiation on message vocabulary; and no reimplementation

took place as a result of this negotiation (since the mediation of all disagree-
ments was handled by the system's facilitator). The Oesignworld system is a

good example of software interoperation through knowledge-sharing technolo-
gy. However, as an experiment in interoperation, it is somewhat suspect since all
of the software was developed by a single team.

342 GENESERETH AN AGENT-BASED FRAMEWORK FOR INTEROPERAIHLlTY 343

PACT

Issues and Summary

munities. Powerful search control techniques are used to enhance normal mes-
sage-processing performance, and automatic generation of message routing pro-
grams and pairwise translators is used for cases requiring greater efficiency.

Even with these enhancements, these implementations consume more time

in the worst case than simpler processing techniques, like the pattern matching
method used in BMS. This is sometimes acceptable, especially when the alterna-
tive is no interoperation at all. However, in time-critical applications such as
machine control, the extra cost can be prohibitive.

Scalability is an important concern in the design of the federation architec-
ture. There are three important issues: consistent vocabulary, inference cost, and
knowledge base size. Interoperation in the federation architecture relies on the
assumption that all agents agree to a shared ontology. However in a large sys-
tem, multiple overlapping ontologies must be supported. Ideally, specialized on-
1Ologiescan be built using existing ontologies. The ontologies are related in a di-
rected graph, where each ontology can incorporate some or all of the terms and
definitions of its parent ontologies, while overriding those that it must define
differently.

The second scalability issue concerns inference costo As the number of agents
increases, the number of facts about agent capabilities, needs, and application-
specific facts increases. However, the performance of the system should not de-
grade because of irrelevant facts. Ontologies help address some of the complexi-
ty. AII requests are relative to an ontology, and the graph structure of the
ontologies partitions the knowledge into smaller relevant sets. In addition, the
facilita10r controls the inference process by selecting the cheapest agent to han-
die a request and by avoiding infinite loops. Additionally, it is possible to guar-
antee desirable performance properties by placing restrictions on the rules a fa-
cilitator may accept. For example, if all facts are ground atomics (as in
CORBA's IOL specification), then inference is reduced to database lookup, and
the cost is logarithmic in the number of facts. If the facts are stratified (i.e., no
recursive definitions), then it is possible to compute time bounds on inference. It
is important to note that inference is expensive only with complex rules, and it
is possible 10enforce a policy of accepting only simple rules.

The third scalability issue deals with managing the size of the knowledge
base. There are two aspects to this: application-specific facts, and meta-Ievel
specifications. Facilitators run continuously, and it is not possible 10put a bound
on the number of application-specific facts it may be told. The maintainer of
each facilitator can en force a policy for deciding what information to record.
For example, a facilitator may follow the policy of recording only ground a1Om-
ic facts, or it may record only facts in a given ontology. There may be a limit to
the number of facts that a facilitator records, and it may discard some facts
when a space limit is reached. Similarly, it is not possible to put a bound on the
total number of agents in the system. A system can have a network of facilita-
tors, with different agents connected to different facilitators. Each facilitator

Our second application of the technology deals with this experimental weak-
ness. PACT (the Palo Alto Collaborative Testbed) is a multi-institutional
testbed for research in the integration of engineering 1Ools.PACT differs from

Oesignworld in its emphasis on the integration of previously developed tools
and tools developed by multiple teams without the benefit of institutionally en-
forced coordination.

The system in its current form incorporates four previously existing systems
(i.e., Oesignworld, NVisage, NextCut, and DME) and includes several com-

mercial products (e.g., Mathematica). Overall, there are thirty processes on eigh-
teen different machines.

We have demonstrated the interoperation of the components of PACT by ap-
plying the system to the design of a particular electromechanical device, viz. an

electronically controlled robotic manipula1Or. The various parts of the manipula-
10r are modeled by the different systems participating in PACTo There is a simu-

lation of the manipulator system as a whole based on coordinated piecemeal sim-
ulations performed by the participating systems. There is an example of a design
change and effective communication of this change among the various systems.

Infomaster

Infomaster is a virtual information system that allows users to access a variety of
heterogeneous distributed information sources from multiple perspectives. Info-
master accesses information s10red in databases or knowledge bases using ACL,
and uses facilitators to decompose, route, and translate requests, and assemble,
route and translate responses.

The first information available through Infomaster concerns rental housing in
the San Francisco Bay area. Every morning, an agent extracts the latest classified
advertisements for rental housing from the World Wide Web sites of several

newspapers. These are then separated into individual advertisements, parsed
into a structured format, and loaded into a KIF knowledge base. This knowl-
edge base has advertised that it can handle queries for rental housing. Once users
have specified their query, they may determine how many rental advertisements
satisfy their requirements and further constrain query in an iterative f.1shion. In
the first day of availability for new Stanford students, Infomaster handled 3,000

queries. Support for additional sources and kinds of information are planned.

