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Abstract—This paper presents a system that automatically la-
bels ToBI events. The detection (binary classification) of prosodic
events has received significantly more attention from researchers
than its classification because of the intrinsic difficulty of clas-
sification. We focus on the classification problem, identifying 8
types of pitch accent tones, 9 types of boundary tones and 5 types
of break indices. The complex multi-class classification problem
is divided into several simpler problems, by means of pairwise
coupling. We propose to combine two-class classifiers to achieve
the multi-class classification because two-class problems provide
high accuracy results. Furthermore, complementarity between
Artificial Neural Networks and Decision Trees classifiers has been
exploited to improve the final system, combining their outputs
using a fusion method. This proposal, together with the adequate
feature extraction that includes the use of features such as the Tilt
and Bézier parameters, allows us to achieve a total classification
accuracy of 70.8% for pitch accents, 84.2% for boundary tones
and 74.6% for break indices, on the Boston University Radio
News Corpus. The analysis of the misclassified samples shows
that the types of mistakes that the system makes do not differ
significantly from the common confusions that are observed in
manual ToBI inter-transcriber tests.

Index Terms—ToBI labeling, prosodic event classification, pair-
wise classifiers, classifiers fusion, spoken language processing

I. INTRODUCTION

The tones and break indices (ToBI) is a system for labeling
prosodic events that are perceived in spoken utterances [1],
[2]. This standard distinguishes three types of prosodic events:
Pitch Accents, Boundary Tones and Break Indices. Pitch
Accents refer to the prosodic function of prominence, and
they are set with a combination of two basic tones: an H
(high tone) and an L (low tone). Boundary Tones and Break
Indices refer to the prosodic function of phrasing. Boundary
Tones use the same two basic symbols, H and L, to label
the intonational boundaries. Break Indices mark the degree
of separation of the words. The detection of these prosodic
events has received significantly more research attention than
its classification [3] because of the greater difficulty of the
latter. This paper focuses on the labeling of ToBI events, for
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the problem of detecting and classifying them, which means
distinguishing 8 types of Pitch Accents, 9 types of Boundary
Tones and 5 types of Break Indices, which are defined in the
standard.

The labeling of prosodic events can be very useful for
practical applications, for example, the detection of speech
acts, the disambiguation of words and the improvement of
the performance of speech recognition systems and text-to-
speech systems [4]. Increasing the granularity of the presence
or absence of ToBI event decisions can be important because
the ToBI symbol sequences can be associated with a meaning
or with a prosodic function that is projected in the acoustic
characteristics of the utterance. Thus, for example, the Pitch
Accent L+H* is associated with a contrastive focus at the
time that L* refers to yes-no questions [5]. The extraction of
this information can be useful for the understanding of the
message. Furthermore, the modeling of the relationship be-
tween such sequences of tones and the corresponding prosodic
shape would be very useful for increasing the naturalness of
text-to-speech applications [6]. Another more straightforward
application is to increase the speed of performing manual ToBI
tagging of corpora, which offers an automatic label proposal
for a manual transcriber to revise. The manual prosodic
labeling is estimated to take 100-200 times real time [7].

Until the time that the detection of prosodic events is
addressed with efficiency and becomes part of the state-of-the-
art (Section I-A reviews the state of the art, with accuracy rates
close to 90%), the classification problem will be considered
to be a difficult task that is simplified by grouping symbols
[3] or reducing the number of speakers [6], [8]. In [9], we
discuss three of the main factors that make this problem
difficult: the lack of a definitive parameterization technique of
the intonation contours, the high inter ToBI symbol similarity
and the imbalanced nature of the training labeling corpora. In
this paper, we propose a methodology for the classification of
prosodic events that is independent of the input features, taking
into account the imbalanced nature of the prosodic corpora and
facing inter-class similarity with specialized classifiers.

The use of a set of appropriate input features is the key to
obtaining good classification results. In prosodic labeling, the
F0, energy and duration play an important role for marking
both the emphatic and phrasing prosodic functions [10]. In
[4], a set of statistical variables that measure the variation of
F0, energy and duration in the syllables are computed for the
detection of the ToBI events (see section II for a review of
such input features). For classifying events, it is important to
measure the temporal evolution of the intonational contours
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because there is a correspondence between the ToBI symbols
and the shape of the contour (e.g., the H% pattern is an
ascending contour and the L% pattern is descending). The
shape of the F0 contour has been used in other state-of-the-
art approaches: Tilt parameters [11] are used in [8], quantized
contours are used in [3] and stylized contours are used in
[9]. This paper shows that the inclusion of additional specific
input features that model the temporal evolution of the F0
contour (Tilt and Bézier parameters) helps to better distinguish
between different types of pitch accents and boundary tones.

The state-of-the-art offers very few ToBI tagged corpora.
The Boston University Radio News Corpus (BURNC) [12] is
the main reference. This corpus is clearly imbalanced with re-
spect to what concerns the presence of different ToBI symbols
(for example, the H* class has more than ten times the number
of samples than the L* class). Furthermore, this imbalance
does not only depend on the corpus, since the differences in
relative frequency of labels depend on the language, as it is
well known. Although some data sampling techniques were
systematically analyzed in [13] to try to reduce this impact
in pitch accent type classification tasks, it is a fact that the
classification performance is negatively affected. On the other
hand, we showed in previous work that, while a decision tree
became specialized in the most populated classes, a multilayer
perceptron balanced the results of the classification of the
different classes better, independently of the size of the corpora
[9]. In this work, we configure a specific architecture that
fuses the results of different types of classifiers, improving
the performance on the overall classification task.

The manual ToBI labeling of corpora is commonly per-
formed by teams of evaluators who are trained to follow a
common guideline [5]. In spite of the rigorous quality controls
that are applied to this process, inconsistencies appear. Even
the Boston University Radio News Corpus, for which inter-
transcriber agreement rates are higher than 90%, also reflects
this fact, even when including comments of the labelers
concerning their doubts about the judgments [12]. The reason
for this outcome is the high interclass similarity of some of
the symbols. Reference [14] reports on the similarity of the
ToBI symbols when taken pairwise. Their conclusions are
supported by empirical inter-transcriber judgments and the
opinions of the labelers about the conceptual similarity of
every pair of symbols. The inter-pair similarity of the symbols
was the reason for the decision to merge symbols in some
of the studies on the classification of ToBI events, such as
[6], [3] or [8]. Our alternative hypothesis is that the use of
pairwise coupled classifiers can be efficient when tackling
interclass similarity, which we have empirically observed [9].
The distinction of classes in pairs is a relative easy task,
but the multi-class classification problem reduces the perfor-
mance dramatically. Because two-class problems have better
performance, we propose to combine two-class classifiers for
a multi-class classification. As a result, the error rate decreases
in comparison with other state-of-the-art works, and the most
often confused pairs of classes categorized by the classifier are
the same as the pairs for which manual transcribers previously
disagreed.

A. State of the art

Pioneering studies in this field of research date back to
the 1990s, with the contributions of Prof. Ostendorf et al. in
[18] and [6]. In [18], they present a strategy that combines
Decision Trees and Markov Models for detecting accents,
boundaries and breaks in the BURNC corpus. Decision trees
provide the probability of each class and Markov sequence
models provide the probability of the sequence of classes,
which is implemented with a Viterbi algorithm. In [6], they
predict ToBI labels from text with decision trees and Markov
sequence models that have been previously trained with the
samples of one of the speakers of the BURNC corpus. The
duration, energy and F0 features are used to train the automatic
prediction models in both cases. Some similar accent types
are grouped in the same class. The reduced set of symbols is
used to predict the F0 contours in [19] in the context of speech
synthesis. With the same reduced set, [17] slightly improves
the results by including bagging and boosting techniques in
the decision tree learning strategy. Tables I, II and III report
on the classification rates that are obtained and on the ToBI
symbols that are used.

