
Syn
hronization Ar
hite
ture inParallel Programming Models
PhD Thesis

Arturo Gonz�alez Es
ribanoJuly 2003

Dpt. Inform�ati
aUniversity of Valladolid

PhD Supervisors:Dr. Valent��n Carde~noso Payo (Universidad de Valladolid)Dr.Ir. Arie J.C. van Gemund (Delft University of Te
hnology)

Copyright

 2003 by Arturo Gonz�alez Es
ribano

To my family, the small one and the big one

\ ni tibi
averis, istudnon sinet inta
tum
haos, Antipodumque re
essus,alteriusque volet naturae
ernere solem [...℄"\if you're not on guard, he will disturb this
haos ofyours, the Antipodes deepest pla
es, he will try todis
ern another world's sun [...℄".\Alexandreis" sive \Gesta Alexandri Magni", 1855Gautier de Châtillon

Contents
A
knowledgements xi1 Introdu
tion 11.1 Motivation . 11.2 Parallel programming models . 41.3 Syn
hronization Ar
hite
ture . 61.4 Problem statement and thesis . 91.5 Approa
h . 101.6 Outline . 112 Con
eptual approa
h 132.1 Parallel models and de�nitions 142.1.1 Parallelism and parallel
omputing 142.1.2 Modeling . 152.1.3 PCMs and PMMs . 152.1.4 Detail levels . 182.1.5 Requirements of PPMs 182.2 Syn
hronization ar
hite
ture . 202.2.1 Types of syn
hronization: CS, ME 202.2.2 Mutual ex
lusion, mapping and bounded resour
es 212.2.3 Classi�
ation
riteria for SAs 242.2.4 Condition syn
hronization: CS
lasses 262.2.5 Mutual ex
lusion: ME
lasses 302.2.6 Mutual ex
lusion vs.
ondition syn
hronization 322.2.7 Data-Dependen
y: DS, NDS
lasses 332.3 Exe
ution-level models . 352.3.1 SA
lass of ma
hine models 362.3.2 Con
lusions about exe
ution models 392.4 Bridging models and
ost models 402.4.1 Class (SP,NME,NDS): PRAM 402.4.2 Class (SP,ME,NDS): BSP 46i

ii CONTENTS2.4.3 Class (SP,ME,NDS): QSM 532.4.4 Class (NSP,ME,DS): LogP 552.4.5 Con
lusions about PCMs SA 592.5 Parallel programming languages and models 612.5.1 Class (SP,NME,DS): Pure nested parallelism 612.5.2 Class (SP,ME,NDS): Nested parallelism with ME 622.5.3 Class(NSP,NME,NDS): Mapping oriented models 652.5.4 Class (NSP,ME,DS): Message passing 682.5.5 Class (NSP,ME,DS): Maximum abstra
tion 692.5.6 Con
lusions about PPLs/PPMs SA 712.6 Syn
hronization ar
hite
ture of appli
ations 732.6.1 Class (SP,ME,NDS/DS) 742.6.2 Class (NSP,ME,NDS/DS) 752.6.3 Class (SP,NME,NDS) . 752.6.4 Class (SP, NME, DS) . 762.6.5 Class (NSP,NME,NDS) 772.6.6 Class (NSP,NME,DS) . 792.6.7 Con
lusions about appli
ations SA 802.7 Summary . 813 Theoreti
al approa
h 833.1 Graph preliminaries . 843.1.1 Basi
 graph
on
epts and notations 853.1.2 Transitivities . 883.1.3 Topologi
al graph parameters 893.1.4 Task graphs . 903.2 Series-parallel graphs . 923.2.1 De�nitions . 923.2.2 Distan
e from NSP to SP graphs 963.3 Transformation problem (NSP to SP) 983.3.1 SP-ization . 983.3.2 Lo
al resyn
hronization 1013.3.3 Combinations of NSP problems 1043.3.4 Simple SP-ization te
hniques 1093.4 Algorithm 1: Lo
al exploration 1123.4.1 Notations . 1123.4.2 SP-ization te
hnique . 1133.4.3 JF
ombinations . 1163.4.4 Mixing problems through JF
ombinations 1173.4.5 Example . 1183.4.6 Complexity . 1203.5 Algorithm 2: Lo
al layering te
hnique 123

