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[Siegel2000] [Smith2001] [Danelutto2003]

• No well-established parallel computing model or reference architecture
[SkillicornTalia98]

• Lack of a Parallel Programming Model (PPM) which achieves both:

– Software development capabilities

– Portability and efficient implementations
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Parallel systems modeling challenges
Existing approaches

• High abstract level

+ Elegant semantic models
– Complex specifications
– Too far from lower level details for easy implementation

• Focused on the low level details

+ Allow to exploit all parallelism power
– Difficult to program, analyze and debug

• Restricted models

– Reduce the expressive power
+ Simple & analyzable structures

The expressive power and analyzability of a model
appear to be highly related to communication/synchronization
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• We coin the term Synchronization Architecture (SA) to summarize
the formal description of communication & synchronization logic
structures

• Why architecture?

– Description of synchronization/communication mechanisms

– Description of the composition rules

• Why synchronization?

– Generalization of both communication & synchronization

– Synchronization and computation are orthogonal
[GelernterCarriero92]

– Synchronization distinguishes parallel from sequential solutions
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• What is the relationship between SA and properties of PPMs?
We propose a new classification system for PPMs

• What are the advantages and drawbacks of restricted SAs?
We show that one SA class, called SP, groups the most interesting models

• How is expressive power affected by the restriction?
We present systematic transformation methods to map non-SP applications into SP form

We investigate the potential performance impact of these transformations

We will show that SP PPMs bring a good trade-off between
expressive power and analyzability, being a good choice for
general-purpose parallel computing
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Three-step approach

• Conceptual

– SA classification
– Review of models at different abstraction levels
– Relate SA to PPM characteristics
– Detect which applications naturally map to each class

• Theoretical

– SP graph characterization
– NSP to SP transformation (algorithmic) techniques
– Potential performance loss study

• Experimental

– Graph modeling of applications
– Experiments with synthetic graphs
– Experiments with real application graphs
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• Two main types of synchronization [AndrewsSchneider82]

– Condition synchronization (CS)

∗ Communications or event synchronization
∗ Implies an execution order

– Mutual Exclusion (ME)

∗ No concurrent execution, but order is not predefined
∗ Final order selection is delayed for lower-level optimization

– Orthogonality: A PPM may support one or both of them

• Classes:

– ME axis: ME vs. NME

– CS axis: SP (nested-parallelism, cobegin-coend) vs. NSP

• Data-dependent or dynamic structures (DS)

– Dynamic conditions and data-dependent synchronizations

– Impact on analyzability properties [SkillicornTalia98]

– DS axis: DS vs. NDS
8
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• Requirements
[SkillicornTalia98]

1 Easy to program
2 Software development technology
3 Easy to understand
4 Architecture independent
5 Cost measures
6 Guaranteed performance

• Qualitative and difficult to measure

• Quantitative study of performance is possible [JuurlinkWijshof98]

• In this work:

– Review of models to determine adequacy and relate it to SA

– For the most relevant SA classes, comparative performance study
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• The most adequate models are in the SP class

• Study of applications [Dissertation 2.6]

– Many typical applications naturally map to SP

– Some important classes do not!

• Map NSP applications to SP form:
Transformations⇒ Performance loss
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It is necessary to study the transformations: NSP→ SP
and their potential performance impact
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Graphs

• Formal language: Graph theory

• STDAGs (Standard two-terminal direct acyclic graphs)

• Modelization of a parallel computation structures with a graph:

– AoN (Activity on Nodes)

– Edges: Condition synchronization (execution order)
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• Compositional recursive definition: [Valdes.et al92]

• Forbidden subgraph characterization [Duffin65]

• NSP: Combinations of forbidden subgraphs [Dissertation 3.3.3]
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• Duplication of nodes

– Duplication of nodes related to a forbidden subgraph:
Reduction sequences [Bein.et al92], path expressions [Naumann94]

– Non-work-preserving technique

– Number of duplications depends on the number of adjacent edges
Increasing number of resources (processing elements) needed

– Not appropriate for general purposes
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• Added dependencies

– Resynchronize parts of the graph related to forbidden subgraphs

– Work-preserving technique

– Serialize potentially parallel tasks: Possible performance loss

– We name these techniques as SP-izations

• Mixed techniques: Use both strategies

• We focus on SP-izations
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concept

• Procedure:

1. Compute depth level of any node (layers)

2. Resynchronize with full barrier between consecutive layers

L1

L2

L3

L4

L1

L2

L3

L4

L1

L2

L3

L4

• Low complexity bounds: O(m+ n)

