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Abstract
The aim of this study is to investigate the phonetic and flu-

ency characteristics of spontaneous speech produced by Span-
ish speakers with Down syndrome (DS) compared to nonspon-
taneous speech modes (read, elicited and imitation) and assess
the impact of these differences both on expert speech quality
assessment and on automatic speech recognition (ASR) per-
formance. The PRAUTOCAL corpus includes four different
speech generation modes of utterances spoken by people with
DS. The results show that there are minor differences in some
features between spontaneous speech and other modes, but spe-
cific types of disfluencies and phonetic errors are more prevalent
in spontaneous speech. The Whisper model showed improved
performance on spontaneous speech, achieving a significantly
lower Word Error Rate (WER) and fewer substitution errors.
The Wav2Vec phoneme recognition model performed signifi-
cantly worse, showing higher phoneme error rate (PER), more
substitutions, and greater total errors, no matter the automatic
segmentation tool used (MFA or WebMAUS).
Index Terms: spontaneous speech, disfluencies, Down syn-
drome

1. Introduction
Individuals with Down syndrome (DS) typically present speech
and language disorders that involve both articulation impair-
ments and prosodic deficits [1, 2]. Their atypical prosodic pro-
duction, affecting rhythm, intonation, and stress, often leads to
their speech being perceived as different by typically develop-
ing listeners [3]. Specifically, they show difficulties in produc-
ing prosodic functions related to turn-end, chunking, and focus,
and the acoustic features they use for these functions are often
less informative than those used by their typically developing
peers [4]. Furthermore, individuals with DS may have trou-
ble with articulatory control, such as articulating declination in
declarative sentences and using appropriate pausing for chunk-
ing [5].

Additionally, speech disfluencies, including stuttering-like
disfluencies, are reported to be more common in children with
DS than in typically developing children [6]. This study in-
dicates that approximately 30 percent of children with DS be-
tween 3 and 13 years of age may stutter, which is notably higher
than the prevalence in typically developing children, and the
speech of children with DS shows a different distribution of
types of disfluencies compared to typically developing children
[6]. The types of disfluencies observed can differ, with a higher
occurrence of blocks and interjections reported in some studies
[6, 7].

Regarding spontaneous speech, a wide range of expres-
sions, including varied grammatical structures, linguistic vari-

ations, and notably, disfluencies such as pauses, repetitions,
and sound prolongations, are common due to the unplanned
nature of the discourse. While much research on speech,
especially prosody, often controls the linguistic content with
pre-established sentences, studies focusing on the analysis of
prosodic characteristics in spontaneous speech are less common
[8, 9]. One of these studies analyzes that, during spontaneous
communication, pre-school children show problems to express
prosodic contours in interrogative sentences [8].

Speech disfluencies significantly hinder the accuracy of
deep learning-based transcription models. As noted in this
study [10], while the intended speech word error rate (isWER)
for Whisper was comparable between typical speech and speech
from people who stutter, Whisper transcribed filled pauses and
partial words at higher rates in the latter, and the isWER in-
creased with stuttering severity. Furthermore, both text-based
(BERT) and audio-based (Whisper encoder) disfluency detec-
tion models showed decreased performance when evaluated on
speech with disfluencies from people who stutter compared to
typical speech [10]. As highlighted previously, individuals with
DS also exhibit more frequent and potentially different types of
disfluencies in their speech, which would similarly pose chal-
lenges for these models attempting to produce accurate tran-
scriptions [11].

Therefore, this study aims to investigate the phonetic and
fluency characteristics of spontaneous speech produced by
Spanish speakers with DS, comparing it directly with nonspon-
taneous speech from the same individuals. Specifically, we seek
to answer the following research questions:
• Is the spontaneous speech of Spanish speakers with Down

syndrome significantly different, with respect to phonetics
and fluency, compared to their nonspontaneous speech?

• Do these potential differences significantly affect the perfor-
mance of deep learning-based ASR models?