More recently, the works of Prof. Narayanan et al. focused
on the issue again. First, the maximum entropy model was
used with acoustic (F0, energy and duration), lexical and
syntactic features. The proposed framework labels the pitch
accent, the boundary tone and the prosodic break index at
the word level [15]. Second, a system that labels the pitch
accent and the boundary tone at the syllable level is reported
[4]. A different model is used for the acoustic features,
the lexical features and the syntactic features: the acoustic
model combines a classifier (Linear Discriminant, Gaussian
Mixture Models or Artificial Neural Networks) with n-grams;
the lexical and syntactic features are modeled using n-grams.
Then, the three models are combined. Both of the studies
focused on the binary detection problem. More experiments
were performed, but they were performed on fine-grained pitch
accents and boundary tone labeling, using the Tilt parameters
with n-grams [8] and Hidden Markov models [20]. They also
used the BURNC corpus and reduced the number of ToBI
labels by grouping them. Tables I, II and III report on the
results of these studies.

The studies that focus exclusively on the detection of the
ToBI tones and breaks problem are not taken into account in
this review. An excellent revision about this concern can be
found in [4]. In 2009, Rosenberg defended a doctoral thesis
on automatic detection and classification of prosodic events in
the laboratory of Prof. Hirschberg [13], whose results evolved
into the AuToBI freeware tool for the ToBI labeling of spoken
corpora [21]. They quantify the F0 contours and model the
context where the ToBI symbol is supposed to be produced
[3]. A simplified version of ToBI is also used, and the results
that are reported in [3] are summarized in Tables I and II.
In [22], the presence of a pitch accent is predicted from the
text, and in [7], an automatic proposal of prosodic events is
generated, as a method for speeding up the manual labeling
of a given corpus.

The interdisciplinary group on prosodic studies of the
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TABLE I
ACCURACY OF THE PITCH ACCENT TONE CLASSIFICATION FOR DIFFERENT MAPPINGS OF THE TOBI LABELS: A COMPARISON BETWEEN THE STATE OF

THE ART AND OUR APPROACH. BOSTON UNIVERSITY RADIO NEWS CORPUS HAS BEEN USED IN ALL CASES.

Detection Classification
H* Accent Accent H* H* High High High

L+H* Accent Accent L+H* L+H* High High High
!H* Accent Accent H* !H* Downstepped Downstepped Downstepped

H+!H* Accent Accent H+!H* ignored High High High
Mapping L+!H* Accent Accent L+H* ignored Downstepped Downstepped Downstepped

L* Accent Accent L* L* Low Low Low
L*+H Accent Accent L*+H ignored Low Low Low

no label none none ignored ignored Unaccented Unaccented Unaccented
#Classes 2 2 5 4 4 4 4
Reference [15] [4] [3] [8] [6] [16] [17]

Level word syllable word word syllable syllable syllable
State of #Words/Syllables 24,955 44,390 29,578 28,300 14,599 14,599 14,377
the Art #Speakers 4 6 6 6 1 1 1

Accuracy 86.0% 86.75% 63.99% 56.4% 80.17% 81.3% 87.17%
Level word word word word

This #Words 27,767 27,767 27,767 27,767
Work #Speakers 6 6 6 6

Accuracy 86.7% 69.1% 63.9% 80.0%

TABLE II
ACCURACY OF THE BOUNDARY TONE CLASSIFICATION FOR DIFFERENT MAPPINGS OF THE TOBI LABELS: A COMPARISON BETWEEN THE STATE OF THE

ART AND OUR APPROACH. BOSTON UNIVERSITY RADIO NEWS CORPUS HAS BEEN USED IN ALL CASES.

Detection Classification
L-L% btone btone L-L% L-L% L-L%
!H-L% btone btone !H-L% ignored ignored
H-L% btone btone H-L% ignored H-L%
L-H% btone btone L-H% L-H% L-H%

Mapping H-H% btone btone H-H% ignored ignored
L- btone btone ignored ignored ignored
H- btone btone ignored ignored ignored
!H- btone btone ignored ignored ignored

no label none none ignored ignored ignored
#Classes 2 2 5 2 3
Reference [15] [4] [3] [8] [6]

Level word syllable word word syllable
State of #Words/Syllables 24,955 44,390 29,578 29,800 14,599
the Art #Speakers 4 6 6 6 1

Accuracy 93.1% 91.61% 72.91% 67.7% 66.9%
Level word word word word

This #Words 29,902 29,902 29,902 29,902
Work #Speakers 6 6 6 6

Accuracy 89.0% 80.1% 83.1% 80.6%

University of Illinois at Urbana-Champaign has shown the
efficiency of neural networks and GMMs [23]–[25] on the
recognition of prosodic events. In [26], the authors apply
Bayesian networks to simultaneously recognize the words and
the prosodic tags. This combined strategy provides lower error
rates than a standard speech recognizer.

Concerning other languages, there are studies for Japanese
[27] and Korean [28] to predict J-ToBI and K-ToBI labels,
respectively. Both systems were developed in the framework
of text-to-speech applications, and they solve the prediction of
the ToBI labels from the text and from the acoustic signal.

From this analysis, we conclude that more work has been
performed in the field of ToBI event detection than in clas-
sification. Some of the referenced authors explicitly mention
the difficulty in the classification task, and they focus on the

easier task of detection. In this work, we present an alternative
strategy for the prosodic event classification task, as described
in the following subsection.

B. Experimental strategy and overview

The Boston University Radio News Corpus (BURNC) [12]
is used in this paper. The quality of this corpus has been
already assessed in several studies about prosody modeling
and, in particular, in the ToBI event detection/classification
problem. The use of a common corpus with respect to other
state-of-the-art approaches is a must for contrasting results.
Section II is devoted to describing the peculiarities of the
BURNC corpus.

Different parameterization techniques will be combined. We
extended the basic set of raw prosodic features to sophisti-
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TABLE III
ACCURACY OF THE BREAK INDEX CLASSIFICATION FOR DIFFERENT

MAPPINGS OF THE TOBI LABELS: A COMPARISON BETWEEN THE STATE
OF THE ART AND OUR APPROACH. BOSTON UNIVERSITY RADIO NEWS

CORPUS HAS BEEN USED IN ALL CASES.

Detection Classification
0 NB 0

1,1-,1p NB 1
Mapping 2,2-,2p NB 2

3,3.,3p B 3
4,4- B 4

#Classes 2 5
Reference [15] [18]

Level word word
State of #Words 24,955 8,568
the Art #Speakers 4 1

Accuracy 84.0% 70.4%
Level word word

This #Words 28,723 28,723
Work #Speakers 6 6

Accuracy 88.1% 74.6%

cated approximations such as the Bézier parameters (already
presented in [9]). We further extended the features, with the
inclusion of Tilt parameters [11], as detailed in Subsection
II-A.

All of the BURNC speakers were processed. This decision
implies the use of normalization techniques that will be
explained in Subsection II-B. The techniques used to cope
with the imbalanced input problem are also explained in this
section.