CONTENTS iii3.5.1 Notations . 1233.5.2 Algorithm des
ription . 1243.5.3 Example . 1273.5.4 Corre
tness . 1313.5.5 Criti
al path property for UTC graphs 1323.5.6 Complexity . 1333.5.7 Implementation . 1343.5.8 Improvements . 1363.6 Measuring the SP-ization impa
t 1363.6.1 Potential performan
e impa
t 1373.6.2 Stru
tural impa
t . 1403.6.3 Algorithms
omparison 1433.6.4 Analyti
al models . 1453.6.5 Con
lusions about SP-ization impa
t 1473.7 Summary . 1484 Experimental study 1514.1 Syntheti
 graphs . 1524.1.1 Workload modeling . 1534.1.2 Random sample of the graph spa
e 1554.1.3 Meshes . 1604.1.4 Con
lusions about syntheti
 graph results 1784.2 Real Appli
ations . 1804.2.1 Experiments design . 1804.2.2 Appli
ation
ost models at programming level 1884.2.3 Appli
ation
ost models at implementation level 1984.2.4 Stati
 appli
ations results 2074.2.5 Dynami
 appli
ations results 2154.2.6 Con
lusions about real appli
ation results 2264.3 Summary . 2265 Con
lusion 2295.1 Contributions . 2305.2 Con
lusions . 231Bibliography 233

iv CONTENTS

List of Figures1.1 Shift of interest in parallel development eÆ
ien
y 21.2 Software engineering (SEC) and analysis (AC)
hara
teristi
s. . . 51.3 Example of parallelism loss at programming level 82.1 Abstra
tion levels of modeling . 162.2 Workers-Farm s
heduling strategy 222.3 SA
lassi�
ation
riteria . 252.4 SA
lassi�
ation . 262.5 Restri
tiveness in
rease of SA
lasses 272.6 Example of series-parallel
ode and stru
ture 282.7 Classes of
ondition syn
hronization 292.8 Example of non series-parallel
ode and stru
ture 292.9 Example of
ode and stru
ture with ME primitives 312.10 Example of
ode and stru
ture with programmed ME 322.11 Example of none ME syn
hronization
ode and stru
ture 332.12 Example of stati
 syn
hronization
ode and stru
ture 342.13 Example of dynami
 syn
hronization
ode and stru
ture 352.14 Shared address spa
e ma
hine models 362.15 Message-passing ma
hine models 382.16 SA
lassi�
ation of ma
hine models 392.17 PRAM
omputing model . 412.18 BSP
omputing model . 472.19 QSM
omputing model . 542.20 LogP
omputing model . 562.21 SA
lassi�
ation of PCMs . 602.22 Classi�
ation of PPLs/PPMs reviewed 722.23 Example of a ME-Ma
ropipeline 742.24 D&C blo
k matrix multipli
ation. 772.25 Example of stati
 dependent pipeline 782.26 Classi�
ation of example appli
ations 803.1 The forbidden subgraph for SP-graphs 93v

vi LIST OF FIGURES3.2 Redu
tion operators . 943.3 Node redu
tion operator . 973.4 Intrinsi
 operations in node redu
tion 983.5 Example graphs homeomorphi
 to the W forbidden subgraph . . 1023.6 Methods for resyn
hronization of graphs homeomorphi
 to W . . 1033.7 Example of di�erent strategies for a
ross syn
hronization 1053.8 Resyn
hronization of graphs homeomorphi
 to Series-NSP 1063.9 Resyn
hronization of graphs homeomorphi
 to Parallel-NSP . . . 1073.10 Resyn
hronization of graphs homeomorphi
 to 2 Chained-NSP . 1083.11 Resyn
hronization of graphs homeomorphi
 to 2 Crossed-NSP . . 1093.12 Te
hnique 1 - Serialization based on topologi
al order 1103.13 Te
hnique 2 - Full barrier syn
hronization based on layering . . . 1113.14 Example of JF
ombinations . 1163.15 Example of mixed problems through a JF
ombination 1173.16 Solutions of a mixed problem through a JF
ombination 1183.17 Example NSP graph and its minimal SP redu
tion 1183.18 Solving the NSP problem in the original and SP redu
ed graph . 1203.19 Example of relatives
lasses indu
ed between two layers 1243.20 Example of handles and forest for an U
lass 1253.21 Example of algorithm 2: Steps 1,2,3 1283.22 Example of algorithm 2: Steps 4,5 1293.23 Example of algorithm 2: Step 6 & Result 1303.24 Solutions obtained by the normal and improved algorithms . . . 1373.25 Implementation traje
tory. Abstra
tion levels 1393.26 Measuring transformation distan
e (�) 1423.27 Experimental
pv measurements for the example graph 1433.28 Comparison of algorithms in
rease in
pv for random graphs sample1443.29 Neighbor syn
hronization example 1464.1 Example of relative
riti
al path value in
rease 1544.2 General
 tenden
y on graph size 1574.3 Dependen
e of topologi
al parameters on S 1584.4 Dependen
e of
 on S and & . 1594.5 General trend dependen
e on Rs 1604.6 Results dispersion for random graphs 1614.7 Example of a mesh graph de�ned by P;D; � 1624.8 E�e
t of high S values in random meshes 1654.9
 dependen
e on S,P and D in random meshes 1664.10 Limited e�e
t of D in random meshes 1674.11 Exponential like e�e
t of P in random meshes 1684.12 Example of unbalan
ed syn
hronization mesh 1694.13 Example of syn
hronization
hara
teristi
 graph 169