The structure of the paper is as follows. Section 2 details
the methodology used, Section 3 presents the results of our an-
alyzes, Section 4 discusses the implications of these findings,
and Section 5 concludes the paper.

2. Methodology
2.1. Data

This study is based on the PRAUTOCAL corpus [12], a Spanish
corpus of Down syndrome speech comprising 120 minutes of
recordings. The corpus includes four production modes: read
(R), elicited (E), imitation (I), and spontaneous (S). This pro-
duction modes are not equally distributed. In fact, the vast ma-
jority of audios belonged to the Read class, and a small mi-
nority belonged to the Spontaneous class (see Table 1). In our
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analyses, we consider only a binary grouping: nonspontaneous
(read, elicited, and imitated) versus spontaneous. This choice is
motivated by our goal of testing whether any differences exist
between spontaneous and nonspontaneous speech.

The corpus also includes disfluency transcriptions, which
annotate the presence of fillers, interruption points, and editing
terms throughout the utterances. These annotations serve as a
key input for our experiments.

In addition, we incorporate a categorical, multi-aspect pho-
netic and fluency analysis, conducted by a professional linguist.
The linguist listened to all the recordings and annotated them
using a predefined rubric. For full details of the annotation
guidelines and individual descriptions of each metric, see [13].

Phoneme segmentation was obtained using two automatic
tools, Montreal Forced Aligner (MFA) [14] and WebMAUS
[15]. As these segmentations were not manually corrected, us-
ing both systems helps to mitigate potential tool-specific seg-
mentation errors.

2.2. Speech Annotation and Statistical Analysis

To address our research questions, we conducted statistical
analyses comparing the two-group configurations across a vari-
ety of variables. We applied either parametric (Student’s t-test)
or nonparametric (Mann-Whitney) significance tests, depending
on the normality of the data, in order to find if any significant
difference really exists. We used a significance threshold of
α = 0.05.

• Disfluency annotations: We computed the mean number
of disfluency errors (filler and editing terms) per production
mode. For this work, we discarded the interruption points
(that can be seen in Table 10 of [12]) because they were
obtained by comparing the disfluency transcription with the
ground truth transcription, which obviously does not exist
for spontaneous speech. We saw that spontaneous utterances
tend to be longer than the others. To solve that, we applied a
normalization at utterance level, dividing each individual ut-
terance value (e.g. number of fillers of one utterance) by the
length (number of words) of the utterance itself.

• Professional linguist analysis: As explained before, a pro-
fessional linguist has listened and analyzed all the audios of
the speakers with DS. Here we can distinguish three different
analysis:

– General assessment: Each utterance was assigned a gen-
eral score (1 to 3) based on phonetic and fluency criteria.

– Fine-Grained Fluency analysis: The linguist also per-
formed a fine-grained fluency analysis on different fluency
aspects. For each aspect, she annotates if the error occurs
zero, one or more than once, as a categorical annotation.
We distinguish the following errors: blocks, prolongations,
sound repetition, word repetition, and interjections.

– Phonetic word analysis: Finally, the linguist also ana-
lyzed each word of each utterance individually and anno-
tated errors at phoneme level. These errors are substitu-
tions, omissions, distortions, and additions of phonemes in
an individual word. Similar to what we have seen above,
the linguist annotates, if the error occurs or not, in a bi-
nary way, for each different variable mentioned before. We
also calculate a total errors variable, by adding all the error
variables of the word.

• Automatic phonetic segmentation: We used the segmenta-
tions obtained by Montreal Forced Aligner and WebMAUS

in two different ways. First of all, we use them to calculate
the mean duration by phoneme, for each production mode.
Then, we used the phonetic transcription as ground truth for
one of the deep learning models we evaluated.