Some of the classes are easier to identify than others,
as shown in previous work [9]. Furthermore, not all of the
classifiers have the same behavior when they attempt to
discriminate different classes and, in some cases, their outputs
are complementary. In this paper, we take advantage of these
arguments to defend an alternative classification strategy that
is presented in Section III. Subsection III-A describes how to
divide the 1 to n classification task into a set of subtasks in
which the classification is binary. The combination of binary
decisions is defended as a practical solution for improving
classification results. The classification of prosodic events
must account for the context in which the events are located.
In this paper, we analyze the features of the adjacent words in
the classification of the tones of a given word, and we use the
Viterbi algorithm to improve the classification according to n-
gram models that were previously trained (Subsection III-B).
Subsection III-C shows the different fusion methods that were
used to combine the outputs of the classifiers. Subsection III-D
presents the basic classifiers to be used.

The results presented in Section IV will analyze the im-
provements in the classification rates that were obtained by the
introduction of each of the different parts of the labeling strat-
egy. Aside from the high accuracy of results, the confusions of
the classifiers are contrasted with the common confusions that
were observed in inter-transcriber tests. Finally, the conditions
of other state-of-the-art studies are repeated to obtain the
results that are displayed in Tables I, II and III. These results
are discussed in Subsection IV-E.

TABLE IV
THE NUMBER OF TOBI PROSODIC EVENTS OF THE BOSTON UNIVERSITY

RADIO NEWS CORPUS USED IN EXPERIMENTS.

Pitch Accents
H* 7,587
L+H* 2,383
!H* 2,144
H+!H* 586
L+!H* 638
L* 517
L*+H 44
none 13,868

Boundary Tones
L-L% 3,240
!H-L% 20
H-L% 187
L-H% 2,203
H-H% 36
L- 896
H- 955
!H- 821
none 21,544

Break Indices
0 724
1,1-,1p 17,475
2,2-,2p 2,384
3,3-,3p 2,628
4,4- 5,512

II. PROCESSING OF THE BOSTON RADIO NEWS CORPUS

The Boston University Radio News Corpus [12] includes
labels that separate phonemes, syllables and words. Accents
are marked with a ToBI label and a position. Table IV shows
the Accent Tones, Boundary Tones and Break Indices that
were considered in this paper. Other symbols such as *, *?,
X*?, %?, X%?, -? and -X? were ignored. Other scarce tones,
such as L*+!H, have also been discarded.

Inspired by previous studies [4], [18], we aligned the accent
tones with respect to the prominent syllable and to the word
that contains it (words with more than one label are discarded
in this work). All of the experiments were performed by using
the word as the reference unit. This decision assumes that the
temporal evolution describing the different tones can overflow
the syllable duration; this strategy is consistent with other
studies that are state of the art.

All of the utterances in the corpus with ToBI labels from
all of the speakers (f1a, f2b, f3a, m1b, m2b and m3b)
were used. The fact that different speakers can have different
pitch and energy registers justifies the use of normalization
techniques, described in Section II-B.

Features that were similar to the features that were used in
other experiments reported in the bibliography were used [4]:
• Frequency features: within-word F0 range (f0_range),

difference between maximum and average within-word
F0 (f0_maxavg_diff ), difference between average and
minimum within-word F0 (f0_minavg_diff ), differ-
ence between within-word F0 average and utterance
average F0 (f0_avgutt_diff ).

• Energy features: within-word energy range (e_range),
difference between maximum and average within-word
energy (e_maxavg_diff ), difference between average
and minimum within-word energy (e_minavg_diff ).

• Maximum normalized vowel nucleus duration from all of
the vowels of the word (vowel_duration). Normalization
is performed for each vowel type.

• Pause duration after a word (pause). Used only for
boundary tones and break indices.
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Fig. 1. Parameters of the RFC model used in the Tilt representation of an
F0 contour. More details can be found in [30].

• Pseudo-grammatical information, part of speech (POS).
We used the POS tags that come with the BURNC
corpus, which were automatically obtained and were
hand-corrected. The part-of-speech tags are the same as
the Penn Treebank [29]. Some classifiers cannot handle
qualitative features such as the POS feature; thus, quan-
tization is necessary and is described in Section III-D1.

We will refer to all of these features as raw parameters in
the remainder of this paper.

A. Parametric F0 contours

The raw parameters listed in the previous section have
been shown to be useful for finding contrast between dif-
ferent linguistic units, such as syllables or words [4], [15].
This inter-unit contrast permits us to identify the emphatic
function (related to the Pitch Accent) of a given unit or the
cohesion between units (related to the Boundary Tones or
Breaks). Nevertheless, these raw parameters appear to be
insufficient in ToBI tone classification tasks. The different
accents or boundaries contrast with each other in the temporal
evolution of the pitch contour along the unit of reference. The
accurate description of this temporal evolution requires a more
sophisticated representation. In this paper, we use two of these
representations: Tilt [11] and Bézier stylization [31].

Tilt is probably the most widely applied technique for
parameterizing the pitch contours. This technique has its origin
in the need to represent the relevant movements of the pitch
contours in text-to-speech applications [33]. Moreover, it is the
supporting technique of Festival1, probably the most popular
public domain text-to-speech system. The Tilt parameters are
obtained by a combination of RFC parameters, with a numer-
ical approximation of the prosodic events. Fig. 1 describes the
parameters that are linked to a syllable in which a relevant
prosodic event takes place, typically a Pitch Accent or a

1http://www.cstr.ed.ac.uk/projects/festival/
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Fig. 2. An example of the Bézier function fitting stylization (from [32]). A set
of quantitative parameters (p1, p2, p3, p4) represent the temporal evolution of
the F0 contour in a given intonation unit (e.g., stress group, word, and syllable)

Boundary Tone. In this work, we use the 5 Tilt parameters:
F0 height, position, amplitude, duration and tilt. Tilt has
been explicitly used in some of the studies that were presented
in the state-of-the-art section (Section I-A), such as [13] and
[8].

There exist alternatives to this representation; one of the
alternatives was defended by our group in [32]. It is based on
the approximation of the pitch contours with Bézier functions.
The minimum square fitting approximation technique is used
to represent the shape of the F0 contour along a given
reference unit (Fig. 2 illustrates the process). The control
points of the spline are the parameters that project the temporal
evolution of the pitch contour. In this work, we use 4 points
as Bézier parameters.

The Bézier approximation has similarities with other pro-
posals that have recently arisen, such as quantified contour
modeling [3]. Both of these proposals have the advantage of
allowing an increase in the number of parameters, in terms of
the required accuracy.

B. Normalization and oversampling

Despite the fact that the input features are relative magni-
tudes, in [34] we showed that there are significant differences
that affect the values of different speakers. For example,
the feature f0_minavg_diff , which appears to be the most
discriminative feature among the set of raw parameters for the
identification of the accent, has a mean and standard deviation
of 12.3 Hz and 13.8 Hz for the speaker m1b and 30.9 Hz
and 26.4 Hz for the speaker f2b. This situation also affects
the remaining speakers and the input features. Under these
conditions, a comparison of events that correspond to different
speakers is risky and could potentially lead to confusing
situations.

To minimize this effect, normalization techniques have to
be applied. Several classical alternatives (Z-Norm, Min-Max
and Euclidean 1-norm) were evaluated using neural network
classifiers with raw, Bézier and Tilt features without context.
Since Z-Norm normalization across the same speaker showed
the best results, it was used thereafter.

Table IV shows that the number of samples per class is
clearly imbalanced. This fact is not dependent on the corpus
but instead results from the nature of the phenomenon itself.
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An English speaker naturally uses some prosodic events more
frequently than others, which is very difficult to balance even
with the preparation of an artificial ad-hoc corpus.