LIST OF FIGURES vii4.14 Example of !(M) measure with the
 graph 1704.15 Example of meshes with higher S and the same ! 1714.16 Limited e�e
t of S in syn
hronization unbalan
ed meshes 1724.17 Non-limited e�e
t of D in syn
hronization unbalan
ed meshes . . 1734.18 Independen
e of load
orrelation position 1764.19 Bene�
ial e�e
t of the verti
al
orrelation 1774.20 Bene�
ial e�e
t of the horizontal
orrelation 1794.21 OpenMP vs. MPI implementations in Origin2000 1864.22 1D Cellular Automata mesh de�ned by a sten
il 1924.23 2D Cellular Automata mesh de�ned by a sten
il 1934.24 FFT butter
y network . 1954.25 LU forward redu
tion algorithm 1954.26 LU redu
tion: Programming level and mapping level graphs . . . 1964.27 Communi
ation models for MPI 2004.28 LU redu
tion message-passing algorithms 2014.29 Implementation models of LU redu
tion with distributed rows . . 2034.30 Performan
e
omparison: Real times vs. predi
ted times 2054.31

omparison: Real times
 vs. predi
ted times
 2064.32
 results for random workloads in 1D Cellular automata model . 2094.33
 results for random workloads in FFT graph model 2104.34
 results for random workloads in LU programming level model . 2114.35
 results for random workloads in LU programming level model . 2124.36 � results . 2134.37 Exe
ution times of some appli
ations in the Beowulf system . . . 2164.38 3D models of the stru
tural engineering examples 2184.39 Sparse-matri
es stru
ture of the stru
tural engineering examples 2194.40 Example task graph: Sea Chest-1242, 8 pro
essors, 8 iterations . 2214.41 S parameter for partitioned iterative solver task graphs 2224.42 Example of a dynami
 appli
ation graph and its SP version. . . . 2244.43 Results for sparse dire
t solver example graphs. 225

viii LIST OF FIGURES

List of Tables1.1 PPMs
lassi�
ations: (a) Skilli
orn & Talia [174℄, and (b) ourproposal. 73.1 Edge annotations in the minimal SP redu
tion graph 1193.2 Dete
ting the problem handles 1193.3 Algorithms
omparison . 1454.1 Load estimated times (millise
onds) 2044.2 Statisti
al workload information for highly regular appli
ations (ms.)2144.3 Estimated & for partitioned iterative solver task graphs 2204.4 Statisti
al information of real workloads for sparse dire
t solver. . 223

ix

x LIST OF TABLES

A
knowledgementsFirst of all, I want to thank my parents, who started my edu
ation, those whotaught me how to a
t, how to be, how to learn, how to sear
h in my soul when lost,and those who forgot so few things to tea
h me when I was �ghting for adulthood;my brother, who led me in the way of wat
hing, dreaming and questioning; andwith all my love, my grandmother Dolores, who taught me many things aboutthe real meaning of life, espe
ially the se
rets of laughther, sadness and joy.Now, I in
lude here both professional and personal a
knowledgements, in nospe
i�
 order: I want to thank Miguel and Fina for helping me to start over andfor �ghting for good sense, no matter the troubles around; Pablo and Ce
i formaking
ommon life interesting over and over again; Mar
o for being a rare lightin the depths of night; Jenny, who supported me with her sweet and pleasant
ompany; Jes�us for being a stone in the eye of a hurri
ane (even in his hurri
ane);Felipe who lives in our minds, dreaming our dreams; Barbi with all my tenderness,for bringing a marvelous s
ent ba
k into my life; Fernando, Toro, Beltza andSito, never to forget why; Rafa who is always around even when far away, andwho is a remarkable man; Juan and Loli for being worry, so worry, so mu
hworry, that even they tried to press me; Isidro for being su
h a normal person;Ramon for sharing his insanity with mine at
razy times; Carmen, Roberto andother friends for keeping me on the line; many people from GMV just for beingaround with their
heerfulness; C�esar for reminding me what a normal pleasantlife was, and for so many ni
e times in Delft; Rebe
a for keeping my life warmin a
hilly age; Cristina, Rosal��a, To~no, Dani, Ram�on, Alfonso, Za
ar��as andso many other ni
e people to share things when far away from home; Chus, forkeeping me part of her life; Andrei and Lin for their help and for their professionalunderstanding; Catherine and many other friendly people from the EPCC; MikeO'Boyle, for sharing his experien
e with me; Mark Bull, for being always athand, even keeping no time for him; Oliver for his support in hard times; Georgbe
ause he was \interested in everything that was interesting", no matter if onehundred miles away; my department
olleagues, those who helped me, those whoworked with me, those who talked with me about my work, those who asked mea thousand times if the thesis was already �nished, and those who were aroundwhen needed; espe
ially Diego for his support and help, not only pro�esional,xi