• Deep learning-based transcriptors results: We evaluated
two different types of deep learning transcriptors. First, we
measure how Whisper [16] performance differs along the
different production modes. For that experiment, we used
whisper-large-v3 and disfluency transcriptions as ground
truth. In order to make a fair comparison with the Whisper
output (which does not contain disfluency annotations), we
apply the same preprocessing pipeline as the one seen in [17].
The second model we evaluated was Wav2Vec fine-tuned
for phone recognition task [18]. Specifically, we used the
wav2vec2-lv-60-espeak-cv-ft, which has been self-pretrained
on LibriSpeech [19], and then fine-tuned with Common Voice
[20]. In this case, as mentioned above, we use the phone
transcriptions obtained by Montreal Forced Aligner and Web-
MAUS as ground truth. No adjustment in phoneme dictionar-
ies has been made between Wav2Vec Phoneme and any of the
segmentators.
In the first case, we calculated word error rate (WER), and in
the second case, we calculated phoneme error rate (PER). For
both models, we also obtained the number of substitutions,
deletions, and insertions for each utterance. As we did before,
we built a new variable called total errors as the sum of all
the errors mentioned before. As these values are sensible to
the length of the utterance, we did length normalization at
utterance level.

Finally, in order to do a fair comparison between speakers
and production modes, we only take into account the audios of
the speakers that had done, at least, one audio of each type of
production mode.

3. Results
The values shown in Tables 2 and 3 represent group-wise
means, regardless of whether the variable is continuous or cate-
gorical. We also show the p-value for two groups, which will be
bold if there is significant difference between the spontaneous
group and all the others together.

The first result we found during the analysis was that all the
variables (except one) followed a nonnormal distribution, which
means that we mainly applied only nonparametric tests.

3.1. Disfluency annotations

As shown in Table 2, there are no statistically significant differ-
ences in disfluency annotations between our two groups. Based
on these results, we conclude that the disfluency patterns, mea-
sured by the selected annotation categories, did not differ sig-
nificantly between the groups.

3.2. Professional linguist analysis

As previously outlined, we can distinguish three different types
of analysis: General assessment, Fine-Grained Fluency anal-
ysis and Phonetic word analysis. Regarding the first, we can
see in Table 2 that there is no significant difference between the
groups.

Regarding the analysis of fine-grained fluency (see Ta-
ble 2), we find that only Interjections and Prolongations, are
significantly higher between spontaneous and nonspontaneous
speech.
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Production mode #audios #words #phonemes MFA #phonemes WebMAUS

Read 1110 7416 28687 28522
Elicited 434 1960 7976 7874
Imitation 140 776 3194 3147
Spontaneous 35 281 1174 1156

Table 1: Number of audios, word and phonemes by Production Mode. In the case of phonemes, as we employ two different segmentation,
we report the values for each tool.

Variable 4 groups 2 groups

R E I S NS S p-value
DISFLUENCIES ET 0.07 0.07 0.10 0.08 0.07 0.08 0.4448

ETw 0.08 0.12 0.14 0.15 0.10 0.15 0.3788
Fil 0.02 0.02 0.04 0.04 0.02 0.04 0.0719

GENERAL ASSESSMENT Phonetic 2.09 2.17 2.01 1.86 2.11 1.86 0.0771
Fluency 2.65 2.71 2.60 2.46 2.66 2.46 0.2147

FLUENCY Blocks 0.32 0.24 0.35 0.43 0.30 0.43 0.5518
Prolongations 0.11 0.08 0.13 0.34 0.10 0.34 0.0278
Repeated Sounds 0.19 0.12 0.19 0.17 0.17 0.17 0.4235
Repeated Words 0.15 0.16 0.23 0.31 0.16 0.31 0.1190
Interjections 0.04 0.04 0.06 0.20 0.04 0.20 0.0176

WORDS Substitutions 0.03 0.05 0.05 0.10 0.04 0.10 0.0000
Omisions 0.09 0.10 0.12 0.11 0.09 0.11 0.4657
Distorsions 0.25 0.26 0.25 0.31 0.25 0.31 0.0289
Additions 0.02 0.03 0.03 0.02 0.03 0.02 0.4141
Total errors 0.39 0.44 0.45 0.53 0.41 0.53 0.0023