In [9], the negative impact of imbalanced data on the final
result was shown, related to the fact that the classifiers tend to
specialize themselves in the recognition of the most populated
classes. In order to reduce this negative impact, several exper-
iments applying undersampling, oversampling and ensemble
sampling techniques to pitch accent type classification have
also been reported in [13].

The approaches that are proposed for addressing imbalanced
data can be divided into internal and external approaches, i.e.,
at the algorithmic or data level, respectively [35]. With the
first approach, new algorithms or modifications of existing
algorithms are proposed. In the second approach, the data sets
are re-sampled, over-sampling the minority class or under-
sampling the majority class. Both of these options can be
accomplished randomly or directed, where examples to be
generated or eliminated are respectively informed. We are
interested in general solutions; thus, only external solutions
have been evaluated. We performed several experiments and
decided to use oversampling because it provided the best
overall results for our classification system.

III. CLASSIFICATION PROCEDURE

As we already mentioned in the introduction, we showed
in previous work [9] that the multiclass classification problem
is a difficult task for a single classifier and that high accuracy
results can be obtained based on the automatic distinction
of the prosodic labels in pairs. Furthermore, different types
of classifiers appear to behave differently, depending on the
prosodic label that is to be identified. These are the main
arguments that lead us to propose the strategy of classification
that we formalize in this section. The next section shows its
efficiency.

A. Fusion of pairwise coupled classifiers

The pairwise coupled approach basically divides a given
multiclass classification problem into a number of binary
classification sub-problems, from which the results must be
combined to obtain the final classification result [36], [37].
According to this approach, let us refer by P̂ (l|x, λkl,m) to an
estimation of the probability P (y = l|x, y = l ∨m), where
l and m are two different prosodic labels; x is the input of the
classifier (in our case, the prosodic features described in the
previous section); y is the class label; and λkl,m is a pairwise
classifier of type k (in our case, a decision tree or a neural
network) that is trained to separate classes l and m.

From these estimators, we build P̂ (l|x, λk), which is ob-
tained with a classifier of type k by using the fusion operation:

P̂ (l|x, λk) =
⊗

l,m=1..C
l 6=m

P̂ (l|x, λkl,m) (1)

where C is the number of classes, or prosodic labels, and
⊗

is the fusion operator.

We step forward to fuse the results of K independent
classifiers so that the final estimation of P (l|x) would be
P̂ (l|x), which is computed as follows:

P̂ (l|x) =
⊗

k=1..K

P̂ (l|x, λk) (2)

The system proposed can be seen graphically in Fig. 3.
There are as many classifiers as there are combinations of
pairs of C classes: C·(C−1)

2 . Each classifier, λkl,m, provides the
confidence scores P̂ (l|x, λkl,m) and P̂ (m|x, λkl,m), which can
be used as an estimation of the posterior probabilities (in the
rest of the paper, we will refer to them as posterior probability
estimates). The results of the classifiers are fused, as described
in (1) and (2). Finally, the classification rule selects the label
l∗ so that the following occurs:

l∗ = argmax
l
P̂ (l|x) (3)

As an alternative to this classification rule, we introduce a
language model dependence that will be explained in the next
subsection. Section III-C details the fusion operators

⊗
, and

Section III-D presents each of the K classifiers that are used
in this work.

B. Recognition of label sequences

The ToBI standard of intonation [1] describes intonational
contours as a sequence of tones. As a consequence, the
labeling of a given word is highly dependent on the context
in which the word has been uttered. This fact implies that the
acoustic prosodic features that are observed in the surrounding
words must be considered in addition to the labels that are
assigned to the words of the context.

Concerning the impact of the acoustic realization of the
context, the experiments that are reported in [3], [13], [16]
showed an improvement in the results when the context infor-
mation was included. To incorporate this contextual effect in
our work, every input x must include prosodic features that are
extracted from the corresponding word and from the context.
Thus, each utterance of the corpus is composed of a sequence
of words w1, w2, . . . , wN from which we obtain a sequence of
feature vectors x1, x2, . . . , xN . Each feature vector xi contains
information that is extracted from the corresponding word wi

(the raw parameters and also the Tilt and Bézier parameters,
as described in section II-A) and from adjacent words. Feature
selection methods [38] are applied to reduce the cardinality of
the vector xi, as reported in section IV-B.

Concerning the impact of the sequence of labels that are
assigned to the words in the context, experiments reported
in [4], [18], [39] showed an improvement in results when a
model of the sequence of labels was used. Given the sequence
of feature vectors X = {x1, x2, ..., xN}, the objective is to
find the best sequence of prosodic labels L∗ = {l1, l2, ..., lN},
which makes a maximum of the probability P (L|X):

L∗ = argmax
L

P (L|X) = argmax
L

P (L)P (X|L) (4)
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Fig. 3. Diagram of the classification procedure that is used in experiments.

The probability P (L) is the probability of the sequence of
labels L. This probability is estimated, using the probabilistic
language model, as the product of the probabilities of each
label, assuming that the occurrence of a label is determined
by the preceding labels:

P (L) = P (l1, l2, ..., lN )

= P (l1)P (l2|l1)...P (lN |l1, l2, ..., lN−1)

=

N∏
i=1

P (li|l1, l2, ..., li−1) (5)

where P (li|l1, l2, ..., li−1) is the probability of li, given that
sequence l1, l2, ..., li−1 appeared previously. Using a trigram
language model, the labels depend only on two previous labels;
thus, (5) becomes the following:

P (L) = P (l1)P (l2|l1)
N∏
i=3

P (li|li−2, li−1) (6)

The probability P (X|L) in (4) is the probability that the
sequence of prosodic labels L produces an observation X and
is calculated by the classifiers that are described in the previous
section. From (2), the classifiers calculate the estimations
P̂ (li|xi) for all of the possible prosodic labels that could be
assigned to the word wi.

Finally, (4) can be further developed, as described in [18]
and [4]:

L∗ = argmax
L

P (x1|l1)P (l1)P (x2|l2)P (l2|l1)

·
N∏
i=3

P (xi|li)P (li|li−2, li−1)

= argmax
L

α(l1|x1)P (l1)α(l2|x2)P (l2|l1)

·
N∏
i=3

α(li|xi)P (li|li−2, li−1) (7)

where

α(li|xi) =
P (xi|li)
P (xi)

=
P (li|xi)
P (li)

(8)

in our case, we use the estimations from the classifiers, as
follows:

α(li|xi) =
P̂ (li|xi)
P (li)

(9)

The problem of finding the best sequence of prosodic labels
is similar to the speech recognition problem. To search for the
most likely prosodic label sequence, we built a graph that
represents the state space [40]. Then, we applied the Viterbi
algorithm [41] to obtain the best sequence of labels L∗ =
{l1, l2, ..., lN}:

Initialization
V1(i) = πibi(x1) 1 ≤ i ≤M
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B1(i) = 0

Recursion
Vt(j) = max1≤i≤M [Vt−1(i)aij ]bj(xt) 2 ≤ t ≤ N

1 ≤ j ≤M
Bt(j) = argmax1≤i≤M [Vt−1(i)aij ] 2 ≤ t ≤ N

1 ≤ j ≤M
Termination
s∗N = argmax1≤i≤M [BN (i)]

Backtracking
s∗t = Bt+1(s

∗
t+1) t = N − 1, N − 2, . . . , 1

where πi is the initial state probability for state i, and aij is the
transition probability from state i to state j. Both probabilities
are obtained from the language model. The probability bi(x)
is the probability that feature vector x occurs in state i and
is calculated using the classifiers that are described in the
previous section. M is the number of states. If C is the number
of all possible values for a prosodic label li, then the state
space has M = C2 states when using a trigram language
model. The best sequence of labels L∗ = {l1, l2, ..., lN} is
obtained from the sequence of states S∗ = {s1, s2, ..., sN}.