• It does not exploit SP graphs or possibility of local resynchronizations
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• No global information stored: O(m× n)

• It does not keep the layering structure:
Higher potential overhead even on well-balanced computations
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Algorithm 2: Properties

• Considers global information stored in the SP tree-reduction

• Tight time complexity bounds: O(m+ n logn)

Higher complexity than the layering technique

• Similar results as layering for regular NSP structures
But better results for more irregular, or closer to SP form graphs
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• Objective: Measure the potential performance impact of an SP-ization
Critical path value (cpv) analysis: Cost model of performance

• Relative critical path difference:

γτ (G,G
′) =

cpv(G′)

cpv(G)

• Upper bounds:

– Unlikely cases of highly unbalanced computations
Pathological workload distributions

– Average cost is more appropriate for dynamic workloads
[LamportLynch90]

• We focus on expected values: γ

• Other structural impact metrics are not related with the potential per-
formance loss [Dissertation 3.6.2]
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• Absence of real workload information: Stochastic workloads
Nodes workload are i.i.d. (independent identically distributed) random variables

• Stochastic SP cpv analysis:

– Series composition: Addition of i.i.d. random variables

– Parallel composition: Order statistics [Gumbel62]

• Stochastic NSP cpv analysis: Prevented by its inherent complexity

• Approximations for simple regular NSP structures [Vaca99]

– Simple analytical formulae for γ

– Predicts experimental behavior asymptotically (Error < 25%)

– Topology-dependent results

• Further experimental study is needed
to predict the loss of performance in a generic case
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• Objective:

– Measure the performance loss introduced when NSP structures
are programmed in SP form

– Relate the performance loss to graph or workload parameters

• Topological parameters:

– P : Maximum degree of parallelism

– D: Maximum depth level

– S: Synchronization density 1 2 43

1 2 43

1 2 43

S 2

D=3

P=4

L1

L2

L3

• Workload parameters: τ  D(µ, σ)

– Relative deviation: ς = σ
µ

(”variability”)

• Sizes: From small (P,D < 10) to large (P,D > 1000)

• Variability: From balanced (ς = 0.1) to highly unbalanced (ς = 1)
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Synthetic graphs


Random sample graphs
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Real applications
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Static applications

Dynamic applications
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Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

• Meshes: Regular topologies of i layers with j nodes each

– Regular or random synchronization between consecutive layers
[TobitaKasahara99]

– Parameters: P,D, S, ς
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Experiments design - II

Synthetic graphs

• Random sample of the graph space: General idea of trends

– Random graphs generation technique [Almeida92]

– Parameters: Size, S, ς

• Meshes: Regular topologies of i layers with j nodes each

– Regular or random synchronization between consecutive layers
[TobitaKasahara99]

– Parameters: P,D, S, ς

• Workload: 25 draws for each topology and ς value
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Experiments design - III

Real static applications

• Easy graph modeling at any level of detail
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Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

• Macro-pipeline, Cellular Automata, FFT, LU reduction

• Framework (γ,Γ):

– Programming/mapping levels: Synthetic workloads

– Implementation level: Communication costs considered

– Execution level: MPI implementations (SP version with barriers)
[Dissertation 4.2.1]
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Real static applications

• Easy graph modeling at any level of detail

• Typically highly regular: Results expected to be similar than meshes

• Parameters: P,D

• Macro-pipeline, Cellular Automata, FFT, LU reduction

• Framework (γ,Γ):

– Programming/mapping levels: Synthetic workloads

– Implementation level: Communication costs considered

– Execution level: MPI implementations (SP version with barriers)
[Dissertation 4.2.1]

• Execution level: Three architectures

– CC-NUMA (Origin2000)

– Message-passing with low latency (CrayT3E)

– Distributed memory with high latency (Beowulf)
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Experiments design - IV

Real dynamic applications

• Two cases:

1. Structure can be reconstructed from input data structure

2. Structure can be obtained only by tracing in run-time
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Experiments design - IV

Real dynamic applications

• Two cases:

1. Structure can be reconstructed from input data structure

2. Structure can be obtained only by tracing in run-time

• Typically more irregular than static applications

• One example application of each type

• Six real input data examples for each application
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Experiments design - V

Iterative PDE solver
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Matrix Market: Harwell-Boeing, Everstine’s collection.
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Experiments design - V

Iterative PDE solver

• Six real structural engineering examples
Matrix Market: Harwell-Boeing, Everstine’s collection.