Table 2: Results of the analysis of disfluency variables, general assessment variables, fine-grained fluency variables and phonetic word
variables for 2 and 4 groups. ET: average number of editing terms per recording, ETw: average number of words in the editing terms
per recording, Fil: average number of fillers per recording. Phonetic and Fluency: average ratings for each level. The features in
the FLUENCY and WORDS groups represent the average number of occurrences of each aspect, as provided by the categorical expert
evaluation. WORDS groups represent error at phoneme level found during the analysis of each word individually.

The last type of analysis performed by the linguist was the
Phonetic word analysis (see Table 2), which revealed further
group differences. Considering our two groups, we will see
that the significant evidence appears in, Substitutions, Distor-
sions and Total errors variables. These differences tell us that
Spanish speakers with DS tend to make more mistakes, of those
types, when they produced spontaneous speech.

3.3. Automatic phonetic segmentation

To investigate how production mode affects articulation timing,
we analyzed the mean phoneme durations extracted from the
automatic phoneme segmentation systems (see Table 3). We
found significant difference that indicates, that phoneme dura-
tion is significantly shorter in spontaneous speech.

When individual phoneme durations extracted from forced
alignment are analyzed, we found that silence, /e/ and /i/
phonemes have an average longer duration in spontaneous
speech utterances, for both aligners. This might resemble a
slower speech production and a higher number of fillers made
up by prolongations of the phonemes /e/ and /i/.

3.4. Deep learning-based transcriptors results

Results from the Whisper model (Table 3) show us that this
model mainly works better with spontaneous speech, rather than
with the other types. Differences can be seen in Substitutions

and WER, which are significantly lower.
Regarding the results from Wav2Vec Phoneme model (Ta-

ble 3), we can see that the evidence is very similar between
both segmetations. In both cases, PER, Substitutions and To-
tal errors are significantly higher when we talk about our bi-
nary grouping.

4. Discussion
Our analyses revealed that while normalized counts of general
disfluencies (fillers, editing terms) did not show significant dif-
ferences between spontaneous and nonspontaneous speech, spe-
cific types of disfluencies and phonetic errors were more preva-
lent in spontaneous utterances. Professional linguistic analysis
indicated significantly higher rates of interjections and prolon-
gations, as well as increased phonetic substitutions and distor-
tions in spontaneous speech. Furthermore, automatic analysis
showed that overall phoneme duration was significantly shorter
in spontaneous speech, although certain phonemes (/e/, /i/) and
silences were longer. These findings suggest that while the over-
all quantity of manually annotated disfluencies might be simi-
lar after normalization, the nature of fluency breaks and pho-
netic execution differs significantly in spontaneous contexts for
speakers with DS, leaning towards patterns potentially indica-
tive of speech planning or motor control difficulties rather than
just pragmatic pausing.
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Variable 4 groups 2 groups

R E I S NS S p-value
AVG. PHONEME DURATION (ms) MFA 98.1 93.1 89.4 94.9 96.4 94.9 0.0004

WebMAUS 86.8 85.0 83.4 85.5 86.2 85.5 0.0070
WHISPER ASR WER 0.33 0.38 0.48 0.24 0.42 0.24 0.0419

Substitutions 0.21 0.23 0.32 0.11 0.22 0.11 0.0060
Deletions 0.14 0.12 0.23 0.13 0.13 0.13 0.4315
Insertions 0.03 0.04 0.05 0.02 0.04 0.02 0.6354
Total errors 0.39 0.39 0.60 0.26 0.39 0.26 0.0901

WAV2VEC PHONEME RECOGNIZER

MFA [14] PER 0.43 0.48 0.48 0.53 0.45 0.53 0.0039
Substitutions 0.31 0.35 0.31 0.38 0.32 0.38 0.0148
Deletions 0.16 0.18 0.20 0.18 0.17 0.18 0.5554
Insertions 0.03 0.03 0.04 0.04 0.03 0.04 0.3086
Total errors 0.50 0.56 0.55 0.61 0.52 0.61 0.0106