The SRILM toolkit was used to build trigram prosodic
language models [42], with Katz backoff for smoothing. The
training data was used to build these models.

C. Score Fusion

The general problem that is approached here is the so-called
post-classifier fusion problem, in which the information is
combined after the outputs of the classifiers have been obtained
[43]. This integration of information can be divided into the
following categories:

1) Fusion at the measurement level, using classifiers (for
example, Neural Networks, SVM or Decision Trees)
or using a combination approach (where the individual
scores are combined by means of the sum or the product
operation, to obtain a final score).

2) Fusion at the rank level, if the output of each matcher
is a subset of the possible matches that are sorted in
decreasing order of confidence.

3) Fusion at the abstract or decision level, using, for
example, the majority voting technique or the AND or
OR rules.

Here, the evidence (output) that is provided by each classi-
fier is the information to be fused, with operator

⊗
in (1) and

(2). Then, the second and third approaches from the previous
list cannot be applied. From the options of the first category,
the use of classifiers was discarded to simplify this stage. Then,
we focused on the combination approach.

Several fusion methods [43] were tested in the preliminary
experiments, to compare their performances. The combination
techniques were evaluated as follows:
• Minimum value: P̂ (l|x) = mink{P̂ (l|x, λk)}.

• Maximum value: P̂ (l|x) = maxk{P̂ (l|x, λk)}.

• Product: P̂ (l|x) =
∏K

k=1 P̂ (l|x, λk) .

• Sum: P̂ (l|x) =
∑K

k=1 P̂ (l|x, λk).

• Sum using extreme values: P̂ (l|x) = mink{P̂ (l|x, λk)}+
maxk{P̂ (l|x, λk)}, which showed good performance in
a previous study [44].

• Weighted sum, which can include class-independent
weighting P̂ (l|x) =

∑K
k=1 ck × P̂ (l|x, λk) and class-

dependent weighting P̂ (l|x) =
∑K

k=1 bkl × P̂ (l|x, λk).
There are several approaches to obtaining the coefficients
[43], [45]. Here, the fusion/calibration toolkit FoCal
multi-class by Niko Brummer2 has been used to obtain
the coefficients (class-dependent). This toolkit includes
discriminative logistic regression as well as generative
Gaussian back ends, with PPCA, factor-analysis and
HLDA covariance regularization [46].

The results that were achieved in preliminary experiments
showed that the performance of the product of probabilities
was similar to or only slightly worse than the best results that
were obtained with the other fusion methods (usually achieved
with the Sum). These results, together with the probabilistic
interpretation of the product, which allows the application
of Viterbi, was the reason for choosing the product of the
probabilities as the fusion method.

D. The classifiers

We use two different types of classifiers in this work:
decision trees (DT) and neural networks. Decision trees have
been broadly used in the representation of the correspondence
between the shape and the function of intonation because
of their capability to combine qualitative and quantitative
variables in a common framework. Specifically, for predicting
ToBI accents, decision trees were used in the pioneering works
of Ostendorf, such as in [6], [18]. Neural networks have also
been used with this aim. In [47], an example is provided for
the application of neural networks to predicting intonation in
text-to-speech applications, with an extensive review of the
use of neural networks in modeling intonation.

Of course, many other classification techniques can be found
in the state of the art [48], but our intention was not to be
exhaustive in the use of different types of classifiers. The
reason for selecting these two types of classifiers is that,
in previous works [9], we observed that classifiers behave
differently on the discrimination of prosodic labels. Indeed,
the decision tree seemed to specialize in the most populated
classes, while the neural network balanced better the accuracy
of the output for all of the classes (this result is observed again
in this paper, in Section IV-A). The fusion of the scores of both
of the classifiers improves the result using the fusion strategy
that is shown in (2); therefore, P̂ (l|x, λ1l ) are the estimations
that are obtained using the neural network, and P̂ (l|x, λ2l ) are
the estimations that are obtained using the decision tree. Next,
we present the implementation details of both of the classifiers.

1) The Multilayer Perceptron: A multilayer perceptron
(MLP) is used, which is trained by means of the standard Error
Backpropagation learning algorithm. Non-linear sigmoid units

2http://sites.google.com/site/nikobrummer/focalmulticlass
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TABLE V
ACCURACY OF THE PITCH ACCENT TONE CLASSIFICATION USING DECISION TREES AND RAW, BÉZIER AND TILT FEATURES. THE TABLE ON THE LEFT
SHOWS THE ACCURACY USING A SINGLE DECISION TREE. THE TABLE ON THE RIGHT SHOWS THE ACCURACY OF THE PAIRWISE CLASSIFIERS, WHERE

POSITION l,m OF THE TABLE REPRESENTS THE TOTAL SUCCESS RATE OF THE CLASSIFIER λ2l,m .

Decision Tree

H* 50.1%
L+H* 27.8%

!H* 20.8%
H+!H* 11.8%
L+!H* 8.0%

L* 17.4%
L*+H 0.0%
none 79.6%

Pairwise classifiers
H* L+H* !H* H+!H* L+!H* L* L*+H none

H*
L+H* 67.4%
!H* 71.2% 69.8%
H+!H* 89.0% 83.2% 74.0%
L+!H* 85.5% 69.6% 69.8% 75.4%
L* 92.9% 89.1% 83.1% 67.7% 83.3%
L*+H 98.7% 96.3% 96.2% 89.8% 90.5% 89.8%
none 84.9% 92.3% 88.6% 93.3% 95.7% 94.2% 99.3%

are used in the hidden and output layers because they showed
better performance than tanh()̇ units in our experiments.
Several network configurations were tested, to define the final
MLP configuration:
• Single hidden layer and a total of 100 training epochs.
• Following results in Gori [49], more hidden units than

inputs were used, to achieve the goal that the separation
surfaces between classes in the pattern space can be
closed.

• As many units as classes are used in the output layer:
one per each class to classify.

• To train the MLP, unsaturated desired outputs [50] were
tested. The chosen outputs, however, were 1.0 for the
output that corresponded to the training vector class and
0.0 for the remainder because a better performance was
achieved.

The MLP cannot address non-numerical inputs; in those
cases, the POS feature must be numerically encoded. The
following alternatives were tested:
• POS Quantization (PQ). The [0, 1] interval3 is divided

into p parts, with p the number of POS feature values,
for which each of these POS values is assigned the lower
numerical value of each of the p subintervals.

• POS Codification (PC). Each of the POS feature values
is codified in binary, using b bits (p ≤ 2b).

• Input per POS (IP). An input is assigned to each POS
value. Then, each POS feature is replaced by p new
features, which have values that are 0 except for the value
that is assigned to the corresponding POS value, which
is 1.

The best results were obtained with the PC technique; thus,
we transformed the POS tags into quantitative characteristics
by using the codification of the 33 values, using 6 bits.

