
Synchronization Architecture

in Parallel Programming Models

PhD Thesis

Arturo Gonz ález Escribano

Supervisors: Valentı́n Cardeñoso Payo (Univ. Valladolid)
Arie J.C. van Gemund (TU Delft) July, 2003

1

Conceptual approach and models review

Introduction

Experimental approach

Theoretical and algorithmic approach

Conclusion

Outline

2

In
tr

o
d

u
ct

io
n
Motivation

Speed-up Programming cost

Shift in time

Development
efficiency

Execution
efficiency

Effectiveness

[Siegel2000] [Smith2001] [Danelutto2003]

3

In
tr

o
d

u
ct

io
n
Motivation

Speed-up Programming cost

Shift in time

Development
efficiency

Execution
efficiency

Effectiveness

[Siegel2000] [Smith2001] [Danelutto2003]

• No well-established parallel computing model or reference architecture
[SkillicornTalia98]

3

In
tr

o
d

u
ct

io
n
Motivation

Speed-up Programming cost

Shift in time

Development
efficiency

Execution
efficiency

Effectiveness

[Siegel2000] [Smith2001] [Danelutto2003]

• No well-established parallel computing model or reference architecture
[SkillicornTalia98]

• Lack of a Parallel Programming Model (PPM) which achieves both:

– Software development capabilities

– Portability and efficient implementations

3

In
tr

o
d

u
ct

io
n

Parallel systems modeling challenges
Existing approaches

4

In
tr

o
d

u
ct

io
n

Parallel systems modeling challenges
Existing approaches

• High abstract level

+ Elegant semantic models
– Complex specifications
– Too far from lower level details for easy implementation

4

In
tr

o
d

u
ct

io
n

Parallel systems modeling challenges
Existing approaches

• High abstract level

+ Elegant semantic models
– Complex specifications
– Too far from lower level details for easy implementation

• Focused on the low level details

+ Allow to exploit all parallelism power
– Difficult to program, analyze and debug

4

In
tr

o
d

u
ct

io
n

Parallel systems modeling challenges
Existing approaches

• High abstract level

+ Elegant semantic models
– Complex specifications
– Too far from lower level details for easy implementation

• Focused on the low level details

+ Allow to exploit all parallelism power
– Difficult to program, analyze and debug

• Restricted models

– Reduce the expressive power
+ Simple & analyzable structures

4

In
tr

o
d

u
ct

io
n

Parallel systems modeling challenges
Existing approaches

• High abstract level

+ Elegant semantic models
– Complex specifications
– Too far from lower level details for easy implementation

• Focused on the low level details

+ Allow to exploit all parallelism power
– Difficult to program, analyze and debug

• Restricted models

– Reduce the expressive power
+ Simple & analyzable structures

The expressive power and analyzability of a model
appear to be highly related to communication/synchronization

4

In
tr

o
d

u
ct

io
n

SA

• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

5

In
tr

o
d

u
ct

io
n

SA

• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

• Why architecture?

– Description of synchronization/communication mechanisms

– Description of the composition rules

5

In
tr

o
d

u
ct

io
n

SA

• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

• Why architecture?

– Description of synchronization/communication mechanisms

– Description of the composition rules

• Why synchronization?

– Generalization of both communication & synchronization

5

In
tr

o
d

u
ct

io
n

SA

• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

• Why architecture?

– Description of synchronization/communication mechanisms

– Description of the composition rules

• Why synchronization?

– Generalization of both communication & synchronization

– Synchronization and computation are orthogonal
[GelernterCarriero92]

5

In
tr

o
d

u
ct

io
n

SA

• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

• Why architecture?

– Description of synchronization/communication mechanisms

– Description of the composition rules

• Why synchronization?

– Generalization of both communication & synchronization

– Synchronization and computation are orthogonal
[GelernterCarriero92]

– Synchronization distinguishes parallel from sequential solutions

5

In
tr

o
d

u
ct

io
n

Problem statement

• What is the relationship between SA and properties of PPMs?
We propose a new classification system for PPMs

6

In
tr

o
d

u
ct

io
n

Problem statement

• What is the relationship between SA and properties of PPMs?
We propose a new classification system for PPMs

• What are the advantages and drawbacks of restricted SAs?
We show that one SA class, called SP, groups the most interesting models

6

In
tr

o
d

u
ct

io
n

Problem statement

• What is the relationship between SA and properties of PPMs?
We propose a new classification system for PPMs

• What are the advantages and drawbacks of restricted SAs?
We show that one SA class, called SP, groups the most interesting models

• How is expressive power affected by the restriction?
We present systematic transformation methods to map non-SP applications into SP form