WebMAUS [15] PER 0.47 0.51 0.49 0.59 0.48 0.59 0.0000
Substitutions 0.34 0.38 0.34 0.45 0.35 0.45 0.0003
Deletions 0.15 0.17 0.19 0.17 0.16 0.17 0.9330
Insertions 0.03 0.04 0.04 0.05 0.04 0.05 0.2125
Total errors 0.53 0.58 0.57 0.67 0.55 0.67 0.0007

Table 3: Duration and Error Rate recognition results using forced aligners and ASR models (silence is not included as a phoneme).
WER/PER is the average of the error rate metric by utterance. Subtitutions, Deletions, Insertions, and Total errors are the average of
the number of errors of each type per utterance.

Our results show that, contrary to what is observed in typ-
ical speakers [21, 22], people with Down syndrome do not
present a significant increase in disfluencies in spontaneous
speech compared to nonspontaneous speech. This observation
can be interpreted in light of Clark’s proposal [23], who argues
that disfluencies should not be understood as failures in speech
production, but as solutions to problems of speech planning and
execution. In this sense, disfluencies serve relevant communica-
tive functions, such as facilitating synchronization between in-
terlocutors, improving auditory comprehension or signaling the
complexity of the upcoming message [23, 24, 25, 26, 27, 28].
The absence of modality-sensitive modulation of disfluency use
suggests that these speakers may lack flexible control of disflu-
ency mechanisms. These speakers may have reduced control
over the pragmatic management of disfluencies, which could
represent an additional constraint on their spontaneous com-
municative competence. This deficit would not only affect dis-
course fluency, but also the ability to use disfluencies as strate-
gic tools to manage communicative interaction. Since disfluen-
cies contribute to the regulation of interaction and the listener’s
processing of information, impaired use of them may indicate
broader pragmatic difficulties, limiting the speaker’s ability to
adapt to the communicative context and effectively manage in-
terlocutor expectations.

Regarding the impact on ASR, the results were model-
dependent. The Whisper model showed improved performance
on spontaneous speech, achieving a significantly lower Word
Error Rate (WER) and fewer substitution errors compared to
nonspontaneous modes. Conversely, the Wav2Vec phoneme
recognition model performed significantly worse on sponta-
neous speech, exhibiting higher Phoneme Error Rate (PER),
more substitutions, and greater total errors, irrespective of the
automatic segmentation tool used (MFA or WebMAUS). This
divergence highlights that the specific challenges posed by
spontaneous DS speech (e.g., increased phonetic variability, al-

tered timing, specific disfluency types) affect different ASR ar-
chitectures and evaluation granularities (word vs. phoneme) in
distinct ways. Whisper’s robustness might stem from its large-
scale, diverse training data, potentially making it less sensitive
to certain variations, while the phoneme-level Wav2Vec model
appears more susceptible to the increased phonetic errors ob-
served in spontaneous speech.

5. Conclusions

This study investigated the characteristics of spontaneous
speech in Spanish speakers with Down syndrome (DS) com-
pared to nonspontaneous speech modes (read, elicited, imita-
tion) and assessed the impact of these differences on automatic
speech recognition (ASR) performance. Our objective was to
determine if spontaneous speech presents significantly greater
phonetic and fluency challenges and how these might affect
deep learning-based transcription models.

In summary, our study confirms that the spontaneous
speech of Spanish speakers with DS presents distinct pho-
netic and fluency characteristics compared to nonspontaneous
speech, manifested in specific types of disfluencies and pho-
netic errors . Furthermore, it shows that these differences have
variable implications for the performance of ASR models , im-
proving for word-level models like Whisper but worsening for
phoneme-level models like Wav2Vec.
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