In [51], it was demonstrated that, given a discriminative
neural network that was trained to distinguish between n
classes (each output is assigned to one class, O(l, x)), no
matter what the details of the structure of the neural network
are, the global optimum is obtained if the outputs of the neural
network are exactly the a posteriori probability P (l|x), with x
the input vector. In practice, it is impossible to know whether

3The MLP inputs must be in the range [0, 1] for a better network
performance.

and how closely this optimum can be obtained because this
task depends on the structure of the neural network and the
number of training examples. In general, the neural network
does not have a sufficient number of free parameters or degrees
of freedom to produce exactly the class probabilities. However,
the network has been trained so that the so-called stochastic
constraints on the network outputs have been imposed, which
implies that these network outputs can be used directly as class
probabilities [51]. Then, although usually the probabilities
provided by the neural network are different from the true class
probabilities, P̂ (l|x) = O(l, x) can be used as an estimation.
Going back to (1), the MLPs are used as binary classifiers,
so that P̂ (l|x, λ1l,m) = O(l, x, λ1l,m) and P̂ (m|x, λ1l,m) =
O(m,x, λ1l,m) for every pair of labels l,m = 1..C; l 6= m.

2) C4.5 Decision Tree: The Weka machine learning toolkit
[52] was used to build C4.5 decision trees (J48 in Weka).
Different values for the confidence threshold for pruning have
been tested, although the best results are obtained with the
default value (0.25). The minimum number of instances per
leaf is also set to the default value (2). This classifier was
trained with qualitative POS features and unnormalized data.
We decided to use unnormalized data because using decision
trees the results obtained with unnormalized data were similar
to those obtained with normalized data.

To obtain better class probability estimates, we turned off
pruning, turned off collapsing and calculated class proba-
bilities with the Laplace correction, as described in [53].
The decision trees will be trained as binary classifiers, to
obtain the estimation of the probabilities P̂ (l|x, λ2l,m) and
P̂ (m|x, λ2l,m); l,m = 1..C; l 6= m, to be fused, as explained
in the previous section.

IV. EXPERIMENTAL RESULTS

In all the experiments we applied 10-fold cross-validation.
The folds were created by randomly assigning paragraphs to
folds. We decided to use paragraphs to divide the data in
order to be able to recognize label sequences using the Viterbi
algorithm, as described in section III-B.

Table V contrasts the classification results of the multiclass
scenario compared to the results that were obtained by the
pairwise classifiers. The rates that were obtained by pairwise
classifiers were higher than 80% in more than 70% of the pairs
of classes. These rates decrease in the multiclass scenario,
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TABLE VI
THE ACCURACY OF THE PITCH ACCENT CLASSIFICATION USING DIFFERENT COMBINATIONS OF FEATURES AND DIFFERENT CLASSIFIERS (RAW: RAW

PARAMETERS; BEZ: BÉZIER PARAMETERS; TILT: TILT PARAMETERS).

Decision Tree Neural Network
raw raw+bez raw+tilt raw+bez+tilt raw raw+bez raw+tilt raw+bez+tilt

H* 46.0% 47.1% 49.3% 50.1% 23.1% 22.9% 22.8% 24.1%
L+H* 21.3% 24.2% 26.9% 27.8% 34.8% 42.1% 41.5% 45.2%

!H* 17.8% 20.5% 20.8% 20.8% 20.8% 25.5% 29.3% 31.3%
H+!H* 11.3% 12.8% 11.4% 11.8% 33.4% 42.2% 42.3% 43.5%
L+!H* 5.3% 7.7% 5.8% 8.0% 32.8% 31.5% 29.2% 34.8%

L* 10.1% 15.9% 12.2% 17.4% 49.9% 54.2% 47.4% 55.9%
L*+H 0.0% 2.3% 0.0% 0.0% 2.3% 2.3% 2.3% 2.3%
none 75.6% 76.9% 79.4% 79.6% 65.8% 64.9% 68.5% 67.9%
Total 54.1% 55.7% 57.7% 58.2% 46.1% 46.9% 48.7% 49.5%

TABLE VII
THE ACCURACY OF THE BOUNDARY TONE CLASSIFICATION USING DIFFERENT COMBINATIONS OF FEATURES AND DIFFERENT CLASSIFIERS (RAW: RAW

PARAMETERS; BEZ: BÉZIER PARAMETERS; TILT: TILT PARAMETERS).

Decision Tree Neural Network
raw raw+bez raw+tilt raw+bez+tilt raw raw+bez raw+tilt raw+bez+tilt

L-L% 63.9% 68.7% 65.3% 68.5% 63.4% 67.8% 66.2% 68.8%
!H-L% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.0%
H-L% 7.0% 7.0% 7.0% 8.6% 18.2% 24.6% 21.4% 21.4%
L-H% 34.1% 44.6% 36.2% 45.5% 30.0% 48.4% 33.5% 48.1%
H-H% 0.0% 5.6% 8.3% 8.3% 0.0% 27.8% 19.4% 11.1%

L- 11.9% 14.6% 13.8% 15.4% 45.3% 52.5% 46.5% 50.0%
H- 12.4% 15.1% 16.8% 19.2% 34.8% 48.2% 44.5% 52.6%

!H- 11.7% 11.2% 12.7% 12.1% 22.7% 35.1% 35.3% 40.6%
none 84.9% 85.3% 85.0% 85.4% 57.1% 55.3% 57.6% 58.1%
Total 71.7% 73.4% 72.3% 73.8% 53.4% 55.0% 55.1% 57.3%

TABLE VIII
THE ACCURACY OF THE BREAK INDEX CLASSIFICATION USING DIFFERENT COMBINATIONS OF FEATURES AND DIFFERENT CLASSIFIERS (RAW: RAW

PARAMETERS; BEZ: BÉZIER PARAMETERS; TILT: TILT PARAMETERS).

Decision Tree Neural Network
raw raw+bez raw+tilt raw+bez+tilt raw raw+bez raw+tilt raw+bez+tilt

0 8.3% 9.8% 9.5% 9.3% 57.2% 52.3% 53.0% 50.0%
1,1-,1p 72.2% 73.0% 73.5% 73.9% 29.5% 34.2% 34.4% 36.7%
2,2-,2p 16.3% 16.8% 18.9% 18.1% 32.9% 37.4% 36.6% 40.4%
3,3-,3p 21.8% 21.8% 24.0% 24.4% 54.4% 53.7% 52.6% 51.1%

4,4- 72.0% 72.9% 72.4% 72.5% 70.4% 72.3% 72.1% 73.4%
Total 61.3% 62.0% 62.6% 62.8% 40.6% 44.0% 44.0% 45.7%

where more than 75% of the classes have a rate that is
lower than 50%. This result demonstrates the potential of the
pairwise-coupled multiclass classification approach, and in this
section, we experimentally show this fact.

First, Section IV-A shows the impact of the use of the
Bézier and Tilt features for the recognition of different classes
and the different behavior of the two types of classifiers that
were used. Next, the importance of the context features is
presented in Section IV-B. Then, we present in section IV-C
the results of the pairwise fusion approach. Next, the errors
of the classification are analyzed in section IV-D. Finally, our
results are compared with the state-of-the-art in section IV-E.

A. Impact of different input features and classifiers

Tables VI, VII and VIII show the importance of using input
features that characterize properly the evolution of the F0
contour in the words. The use of Bézier features improves the
total classification rate in all of the cases. The most significant

increase occurs in breaks using neural networks, where the rate
goes from 40.6% to 44.0%. The use of Tilt parameters results
in accuracy rates that are comparable to Bézier parameters
for the boundaries and breaks. For the pitch accents, the
Tilt parameters appear to represent more accurately the F0
contours.