xii ACKNOWLEDGEMENTSduring this diÆ
ult last year; Valent��n for sharing his glitters of wisdom and forboth: his stubbornness and his steadiness; and last but not least, I want to thankArjan, for being a mentor, a
olleague and a friend from the beginning of thiswork, someone who experien
es life with joy, and so many times a lighthouse inthe middle of the mist.Nevertheless, the full list of people to thank will be too large to be in
ludedin su
h a small volume. If you should be here and you are not �nding your namearound, you know you are
lose to my heart.The author would like to a
knowledge the support of the European Commis-sion through EARI grant number HPRI-1999-CT-00026 (the TRACS programmeat EPCC); the Reken
entrum, Rijksuniversiteit Groningen, and its sta� for theirsupport during the EC summers
hool of 1998 (TMR program) and afterwardsduring our use of their ma
hine. This work was partially supported by CICYTgrant
ontra
t no. IN97-65, for the use of the Origin2000 ma
hine at the Uni-versity of Valladolid.

Chapter 1Introdu
tion He holds him with his glittering eye{The Wedding-Guest stood still,And listens like a three years'
hild :The Mariner hath his will.The Rime of the An
ient Mariner, 1798Samuel Taylor Coleridge1.1 MotivationThe e�e
tiveness of a parallel appli
ation has been traditionally measured onlyin terms of its a
hievement of high performan
e as
ompared with its sequentialimplementation
ounterpart. From this point of view, the typi
al s
enario hasbeen one of a high performan
e quest, espe
ially in the �eld of s
ienti�

omput-ing. This situation is qui
kly
hanging nowadays, sin
e general purpose parallelma
hines have be
ome an a�ordable alternative to
lassi
al super
omputers, andnetwork
onne
tivity improvements have enabled parallel
omputing based onheterogeneous
lusters, NOWs, and GRIDs. Con
epts su
h as portability, pre-di
tability, evolution or
orre
tness, genuinely related to software developmentmethodologies, play now a role as important as performan
e improvements. Asa
onsequen
e, the
onstru
tion of high-quality parallel software at a reasonableinvestment of e�ort has be
ome one of the main obje
tives in the developmentof parallel appli
ations. Software
onstru
tion methodologies, veri�
ation, easeof debugging, interoperability and reusability be
ome key
hallenges for newgeneri
 super
omputing environments [52, 169, 175℄. The
ontinuous hardwareevolution, and the la
k of an established and
ommonly a

epted parallel
om-puting model or referen
e ar
hite
ture results in a maturity level identi
al tothe one in sequential
omputing before everybody assimilated the
ompatibility1

2 CHAPTER 1. INTRODUCTION
Speed-up

DevelopmentExecution
efficiency efficiency

Programming cost

Shift in time

Effectiveness

Figure 1.1: Shift of interest in parallel development eÆ
ien
yideas imposed by the introdu
tion of widespread
ommon ar
hite
tures based atthe more abstra
t level on the Von Neumann model [134℄. The development ofquality parallel software is
ompromised by the la
k of well-established modelsand by the
ommon design te
hniques for the low-level tuning whi
h is ne
essaryto get maximum performan
e.In the parallel programming �eld an important resear
h a
tivity is thus fo-
used on the introdu
tion of tools and methodologies for parallel software devel-opment. The obje
tive is to
reate an appropriate framework to develop e�e
tiveparallel appli
ations (eÆ
ient and portable). However, parallel
omputing
hal-lenges are being fa
ed from three basi
ally di�erent perspe
tives whi
h are notyet mature enough as to bridge the gap between them. These are the following:Parallel semanti
 modelsFormal models of parallelism have been proposed and studied for a long time (seee.g. [165, 166, 190℄). They are aimed to reason about
orre
tness and
on
urren
ypossibilities. However, the models that explore unrestri
ted syn
hronization
on-
urren
y reveal many unde
idable problems. Their inherent
omplexity preventsformal analysis and the amount of tra
ing information about a system evolutionbe
omes intra
table. As a
onsequen
e, there are no pra
ti
al programming lan-guages or environments whi
h fully integrate the
omplete set of formal propertiespres
ribed by these models.Parallel
omputation modelsParallel
omputation models were introdu
ed as a means to reason about
om-putability, and to derive
omplexity measures of parallel algorithms. In sequentialprogramming, a Turing ma
hine is a universal model whose
omplexity measuresare not modi�ed, but in small
onstant fa
tors, when an implementation is gener-ated using the bridging model proposed by Von Neumann. However, in parallel