In order to provide adequate power and scalability for agent-based capabilities,
current implementations of facilitators take advantage of automated reasoning
technology developed by the artificial intelligence and database research com-

- T
344 GENESERETH AN ACENT-BASED FRAMEWORK FOR INTEROPERABILlTY 345

must be capable of transmitting a request to any agent that can handle it, inde-
pendent of its location. To minimize the number of capability and interest
specification facts, each facilitator summarizes the capabilities and interests of
its directly connected agents, and passes on this summary to its neighboring fa-
cilitators. The summary reduces the number of facts and may involve general-
ization. For example, if one directly-connected agent can answer questions
about the dealers of Apple computers and another directly-connected agent can
answer questions about IBM dealers, then the facilitator may summarize the
answers by informing its neighboring facilitators that it can answer questions
about the dealers of all personal computers. There is a space-time tradeoff here:
fewer less-precise specifications vs. a larger number of more precise
specifications. It is acceptable for an agent to handle a request by indicating that
it cannot answer it, for example if its specifications are too general.

In my treatment so far, I have assumed that there is sufficient common inter-
est among the agents that they will frequently volunteer to help each other and
receive no direct reward for their labor. As the Internet becomes increasingly
commercialized, I envision a world where agents act on behalf of their creators
to make a profit. Agents will seek payments for services provided and may ne-
gotiate with each other to maximize their expected utility, which might be mea-
sured in a form of eIectronic currency. These problems mark the intersection of
economics and distributed artificial intelligence (DAI). Several researchers in
DAI are using tools developed in economics and game theory to evaluate multi-
agent interactions. I am currently examining extensions to the federation archi-
tecture to incorporate some of these capabilities.

I have ignored several other key problems in my presentation, such as securi-
ty, crash recovery, inconsistencies in program specifications, and so forth. AI-
though I have partial solutions to these problems, further work is needed.

There are many applications of knowledge-sharing technology in ofAine
software integration that I have not discussed, such as in software documenta-
tion, retrieval of components from software libraries based on this documenta-
tion, and software verification.

In this chapter, I have taken a brief look at how knowledge-sharing technolo-
gy can be used to promote software interoperation. My long-range vision is one
in which any system (software or hardware) can interoperate with any other sys-
tem, without the intervention of human users or their programmers. Although
many problems remain to be solved, 1 believe that the introduction of knowl-
edge-sharing technology will be an important step toward achieving this vision.

ject, most notably Mark Cutkosky, Richard Fikes, Rich Fritzson, Mark Gisi,
Tom Gruber, Jon Gustafson, Pierre Huyn, Marta Kosarchyn, Reed Letsinger,
Don MacKay, Ofer Matan, Bill Mark, Greg Olsen, Vishal Sikka, Marty Tenen-
baum, and Jay Weber. This chapter is as much theirs as it is mine. Support for
the authors' work was provided by Hewlett-Packard under grant number
I72S338 and by the Office of Naval Research under contract number NOOOI4-
90-J-1533.

Bibliography

Cutkosky, M.; Englemore, R.; Fikes, R.; Gruber, T. R.; Genesereth, M.; Mark, W.;
Tenenbaum, l. M.; and Weber, l. 1993. PACT:An Experiment in Integrating Concurrent

Engineering Systems. IEEE Computa 26(1): 28-37.

Finin, T.; Weber, l.; Wiederhold, G.; Genesereth, M.; Fritzson, R.; McGuire, l.; McKay,
D.; Shapiro, S.; Pelavin, R.; and Beck, e. 1992. Specification ofthe K{JMLAgent Commu-
nication Language (Official Oocument of the DARPA Knowledge Sharing Initiative's
External Interfaces Working Group), Technical Report 92-04, Enterprise Integration
Technologies, Ine., Menlo Park, California.

Genesereth, M. R. 1991a. An Agent-Based Approach to Software Interoperation, Logic-
91-6, Oepartment ofComputer Science, Stanford University.

Genesereth, M. R. 1991b. DESI{;NWORLD.In Proceedings of the IEEE Conference on
Robotics and Automation, 2-785-2-788. Washington, O.e.: IEEE Computer Society.

Genesereth, M. R., and Fikes, R. 1992. Knowledge Interchange Format Version 3.0 Ref-
erence Manual, Logic Group Report, Logic-92-I, Oepartment of Computer Science,
Stanford University.

Gruber, T. R. 1993. A Translation Approach to Portable Ontology Specification. KnotIJl-

edge Acquisition 5(2): 199-220.

Gruber, T. R. 1992. ONTOLlNCUA:A Mechanism to Support Portable Ontologies, Ver-
sion 3.0, Stanford Knowledge Systems Laboratory Technical Report, KSL 91-66, De-

partment ofComputer Science, Stanford University.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; and Swartout, W. R.
1991. Enabling Technology for Knowledge Sharing. Al Magazine 12(3):36-56.

Acknowledgments

Many people contributed to the ideas presented in this chapter. The most
significant contributions carne from participants in the ARPA Knowledge Shar-
ing Initiative, the Designworld Project, the PACT Project, and the ABSE Pro-

	3.pdf
	4.pdf