We investigate the potential performance impact of these transformations

6

In
tr

o
d

u
ct

io
n

Problem statement

• What is the relationship between SA and properties of PPMs?
We propose a new classification system for PPMs

• What are the advantages and drawbacks of restricted SAs?
We show that one SA class, called SP, groups the most interesting models

• How is expressive power affected by the restriction?
We present systematic transformation methods to map non-SP applications into SP form

We investigate the potential performance impact of these transformations

We will show that SP PPMs bring a good trade-off between
expressive power and analyzability, being a good choice for
general-purpose parallel computing

6

In
tr

o
d

u
ct

io
n
Approach

Three-step approach

7

In
tr

o
d

u
ct

io
n
Approach

Three-step approach

• Conceptual

– SA classification
– Review of models at different abstraction levels
– Relate SA to PPM characteristics
– Detect which applications naturally map to each class

7

In
tr

o
d

u
ct

io
n
Approach

Three-step approach

• Conceptual

– SA classification
– Review of models at different abstraction levels
– Relate SA to PPM characteristics
– Detect which applications naturally map to each class

• Theoretical

– SP graph characterization
– NSP to SP transformation (algorithmic) techniques
– Potential performance loss study

7

In
tr

o
d

u
ct

io
n
Approach

Three-step approach

• Conceptual

– SA classification
– Review of models at different abstraction levels
– Relate SA to PPM characteristics
– Detect which applications naturally map to each class

• Theoretical

– SP graph characterization
– NSP to SP transformation (algorithmic) techniques
– Potential performance loss study

• Experimental

– Graph modeling of applications
– Experiments with synthetic graphs
– Experiments with real application graphs

7

C
o

n
ce

p
tu

al
SA classification criteria

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

• Classes:

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

• Classes:

– ME axis: ME vs. NME

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

• Classes:

– ME axis: ME vs. NME

– CS axis: SP (nested-parallelism, cobegin-coend) vs. NSP

8

C
o

n
ce

p
tu

al
SA classification criteria

• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

• Classes:

– ME axis: ME vs. NME

– CS axis: SP (nested-parallelism, cobegin-coend) vs. NSP

• Data-dependent or dynamic structures (DS)

– Dynamic conditions and data-dependent synchronizations

– Impact on analyzability properties [SkillicornTalia98]

– DS axis: DS vs. NDS
8

C
o

n
ce

p
tu

al
SA classification

Condition Synchronization

Mutual exclusion Data−dependency

ME

NME
NDS

DS

SP

NSP

9

C
o

n
ce

p
tu

al
SA classification

NSPSP
M

E
N

M
E

D
S

N
D

S
D

S
D

S
N

D
S

(SP,ME,DS)

(SP,NME,DS)

(SP,ME,NDS)

(SP,NME,NDS) (NSP,NME,NDS)

(NSP,NME,DS)

(NSP,ME,DS)

(NSP,ME,NDS)

9

C
o

n
ce

p
tu

al
SA classification

NSPSP
M

E
N

M
E

D
S

N
D

S
D

S
D

S
N

D
S

Res
tri

ct
io

ns

9

C
o

n
ce

p
tu

al
Model requirements

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

• Qualitative and difficult to measure

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

• Qualitative and difficult to measure

• Quantitative study of performance is possible [JuurlinkWijshof98]

10

C
o

n
ce

p
tu

al
Model requirements

• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

• Qualitative and difficult to measure

• Quantitative study of performance is possible [JuurlinkWijshof98]

• In this work:

– Review of models to determine adequacy and relate it to SA

– For the most relevant SA classes, comparative performance study

10

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

OpenMP*

PRAM

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

OpenMP*

PRAM

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

PRAM

OpenMP*

Nested−BSP

BSP*

Cilk

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

OpenMP*

PRAM

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

PRAM

OpenMP*

Nested−BSP

BSP*

Cilk

OpenMP*

Nested−BSP

BSP*

Cilk

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

OpenMP*

PRAM

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

PRAM

OpenMP*

Nested−BSP

BSP*

Cilk

OpenMP*

Nested−BSP

BSP*

CilkCilk

Skeletons

11

C
o

n
ce

p
tu

al
Classification discussion

N
D

S
N

D
S

D
S

D
S

M
E

N
M

E

SP NSP

PRAM

OpenMP*

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

Skeletons

Data−parallelism

LogP

Tuple−spaces

Message−passing

OpenMP*

PRAM

LogP

Tuple−spaces

Message−passing

Nested−BSP

BSP*

Cilk

PRAM

OpenMP*

Nested−BSP

BSP*

Cilk

OpenMP*

Nested−BSP

BSP*

CilkCilk

Skeletons

Data−parallelism

Skeletons

11

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

– Many typical applications naturally map to SP

– Some important classes do not!