The classification rate is highly dependent on the class. In
the case of pitch accents and decision trees, it scores 50.1%
for the accent H* while accent L* receives a 17.4%. More
important is that the relative improvements that are obtained
with the inclusion of the Bézier or Tilt features are also
dependent on the class. Thus, the Bézier parameters appear to
be more efficient in discriminating the L* accent (from 10.1%
to 15.9%) at the time that the Tilt is better at identifying
other accents, such as L+H* (from 21.3% to 26.9%). The
last column of the tables combines both the Bézier and Tilt
parameters and shows an improvement of the results in all of
the cases.
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TABLE IX
THE TOTAL CLASSIFICATION ACCURACY OF THE PITCH ACCENTS

(ACCENT), THE BOUNDARY TONES (BTONE) AND THE BREAK INDICES
(BREAK) USING THE FEATURE SETS WITH DIFFERENT CONTEXT FEATURES

AND DIFFERENT CLASSIFIERS.

Decision Tree Neural Network
Context accent btone break accent btone break

without context 58.2% 73.8% 62.8% 49.5% 57.3% 45.7%
1 previous word 60.4% 73.0% 62.8% 55.0% 57.8% 47.2%
2 previous words 60.1% 73.3% 62.7% 59.7% 63.8% 53.0%
1 following word 58.5% 74.5% 64.8% 53.1% 65.3% 56.9%
2 following words 57.9% 74.5% 64.8% 54.5% 69.1% 58.7%

1 prev. w. & 1 foll. w. 59.6% 74.5% 64.7% 59.8% 69.0% 57.9%
2 prev. w. & 2 foll. w. 60.1% 74.3% 65.3% 60.9% 71.7% 59.6%

Another conclusion is that both of the classifiers behave
differently with respect to different classes. The decision tree
obtains a higher global accuracy than the neural network:
58.2% vs. 49.5% for accents; 73.8% vs. 57.3% for boundaries;
and 62.8% vs. 45.7% for breaks. The decision tree is more
efficient because it specializes in the most populated classes:
none and H* for accents; L-L% and none for boundary tones;
and 1 and 4 for breaks. For these classes, the accuracy of the
decision tree is greater than the accuracy that is obtained by
the neural network; however, for the remainder of the classes,
the neural networks obtain better results.

The different behaviors of the classifiers with respect to the
different input features and also with respect to the different
classes are the main evidence that justify the classifier fusion
strategy that is detailed in the previous section; the results will
be reported in Section IV-C.

B. Impact of the context

In this section, we analyze whether the use of context
information can improve the classification results. We per-
formed experiments to evaluate the impact of including context
features and tried different configurations, in which the infor-
mation from the two previous and two following words was
used.

The inclusion of all of the features from the previous and
following words will result in too many features. Thus, we
decided to select the features to model the context using
attribute selection with the Correlation-based Feature Selection
(CFS) algorithm [38]. This method evaluates the worth of a
subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy
between them. This approach helps to reduce the number of
features to be used for the context.

Without the use of context, for each word, we use the 18
features in the pitch accent classification, as well as the 19
features in the boundary tone and break index classification.
The CFS algorithm selected 8 features for the pitch accent
classification: f0_minavg_diff , f0_avgutt_diff , e_range,
POS and Tilt coefficients 2, 3, 4 and 5 (position, amplitude,
duration and tilt). The CFS algorithm selected 5 fea-
tures for the boundary tone and break index classification:
vowel_duration, pause, POS, Bézier coefficient 4 and Tilt
coefficient 4 (duration).

TABLE X
THE TOTAL CLASSIFICATION ACCURACY OF THE PITCH ACCENTS

(ACCENT), BOUNDARY TONES (BTONE) AND BREAK INDICES (BREAK)
FOR DIFFERENT EXPERIMENTS. (DT: DECISION TREE; NN: NEURAL

NETWORK)

CLASSIFIER VARIANT accent btone break
Baseline (chance) 49.9% 72.1% 60.8%
Multiclass, no context DT 58.2% 73.8% 62.8%

NN 49.5% 57.3% 45.7%
Multiclass DT 60.1% 74.3% 65.3%

NN 60.9% 71.7% 59.6%
Pairwise coupling DT 67.5% 81.5% 69.2%

NN 68.1% 82.1% 70.5%
DT&NN Fusion DT+NN 70.4% 83.9% 73.5%
Label Sequence (Viterbi) DT+NN 70.8% 84.2% 74.6%

Table IX shows the results of using 6 different config-
urations of context: 1 previous word; 2 previous words; 1
following word; 2 following words; 1 previous word and 1
following word; and 2 previous words and 2 following words.

The inclusion of context features significantly improves
the results. A similar improvement was also obtained in the
experiments reported in [16], [54]. The impact of the context
is different for each classifier: while the improvement in the
decision tree is slight (from 62.8% to 65.3% in the best
scenario), there is a large impact on the results of the neural
network classification (from 57.3% to 71.7% for the bound-
ary tones). The results also show that, for the pitch accent
classification, the previous context causes more improvement
than the following context. This result is consistent with the
experiment described in [16]. The opposite situation occurs for
the boundary tone and the break index classification, where the
following context outperforms the previous context.

The best configuration is using 2 previous words and 2
following words as context in all of the cases; thus, the
experiments in the following sections use this configuration.

C. Results of the final system
Table X shows the total classification accuracy that was

obtained from different experiments. First, the baseline results
are calculated based on chance: a recognizer that always as-
signs the majority class label (see Table IV for the distribution
of events in the corpus). Second, a multiclass classification
is performed, comparing the results that were obtained using
a Decision Tree and a Neural Network and evaluating the
impact of the context features. The following experiments
evaluated the performance of the classification procedure that
was proposed in this paper (see Fig. 3). First, we evaluated
the improvement that was obtained by pairwise coupling, as
described in (1). Next, we made the fusion of the Decision
Tree and the Neural Network classifiers, as detailed in (2).
Finally, we applied the Viterbi algorithm to find the best label
sequence, as reported in section III-B.

The final results show that the classification procedure that
is proposed in this paper outperforms the multiclass approach.
There is a significant improvement in accuracy, going from
49.5% to 70.8% for the Pitch Accents, from 57.3% to 84.2%
for the Boundary Tones and from 45.7% to 74.6% for the
Break Indices.
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The largest increase in the classification rate is obtained
when the fusion strategies are used, especially the pairwise
coupled classifiers (up to 7 percentage points in most cases).
The improvement that is obtained by the trigram is also
effective in discarding the odd sequences.

D. Errors of the classification

Table XI presents the most common errors of the final sys-
tem, compared with a manual labeling process, and contrasts
its consistency with respect to other subjective tests that are
found in the state of the art. The confusion between each pair
of labels is calculated as follows: for each pair of labels (l1, l2),
we count the number of times that the system assigns the l2
label when the l1 label was expected and the number of times
that the system assigns the l1 label when the l2 label was
expected. Then, we divide that count by the total number of
misclassified labels. A similar procedure is used for the manual
labeling.

The most confused pair of Pitch Accents is H* vs. L+H*,
which accounts for 27.26% of the total confusions. This pair
of symbols is also problematic for manual ToBI transcribers,
as has been observed in the inter-transcriber consistency test
(25.64% of the inter-pair confusion in [14], in accordance
with the high conceptual similarity index, 4/0, which is set
in the same reference). The next most confused pair is H*
vs. none, with 22.71% of the confusions. This situation is
problematic because it causes a wrong identification of an
accent. Nevertheless, this result is consistent with the results in
the manual transcription tests and with the unclear conceptual
similarity index, which reflects that the manual transcribers
assume that the symbols can be easy to confuse in some
situations. For the rest of the Pitch Accent pairs, a high inter-
transcriber confusion and a high similarity of the pair leads
to more system confusion with that pair. The exception is
the pair L* vs. none, which is identified by the transcribers
as a dissimilar pair (1/3 index), but it is on the list of
commonly misclassified pairs. Nevertheless, it agrees with the
inter-transcriber reliability result, as this pair of symbols is
frequently confused in manual labeling experiments.