• Sparse matrix data is partitioned for data-layout
State-of-the-art partitioning software: METIS

• Mapping level graph reconstructed

• Workload per task estimated as a function of data-layout
31
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Experiments design - VI

Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex
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Experiments design - VI

Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex
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• We use six example mapping level graphs reconstructed from tracing
information obtained in a previous work [Lin94,96]
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Domain decomposition and sparse matrix factorization

• Real software oriented to structural engineering: DIANA + Tgex
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• We use six example mapping level graphs reconstructed from tracing
information obtained in a previous work [Lin94,96]

• Real execution workloads provided
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# nodes

Random samples
Variability 1  
Variability 0.5
Variability 0.2
Variability 0.1

• Low workload unbalance→ Minimal performance loss
• High workload unbalance→ Increasing performance loss
• Workload correlation with layers or vertical instances of nodes

Reduced performance loss [Dissertation 4.1.3]
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Random mesh (S=3, P=100)
Variability 1  
Variability 0.5
Variability 0.2
Variability 0.1

• P responsible for the under-logarithmic-like loss of performance
• D has a limited effect

Pathological effects characterization and metric [Dissertation 4.1.3]
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Random sample: 256 nodes
Variability 1  
Variability 0.1

• S increase has opposite effect to P

• S < 2 implies sparse graphs containing SP series subgraphs
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Random sample: 256 nodes
Variability 1  
Variability 0.1

• Maximum dispersion around S = 2

• Asymptotic predictions:

γ ≈
µ+ σ

√
log(P )

µ+ σ
√

log(S)
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LU reduction

• Static applications: Extremely balanced workloads, negligible γ

• Non-optimized communications: Barriers noticeable
However, sometimes communications perform better in presence of a barrier!
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Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance
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Results: Dynamic applications - I

Sparse iterative solvers

• METIS partitioning produces very well workload and synchronization
balance

150

159

157

153

152

Workload

• Negligible loss of performance: Expected for any good load-balancing
technique
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Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization
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Domain decomposition and sparse matrix factorization

• Bad statistical workload parameters: ς � 1 in most cases

• Experiments with synthetic workloads show lower γ than expected

• Real workload even lower:

# nodes ς Γ
59 2.1 1.000

113 3.0 1.006
213 1.4 1.074
528 2.0 1.199
773 7.1 1.009

2015 2.6 1.103
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Results: Dynamic applications - II

Domain decomposition and sparse matrix factorization

• Bad statistical workload parameters: ς � 1 in most cases

• Experiments with synthetic workloads show lower γ than expected

• Real workload even lower:

# nodes ς Γ
59 2.1 1.000

113 3.0 1.006
213 1.4 1.074
528 2.0 1.199
773 7.1 1.009

2015 2.6 1.103

• Domain decomposition data-layout produces workload
and topology regularities
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• Parallel programming field: Lack of a common development direction

• We have proposed a new classification system for PPMs, based on SA

The adequacy of a model in terms of expressive power, software de-
velopment methodologies and analyzability characteristics, is related
to its SA class

• The SP-restriction is a critical decision for a PPM adequacy

SA: Key for the expressive power vs. analyzability trade-off

• The expressive power restriction associated with SP PPMs has been
investigated in-depth both theoretically and empirically
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• Methodology: Three-way approach

– Conceptual: Models and applications review, SA classification.
Qualitative study
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Methodology

• Methodology: Three-way approach

– Conceptual: Models and applications review, SA classification.
Qualitative study

– Theoretical: SP, NSP graph characterization
and algorithmic transformation techniques

– Experimental: Empirical analysis framework for the potential
negative performance impact of SP programming at different
levels of detail, including propagation to execution level
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Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ
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• At execution level (Γ):
In our experiments with real applications Γ is bounded to tens of per-
cents
It almost does not scale with the problem size!
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Results
• At the design or programming level (γ):

Correlation between the SP potential loss of parallelism with simple
application parameters:

– P has an under-logarithmic-like effect on γ

– S has a positive inverse effect

– Variability (ς) has the major impact on γ

• At execution level (Γ):
In our experiments with real applications Γ is bounded to tens of per-
cents
It almost does not scale with the problem size!

• SP performance degradation is mainly associated to poorly balanced
and unstructured computations

• SP SA is a promising design concept for portable, efficient, easy-to-
use and general-purpose PPMs
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• Further experiments with more irregular applications
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On-going and future research

• Further experiments with more irregular applications

• New NSP to SP transformations:

– Based on both strategies

– Using information of estimated workload

• Real SP programming framework development:
Automatic mapping and scheduling guided by performance cost analysis
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