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

– Many typical applications naturally map to SP

– Some important classes do not!

• Map NSP applications to SP form:

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

– Many typical applications naturally map to SP

– Some important classes do not!

• Map NSP applications to SP form:
Transformations

12

C
o

n
ce

p
tu

al
Conceptual approach summary

• The SA classification is an adequate categorization of PPMs

• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

– Many typical applications naturally map to SP

– Some important classes do not!

• Map NSP applications to SP form:
Transformations⇒ Performance loss

12

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

10

10

10

10

10

10

1 1 11

1

1 1

1

1

1 1

1 1 1 1 1

1 1

1111

11

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

10

10

10

10

10

10

1 1 11

1

1 1

1

1

1 1

1 1 1 1 1

1 1

1111

11

12

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

10

10

10

10

10

10

1 1 11

1

1 1

1

1

1 1

1 1 1 1 1

1 1

1111

11

1212

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

10

10

10

10

10

10

1 1 11

1

1 1

1

1

1 1

1 1 1 1 1

1 1

1111

11

1212 30

13

C
o

n
ce

p
tu

al
Conceptual approach summary (Example)

Cellular-Automata computation

NSP version SP version

10

10

10

10

10

10

1 1 11

1

1 1

1

1

1 1

1 1 1 1 1

1 1

1111

11

1212 30

It is necessary to study the transformations: NSP→ SP
and their potential performance impact

13

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

14

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

• Formal language: Graph theory

14

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

• Formal language: Graph theory

• STDAGs (Standard two-terminal direct acyclic graphs)

14

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

• Formal language: Graph theory

• STDAGs (Standard two-terminal direct acyclic graphs)

14

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

• Formal language: Graph theory

• STDAGs (Standard two-terminal direct acyclic graphs)

14

T
h

eo
re

ti
ca

l
Theoretical approach

Graphs

• Formal language: Graph theory

• STDAGs (Standard two-terminal direct acyclic graphs)

• Modelization of a parallel computation structures with a graph:

– AoN (Activity on Nodes)

– Edges: Condition synchronization (execution order)

14

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

15

T
h

eo
re

ti
ca

l
SP graph

• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

• NSP: Combinations of forbidden subgraphs [Dissertation 3.3.3]

15

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

– Non-work-preserving technique

– Number of duplications depends on the number of adjacent edges
Increasing number of resources (processing elements) needed

16

T
h

eo
re

ti
ca

l
Transformation strategies - I

• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

– Non-work-preserving technique

– Number of duplications depends on the number of adjacent edges
Increasing number of resources (processing elements) needed

– Not appropriate for general purposes

16

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

– Serialize potentially parallel tasks: Possible performance loss

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

– Serialize potentially parallel tasks: Possible performance loss

– We name these techniques as SP-izations

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

– Serialize potentially parallel tasks: Possible performance loss

– We name these techniques as SP-izations

• Mixed techniques: Use both strategies

17

T
h

eo
re

ti
ca

l
Transformation strategies - II

• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

– Serialize potentially parallel tasks: Possible performance loss

– We name these techniques as SP-izations

• Mixed techniques: Use both strategies

• We focus on SP-izations

17

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

L1

L2

L3

L4

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

L1

L2

L3

L4

L1

L2

L3

L4

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

L1

L2

L3

L4

L1

L2

L3

L4

• Low complexity bounds: O(m+ n)

18

T
h

eo
re

ti
ca

l
Layering technique

• Well-known system [Malony.et al94] associated to the bulk-synchronous
concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

L1

L2

L3

L4

L1

L2

L3

L4

• Low complexity bounds: O(m+ n)

• It does not exploit SP graphs or possibility of local resynchronizations

18

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1

• Local problems solving + Keep SP subgraphs untouched

• Procedure:

1. Reduce SP subgraphs
Rest of nodes are related to forbidden subgraphs

2. Choose an initial node

3. Recursive exploration of related nodes

4. Resynchronization of the NSP problem (two local strategies)

5. If the graph is not SP goto 1

19

T
h

eo
re

ti
ca

l
Algorithm 1: Properties

• A local combination is resynchronized in each iteration

20

T
h

eo
re

ti
ca

l
Algorithm 1: Properties

• A local combination is resynchronized in each iteration

• No global information stored: O(m× n)

20

T
h

eo
re

ti
ca

l
Algorithm 1: Properties

• A local combination is resynchronized in each iteration

• No global information stored: O(m× n)