Concerning the Boundary Tones (central table of Table
XI), the most difficult task appears to be the identification
of the intermediate phrase boundaries (H-, !H- and L- vs.
none). These situations are also difficult to identify by man-
ual transcribers, as shown by the high conceptual similarity
indices (4/0 and 3/1). Intermediate phrase boundaries are also
frequently confused with their respective Final Boundary Tone
counterpart (L- vs. L-L%, H- and !H- vs. L-H%), but to
a smaller degree. The main weakness of our system is the
distinction of the pairs L-H% vs. none and L-L% vs. none, that
is, the identification of the final Boundary Tone. This situation
is problematic because the symbols L-H%, L-L% and none are
the most frequent ones (see Table IV), and manual transcribers
find them easy to distinguish (0.18% and 2.20% rates).

In the case of the Break Indices, 1 appears in most of the
pairs of often-confused Breaks (bottom sub table of Table XI).
We do not have the conceptual similarity index for the Breaks.
In spite of this fact, the pairs 1 vs. 2, 0 vs. 1, and 3 vs. 4 are

TABLE XI
MOST COMMON ERRORS OF THE SYSTEM, COMPARED WITH THE MANUAL

LABELING PROCESS THAT IS DESCRIBED IN [14]. THE Automatic
Classification Error IS THE PERCENTAGE OF CONFUSION OF THE SYSTEM

BETWEEN THE PAIR OF LABELS (WE ONLY REPORT HIGH CONFUSION
PAIRS). THE Manual Labeling Disagreement IS THE PERCENTAGE OF
CONFUSION OF MANUAL LABELERS BETWEEN THE PAIR OF LABELS

(DERIVED FROM THE TABLE THAT IS NAMED ALL labelers-POOLED IN
[14]). THE Conceptual Similarity Index: S/D, WHERE S ARE THE NUMBER
OF EXPERTS (OUT OF FOUR) THAT CONSIDER THE PAIR OF LABELS TO BE
SIMILAR, AND D IS THE NUMBER OF EXPERTS THAT CONSIDER THE PAIR

OF LABELS TO BE DISSIMILAR (OBTAINED FROM [14]).

Pitch Accent Tone
Automatic Manual Conceptual

Classification Labeling Similarity
Error Disagreement Index

H* L+H* 27.26% 26.64% 4/0
H* none 22.71% 13.15% 2/2
H* !H* 13.17% 4.82% 4/0
!H* none 9.75% 6.57% 3/1
L* none 4.39% 4.03% 1/3
H* L+!H* 3.51% 4.38% 4/0

H+!H* none 3.22% 1.75% 2/2
!H* L+!H* 2.88% 2.80% 3/1
H* H+!H* 2.71% 1.67% 2/2

Boundary Tone
Automatic Manual Conceptual

Classification Labeling Similarity
Error Disagreement Index

H- none 15.70% 19.96% 3/1
!H- none 14.90% 8.97% 3/1
L- none 13.32% 21.43% 4/0

L-H% none 12.94% 0.18% 2/2
L-L% L-H% 11.65% 11.17% 4/0
L-L% none 8.67% 2.20% 1/3
L-L% L- 4.60% 17.95% 4/0
L-H% L- 3.42% 1.28% 3/1
L-H% H- 3.97% 0.92% 0/4
L-H% !H- 1.69% 0.00% 0/4

Break index
Automatic Manual Conceptual

Classification Labeling Similarity
Error Disagreement Index

1,1-,1p 2,2-,2p 31.35% n/a n/a
1,1-,1p 3,3-,3p 24.02% n/a n/a
3,3-,3p 4,4- 14.43% n/a n/a
1,1-,1p 4,4- 10.51% n/a n/a

0 1,1-,1p 9.96% n/a n/a

frequently confused. Moreover, 0, 1 and 2 on the one side, and
3 and 4 on the other side are frequently grouped in state-of-the-
art studies (see Table III). Our weakest result is the confusion
between 1 and 4 (10.51% of the cases), which is consistent
with the results that are obtained for Boundary Tones, where
the confusion of none with L-L% and L-H% has also been
observed.

E. Final system compared with the state of the art

It is not easy to compare the results of our experiments with
the results that are described in the state of the art because
each experiment is performed with a different experimental
setup. The main differences are the following: the ToBI labels
that are used or ignored and the mapping between labels; the
corpus/subcorpus; the number of speakers; and the word or
syllable level.
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In this section, we describe experiments that we made to
compare our proposal with experiments that are found in the
bibliography that used the BURNC corpus. Those experiments
were described in Section I-A and are summarized in Tables
I, II and III, where our results are also shown, using the same
mappings of the ToBI labels used by other researchers.

Although detection is not the goal of our work, this task
is included in the tables to show that our system obtains
comparable results to the state of the art, with better results
in some cases.

In pitch accent classification, using the same 5 labels as
in [3], we achieved 69.1%, compared with 63.99% that they
reported. With the same 4 labels of [8], we obtained 63.9%,
compared with 56.4% that they reported. Using the 4 labels
for the experiments described in [6], [16], [17], we obtained
80.0%, compared with their accuracy of 80.17%, 81.3% and
87.17%, respectively. However, their experiments were at
the syllable level and used only one speaker; thus, a direct
comparison is not possible.

In boundary tone classification, using the labels of the
experiments that are shown in [3], we report 80.1% while their
accuracy was 72.91%. With the labels of the work described
in [8], we obtained 83.1%, compared with 67.7% that they
reported. Finally, using the labels in [6], we achieved 80.6%,
in comparison with 66.9% from their work.

For break indices classification, we reported 74.6% accu-
racy, and the experiments in [18] obtained 70.4%.

In summary, we achieved results comparable with the state
of the art, and in the majority of the cases, our results
outperformed the results that are found in the bibliography.
An exception was in the pitch accent classification task,
where other researchers reported results on speaker-dependent
experiments that were better than ours.

V. CONCLUSIONS

A new and effective proposal to address the complex task
of automatic classification of prosodic events is presented in
this paper. The use of pairwise coupling for multi-label classi-
fication together with the fusion of complementary classifiers
and an adequate feature selection has allowed us to improve
the results of the baseline system.

The use of input features that reflect the evolution of the
intonation contour in the words is shown to be important for
characterizing the ToBI events. Thus, the inclusion of Tilt
parameters and Bézier parameters improves the classification
rates by 4.1 points for Pitch Accents (from 54.1% to 58.2%,
Table VI). However, the main improvements were achieved
with the use of pairwise coupled classifications in conjunction
with the use of evidence from the context and with the fusion
of different classifiers, increasing the classification rate by 12.6
percent points (from 58.2% to 70.8%, in Table X). The results
of the final system are superior to the state of the art in most
of the situations that were evaluated.

An analysis of the misclassified samples shows that the
types of mistakes made by the system do not differ sig-
nificantly from the common confusions observed in manual
ToBI inter-transcriber tests. The use of ToBI labeling tools

introduces an element of objectivity that can be very useful for
accelerating the work of manual labeling by the transcribers.
The percentage of approximately 80% success in the classifi-
cation tasks guarantees a certain level of reliability, although in
some situations (where it is difficult to label prosodic events),
transcribers’ intervention is still essential.
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