• It does not keep the layering structure:
Higher potential overhead even on well-balanced computations

20

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

L1

L2

L3

L4

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

L1

L2

L3

L4

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

L1

L2

L3

L4

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

L1

L2

L3

L4

L1

L2

L3

L4

21

T
h

eo
re

ti
ca

l
Algorithm 2

• Local resynchronization + Keep layering structure
• Procedure:

1. Compute depth levels

2. For each layer top-down

(a) Detect local NSP problems between nodes in this and previous layer
(b) For each problem in any order:

– Search for the nearest common ancestor of all nodes in the problem
(c) Recombine ancestors in the minimum set of independent ancestors (use

information on the SP tree)
(d) Merge problems with dependent ancestors
(e) Separate barrier synchronization for every independent remaining problem

L1

L2

L3

L4

L1

L2

L3

L4

L1

L2

L3

L4

21

T
h

eo
re

ti
ca

l
Algorithm 2: Properties

• Considers global information stored in the SP tree-reduction

22

T
h

eo
re

ti
ca

l
Algorithm 2: Properties

• Considers global information stored in the SP tree-reduction

• Tight time complexity bounds: O(m+ n logn)

Higher complexity than the layering technique

22

T
h

eo
re

ti
ca

l
Algorithm 2: Properties

• Considers global information stored in the SP tree-reduction

• Tight time complexity bounds: O(m+ n logn)

Higher complexity than the layering technique

• Similar results as layering for regular NSP structures
But better results for more irregular, or closer to SP form graphs

22

T
h

eo
re

ti
ca

l
Impact indicator

• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

23

T
h

eo
re

ti
ca

l
Impact indicator

• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

• Relative critical path difference:

γτ (G,G
′) =

cpv(G′)

cpv(G)

23

T
h

eo
re

ti
ca

l
Impact indicator

• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

• Relative critical path difference:

γτ (G,G
′) =

cpv(G′)

cpv(G)

• Upper bounds:

– Unlikely cases of highly unbalanced computations
Pathological workload distributions

– Average cost is more appropriate for dynamic workloads
[LamportLynch90]

23

T
h

eo
re

ti
ca

l
Impact indicator

• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

• Relative critical path difference:

γτ (G,G
′) =

cpv(G′)

cpv(G)

• Upper bounds:

– Unlikely cases of highly unbalanced computations
Pathological workload distributions

– Average cost is more appropriate for dynamic workloads
[LamportLynch90]

• We focus on expected values: γ

23

T
h

eo
re

ti
ca

l
Impact indicator

• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

• Relative critical path difference:

γτ (G,G
′) =

cpv(G′)

cpv(G)

• Upper bounds:

– Unlikely cases of highly unbalanced computations
Pathological workload distributions

– Average cost is more appropriate for dynamic workloads
[LamportLynch90]

• We focus on expected values: γ

• Other structural impact metrics are not related with the potential per-
formance loss [Dissertation 3.6.2]

23

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

• Stochastic NSP cpv analysis: Prevented by its inherent complexity

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

• Stochastic NSP cpv analysis: Prevented by its inherent complexity

• Approximations for simple regular NSP structures [Vaca99]

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

• Stochastic NSP cpv analysis: Prevented by its inherent complexity

• Approximations for simple regular NSP structures [Vaca99]

– Simple analytical formulae for γ

– Predicts experimental behavior asymptotically (Error < 25%)

– Topology-dependent results

24

T
h

eo
re

ti
ca

l
SP vs. NSP cpv analysis

• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

• Stochastic NSP cpv analysis: Prevented by its inherent complexity

• Approximations for simple regular NSP structures [Vaca99]

– Simple analytical formulae for γ

– Predicts experimental behavior asymptotically (Error < 25%)

– Topology-dependent results

• Further experimental study is needed
to predict the loss of performance in a generic case

24

E
xp

er
im

en
ta

l
Experiments purpose

• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

25

E
xp

er
im

en
ta

l
Experiments purpose

• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

• Topological parameters:

– P : Maximum degree of parallelism

– D: Maximum depth level

– S: Synchronization density 1 2 43

1 2 43

1 2 43

S 2

D=3

P=4

L1

L2

L3

25

E
xp

er
im

en
ta

l
Experiments purpose

• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

• Topological parameters:

– P : Maximum degree of parallelism

– D: Maximum depth level

– S: Synchronization density 1 2 43

1 2 43

1 2 43

S 2

D=3

P=4

L1

L2

L3

• Workload parameters: τ D(µ, σ)

– Relative deviation: ς = σ
µ

(”variability”)

25

E
xp

er
im

en
ta

l
Experiments purpose

• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

• Topological parameters:

– P : Maximum degree of parallelism

– D: Maximum depth level

– S: Synchronization density 1 2 43

1 2 43

1 2 43

S 2

D=3

P=4

L1

L2

L3

• Workload parameters: τ D(µ, σ)

– Relative deviation: ς = σ
µ

(”variability”)

• Sizes: From small (P,D < 10) to large (P,D > 1000)

25

E
xp

er
im

en
ta

l
Experiments purpose

• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

• Topological parameters:

– P : Maximum degree of parallelism

– D: Maximum depth level

– S: Synchronization density 1 2 43

1 2 43

1 2 43

S 2

D=3

P=4

L1

L2

L3

• Workload parameters: τ D(µ, σ)

– Relative deviation: ς = σ
µ

(”variability”)

• Sizes: From small (P,D < 10) to large (P,D > 1000)

• Variability: From balanced (ς = 0.1) to highly unbalanced (ς = 1)

25

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

γ1 Programming

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

γ1 Programming

γ2 Mapping

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

γ1 Programming

γ2 Mapping

3γ
Implementation

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

γ1 Programming

γ2 Mapping

3γ
Implementation

Γ
ExecutionMachine

effects
Machine
effects

26

E
xp

er
im

en
ta

l
γ levels of detail

x3
x3 Algorithm

Model 1 Model 2

γ1 Programming

γ2 Mapping

3γ
Implementation

Γ
ExecutionMachine

effects
Machine
effects

Γ
ExecutionMachine

effects
Machine
effects

26

E
xp

er
im

en
ta

l
Experiments design - I

• Exhaustive testing of the graph space is impossible

27

E
xp

er
im

en
ta

l
Experiments design - I

• Exhaustive testing of the graph space is impossible

• Approaches:

27

E
xp

er
im

en
ta

l
Experiments design - I

• Exhaustive testing of the graph space is impossible

• Approaches:

Experiments



27

E
xp

er
im

en
ta

l
Experiments design - I

• Exhaustive testing of the graph space is impossible

• Approaches:

Experiments



Synthetic graphs


Random sample graphs

Meshes

27

E
xp

er
im

en
ta

l
Experiments design - I

• Exhaustive testing of the graph space is impossible

• Approaches:

Experiments



Synthetic graphs


Random sample graphs

Meshes

Real applications


Static applications

Dynamic applications

27

E
xp

er
im

en
ta

l
Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

28

E
xp

er
im

en
ta

l
Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

28

E
xp

er
im

en
ta

l
Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

• Meshes: Regular topologies of i layers with j nodes each

28

E
xp

er
im

en
ta

l
Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

• Meshes: Regular topologies of i layers with j nodes each

– Regular or random synchronization between consecutive layers
[TobitaKasahara99]

– Parameters: P,D, S, ς

28

E
xp

er
im

en
ta

l
Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

• Meshes: Regular topologies of i layers with j nodes each

– Regular or random synchronization between consecutive layers
[TobitaKasahara99]

– Parameters: P,D, S, ς

• Workload: 25 draws for each topology and ς value

28

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

29

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

29

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

29

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

• Macro-pipeline, Cellular Automata, FFT, LU reduction

29

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

• Macro-pipeline, Cellular Automata, FFT, LU reduction

• Framework (γ,Γ):

– Programming/mapping levels: Synthetic workloads

– Implementation level: Communication costs considered

– Execution level: MPI implementations (SP version with barriers)
[Dissertation 4.2.1]

29

E
xp

er
im

en
ta

l
Experiments design - III

Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

• Macro-pipeline, Cellular Automata, FFT, LU reduction

• Framework (γ,Γ):

– Programming/mapping levels: Synthetic workloads

– Implementation level: Communication costs considered

– Execution level: MPI implementations (SP version with barriers)
[Dissertation 4.2.1]

• Execution level: Three architectures

– CC-NUMA (Origin2000)

– Message-passing with low latency (CrayT3E)

– Distributed memory with high latency (Beowulf)

29

E
xp

er
im

en
ta

l
Experiments design - IV

Real dynamic applications

• Two cases:

1. Structure can be reconstructed from input data structure

2. Structure can be obtained only by tracing in run-time

30

E
xp

er
im

en
ta

l
Experiments design - IV

Real dynamic applications

• Two cases:

1. Structure can be reconstructed from input data structure

2. Structure can be obtained only by tracing in run-time

• Typically more irregular than static applications

• One example application of each type

• Six real input data examples for each application

30

E
xp

er
im

en
ta

l
Experiments design - V

Iterative PDE solver

31

E
xp

er
im

en
ta

l
Experiments design - V

Iterative PDE solver

• Six real structural engineering examples
Matrix Market: Harwell-Boeing, Everstine’s collection.

31

E
xp

er
im

en
ta

l
Experiments design - V

Iterative PDE solver

• Six real structural engineering examples
Matrix Market: Harwell-Boeing, Everstine’s collection.

• Sparse matrix data is partitioned for data-layout
State-of-the-art partitioning software: METIS

31

E
xp

er
im

en
ta

l
Experiments design - V

Iterative PDE solver

• Six real structural engineering examples
Matrix Market: Harwell-Boeing, Everstine’s collection.

• Sparse matrix data is partitioned for data-layout
State-of-the-art partitioning software: METIS

• Mapping level graph reconstructed

• Workload per task estimated as a function of data-layout
31

E
xp

er
im

en
ta

l
Experiments design - VI

Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex

330

2400

2000 14001600 600400 400400

6

6384

13230

4536 4455 12151080 810

881

1124

3760

2896 9841488 1468474

784 294196 196196

363

9

4

4984

36 3636

4

4408

297

2

13

1616

293

2

7

8533

7475 174845541104276

16

1

4540535014001674 852

1125

8550 45003150900 900

0

970

330

0

1400 1600 600400 400400

254

2

30

13

2280

866472205054 5776 21661444 14441444

0

5662

5453 2584266

848

576

47

1202

7778

28802016 2304 864576 576576

1016

168

19

384256 256256

9

13572

5684 66126496 5684928 1160580

0

4155

3025

1720

7

5

5

5

14 53

33

1 1

1

1

1

1

71 372677

17 20

75

55 574733 38 149 99

30

21

24 9

6

66

47524300 3608612

60151740 4260 1620 1080300

7244 8756 3312 22082734

145486622 16272 45182756 39723108

11504 51455160 34304284

3524

36284472

39323590

3668

46903283938

14482 13752 37204840 33484360

32

E
xp

er
im

en
ta

l
Experiments design - VI

Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex

330

2400

2000 14001600 600400 400400

6

6384

13230

4536 4455 12151080 810

881

1124

3760

2896 9841488 1468474

784 294196 196196

363

9

4

4984

36 3636

4

4408

297

2

13

1616

293

2

7

8533

7475 174845541104276

16

1

4540535014001674 852

1125

8550 45003150900 900

0

970

330

0

1400 1600 600400 400400

254

2

30

13

2280

866472205054 5776 21661444 14441444

0

5662

5453 2584266

848

576

47

1202

7778

28802016 2304 864576 576576

1016

168

19

384256 256256

9

13572

5684 66126496 5684928 1160580

0

4155

3025

1720

7

5

5

5

14 53

33

1 1

1

1

1

1

71 372677

17 20

75

55 574733 38 149 99

30

21

24 9

6

66

47524300 3608612

60151740 4260 1620 1080300

7244 8756 3312 22082734

145486622 16272 45182756 39723108

11504 51455160 34304284

3524

36284472

39323590

3668

46903283938

14482 13752 37204840 33484360

• We use six example mapping level graphs reconstructed from tracing
information obtained in a previous work [Lin94,96]

32

E
xp

er
im

en
ta

l
Experiments design - VI

Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex

330

2400

2000 14001600 600400 400400

6

6384

13230

4536 4455 12151080 810

881

1124

3760

2896 9841488 1468474

784 294196 196196

363

9

4

4984

36 3636

4

4408

297

2

13

1616

293

2

7

8533

7475 174845541104276

16

1

4540535014001674 852

1125

8550 45003150900 900

0

970

330

0

1400 1600 600400 400400

254

2

30

13

2280

866472205054 5776 21661444 14441444

0

5662

5453 2584266

848

576

47

1202

7778

28802016 2304 864576 576576

1016

168

19

384256 256256

9

13572

5684 66126496 5684928 1160580

0

4155

3025

1720

7

5

5

5

14 53

33

1 1

1

1

1

1

71 372677

17 20

75

55 574733 38 149 99

30

21

24 9

6

66

47524300 3608612

60151740 4260 1620 1080300

7244 8756 3312 22082734

145486622 16272 45182756 39723108

11504 51455160 34304284

3524

36284472

39323590

3668

46903283938

14482 13752 37204840 33484360

• We use six example mapping level graphs reconstructed from tracing
information obtained in a previous work [Lin94,96]

• Real execution workloads provided

32

E
xp

er
im

en
ta

l
Results: Workload

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 128 256 384 512 640 768 896 1024

γ�

nodes

Random samples
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

33

E
xp

er
im

en
ta

l
Results: Workload

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 128 256 384 512 640 768 896 1024

γ�

nodes

Random samples
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

• Low workload unbalance→ Minimal performance loss
• High workload unbalance→ Increasing performance loss

33

E
xp

er
im

en
ta

l
Results: Workload

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 128 256 384 512 640 768 896 1024

γ�

nodes

Random samples
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

• Low workload unbalance→ Minimal performance loss
• High workload unbalance→ Increasing performance loss
• Workload correlation with layers or vertical instances of nodes

Reduced performance loss [Dissertation 4.1.3]

33

E
xp

er
im

en
ta

l
Results: Graph size parameters P,D

34

E
xp

er
im

en
ta

l
Results: Graph size parameters P,D

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

γ�

P

Random mesh (S=3, D=100)
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

• P responsible for the under-logarithmic-like loss of performance

34

E
xp

er
im

en
ta

l
Results: Graph size parameters P,D

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

γ�

D

Random mesh (S=3, P=100)
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

• P responsible for the under-logarithmic-like loss of performance
• D has a limited effect

34

E
xp

er
im

en
ta

l
Results: Graph size parameters P,D

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

γ�

D

Random mesh (S=3, P=100)
Variability 1
Variability 0.5
Variability 0.2
Variability 0.1

• P responsible for the under-logarithmic-like loss of performance
• D has a limited effect

Pathological effects characterization and metric [Dissertation 4.1.3]

34

E
xp

er
im

en
ta

l
Results: Graph parameter S

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100

γ�

S

Random sample: 256 nodes
Variability 1
Variability 0.1

• S increase has opposite effect to P

35

E
xp

er
im

en
ta

l
Results: Graph parameter S

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100

γ�

S

Random sample: 256 nodes
Variability 1
Variability 0.1

• S increase has opposite effect to P

• S < 2 implies sparse graphs containing SP series subgraphs

35

E
xp

er
im

en
ta

l
Results: Graph parameter S

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100

γ�

S

Random sample: 256 nodes
Variability 1
Variability 0.1

• Maximum dispersion around S = 2

36

E
xp

er
im

en
ta

l
Results: Graph parameter S

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100

γ�

S

Random sample: 256 nodes
Variability 1
Variability 0.1

• Maximum dispersion around S = 2

• Asymptotic predictions:

γ ≈
µ+ σ

√
log(P)

µ+ σ
√

log(S)
36

E
xp

er
im

en
ta

l
Results: Execution level Γ

37

E
xp

er
im

en
ta

l
Results: Execution level Γ

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 4 6 8 10 12 14 16

Γ�

Procs.

Beowulf - Gamma
Macro-Pipeline

Cellular Automata
LU reduction

• Static applications: Extremely balanced workloads, negligible γ

37

E
xp

er
im

en
ta

l
Results: Execution level Γ

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 4 6 8 10 12 14 16

Γ�

Procs.

Beowulf - Gamma
Macro-Pipeline

Cellular Automata
LU reduction

• Static applications: Extremely balanced workloads, negligible γ

• Non-optimized communications: Barriers noticeable

37

E
xp

er
im

en
ta

l
Results: Execution level Γ

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

16 32 48 64 80 96 112 128

Γ�

Procs.

CrayT3E - Gamma
Macro-Pipeline

Cellular Automata
FFT

LU reduction

• Static applications: Extremely balanced workloads, negligible γ

• Non-optimized communications: Barriers noticeable
However, sometimes communications perform better in presence of a barrier!

37

E
xp

er
im

en
ta

l
Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance

38

E
xp

er
im

en
ta

l
Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance

38

E
xp

er
im

en
ta

l
Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance

150

159

157

153

152

Workload

38

E
xp

er
im

en
ta

l
Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance

150

159

157

153

152

Workload

• Negligible loss of performance: Expected for any good load-balancing
technique

38

E
xp

er
im

en
ta

l
Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization

39

E
xp

er
im

en
ta

l
Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization

• Bad statistical workload parameters: ς � 1 in most cases

39

E
xp

er
im

en
ta

l
Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization

• Bad statistical workload parameters: ς � 1 in most cases

• Experiments with synthetic workloads show lower γ than expected

• Real workload even lower:

nodes ς Γ
59 2.1 1.000

113 3.0 1.006
213 1.4 1.074
528 2.0 1.199
773 7.1 1.009

2015 2.6 1.103

39

E
xp

er
im

en
ta

l
Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization

• Bad statistical workload parameters: ς � 1 in most cases

• Experiments with synthetic workloads show lower γ than expected

• Real workload even lower:

nodes ς Γ
59 2.1 1.000

113 3.0 1.006
213 1.4 1.074
528 2.0 1.199
773 7.1 1.009

2015 2.6 1.103

• Domain decomposition data-layout produces workload
and topology regularities

39

C
o

n
cl

u
si

o
n
Summary

• Parallel programming field: Lack of a common development direction

40

C
o

n
cl

u
si

o
n
Summary

• Parallel programming field: Lack of a common development direction

• We have proposed a new classification system for PPMs, based on SA

The adequacy of a model in terms of expressive power, software de-
velopment methodologies and analyzability characteristics, is related
to its SA class

40

C
o

n
cl

u
si

o
n
Summary

• Parallel programming field: Lack of a common development direction

• We have proposed a new classification system for PPMs, based on SA

The adequacy of a model in terms of expressive power, software de-
velopment methodologies and analyzability characteristics, is related
to its SA class

• The SP-restriction is a critical decision for a PPM adequacy

SA: Key for the expressive power vs. analyzability trade-off

40

C
o

n
cl

u
si

o
n
Summary

• Parallel programming field: Lack of a common development direction

• We have proposed a new classification system for PPMs, based on SA

The adequacy of a model in terms of expressive power, software de-
velopment methodologies and analyzability characteristics, is related
to its SA class

• The SP-restriction is a critical decision for a PPM adequacy

SA: Key for the expressive power vs. analyzability trade-off

• The expressive power restriction associated with SP PPMs has been
investigated in-depth both theoretically and empirically

40

C
o

n
cl

u
si

o
n

Methodology

• Methodology: Three-way approach

– Conceptual: Models and applications review, SA classification.
Qualitative study

41

C
o

n
cl

u
si

o
n

Methodology

• Methodology: Three-way approach

– Conceptual: Models and applications review, SA classification.
Qualitative study

– Theoretical: SP, NSP graph characterization
and algorithmic transformation techniques

41

C
o

n
cl

u
si

o
n

Methodology

• Methodology: Three-way approach

– Conceptual: Models and applications review, SA classification.
Qualitative study

– Theoretical: SP, NSP graph characterization
and algorithmic transformation techniques

– Experimental: Empirical analysis framework for the potential
negative performance impact of SP programming at different
levels of detail, including propagation to execution level

41

C
o

n
cl

u
si

o
n

Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ

42

C
o

n
cl

u
si

o
n

Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ

• At execution level (Γ):
In our experiments with real applications Γ is bounded to tens of per-
cents
It almost does not scale with the problem size!

42

C
o

n
cl

u
si

o
n

Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ

• At execution level (Γ):
In our experiments with real applications Γ is bounded to tens of per-
cents
It almost does not scale with the problem size!

• SP performance degradation is mainly associated to poorly balanced
and unstructured computations

42

C
o

n
cl

u
si

o
n

Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ

• At execution level (Γ):
In our experiments with real applications Γ is bounded to tens of per-
cents
It almost does not scale with the problem size!

• SP performance degradation is mainly associated to poorly balanced
and unstructured computations

• SP SA is a promising design concept for portable, efficient, easy-to-
use and general-purpose PPMs

42

C
o

n
cl

u
si

o
n

On-going and future research

• Further experiments with more irregular applications

43

C
o

n
cl

u
si

o
n

On-going and future research

• Further experiments with more irregular applications

• New NSP to SP transformations:

– Based on both strategies

– Using information of estimated workload

43

C
o

n
cl

u
si

o
n

On-going and future research

• Further experiments with more irregular applications

• New NSP to SP transformations:

– Based on both strategies

– Using information of estimated workload

• Real SP programming framework development:
Automatic mapping and scheduling guided by performance cost analysis

43

C
o

n
cl

u
si

o
n

Main contributions

• CPC 2003, Tenth International Workshop on Compilers for Parallel Computers, Amsterdam,
The Netherlands

• VecPar 2002, 5th International Meeting, High Performance Computing for Computational Sci-
ence, Porto, Portugal (Best Student Paper Award)

• CPC 2001, Ninth International Workshop on Compilers for Parallel Computers, Edinburgh,
Scotland

• VecPar 2000, 4th International Meeting on Vector and Parallel Processing, Porto, Portugal

• CPC 2000, Eigth International Workshop on Compilers for Parallel Computers, Aussois, France

• Parallel Computing ParCo’99 Delft, The Netherlands

• Euro-PDS’97, IASTED International Conference, Parallel and Distributed Systems, Barcelona

• ASCI’97, Proceedings of the third annual conference of the Advanced School for Computing
and Imaging, Heijen

44

Questions?

Powered by: LATEX, Xfig, Gnuplot, PPower4, Acrobat Reader

45