1.1. MOTIVATION 3
omputing,
omplexity measures and performan
e predi
tion are
ompli
atedby the la
k of an established
ost-theoreti
 model or a widely a

epted bridgingmodel for parallel
omputers [122℄. As a
onsequen
e, parallel
omputation mod-els proposed are either too abstra
t, too worried about implementation subtleties,or even too restri
ted to des
ribe many real situations.When the abstra
tion level is too high, the implementation in a real ma
hinerequires
ompli
ated transformations, spe
i�
 for any new ar
hite
ture and ingeneral not de
idable, that
an modify the
omplexity orders of an algorithm(e.g. PRAM model). At the same time, too abstra
t parallel models do noten
ourage programming te
hniques that deal with syn
hronization problems.On the other hand, some models are fo
used on modeling the low-level detailsof
ommuni
ation/syn
hronization
osts (e.g. LogP). In these
ases, the syn
hro-nization stru
tures are
ompletely unrestri
ted and analysis problems arise. Thesoftware development is not intuitive and the
ost model (if not untra
table),
annot be used in reverse to determine whi
h heuristi
 implementation de
isionsprodu
e given results.Finally, there are models designed to provide a
onvenient and simple
ostmodel. However, they use unnatural syn
hronization restri
tions that limit thetypes of algorithms that maps dire
tly into the model, and no
lues are given forthe mapping of other types (e.g. BSP).Parallel programming modelsGiven the previously dis
ussed problems, an important part of the parallel pro-gramming
ommunity is fo
used on the development of pra
ti
al programming in-terfa
es that allows the programmer to exploit the parallel and high-performan
e
hara
teristi
s of a
tual ma
hines. In sear
h of the maximum expressive powerand
exibility, many of these programming models allow the
reation of stru
turesthat are dynami
,
omplex, or impossible to analyze. Poorly stru
tured syn
hro-nization is the origin of many
urrent diÆ
ulties of parallel programming [89℄. Forunrestri
ted syn
hronization stru
tures the optimal mapping (problems to pro-grams) is almost humanly impossible,
ost models are not a�ordable, and goods
heduling algorithms are extremely expensive. The programmer must take lowlevel detail de
isions, in
luding sometimes ma
hine dependent optimization solu-tions hardwired in the
ode. On the other hand, other models sa
ri�
e expressivepower, restri
ting the syn
hronization stru
tures available, so as to keep analysisproperties that lead to better
ost models and formal developing, veri�
ation,mapping and debugging te
hniques.From the above dis
ussion, we identify the syn
hronization stru
tures availablein a parallel system as the key fa
tor for a trade-o� between expressive powerand engineering ability. This trade-o� has been, for a long time, an issue of

4 CHAPTER 1. INTRODUCTIONstill on-going debate. In this study we introdu
e the
on
ept of syn
hronizationar
hite
ture to
lassify the syn
hronization stru
tures in terms of their propertiesrelated to software engineering and high-performan
e. This new approa
h lead usto identify the minimum restri
tions needed to bound the
omplexity of relevantanalysis problems, and to evaluate the potential problems to express parallelappli
ations into these restri
ted stru
tures.1.2 Parallel programming modelsAs already pointed out, a parallel programming model (PPM)
an be de�ned asa programming interfa
e whi
h
an be targeted to any
omputer ar
hite
tureand lets the programmer express parallelism in terms of a set of primitives givenby the underlying parallel model of
omputation. There exist PPMs from thehighest (formal spe
i�
ations) to the lowest (
lose to implementation details)abstra
tion levels.Many new design de
isions take part in the
reation of a parallel programminginterfa
e. Compared to sequential programming, new degrees of freedom are tobe
onsidered. Parallel
omputations are mu
h more
ompli
ated to
reate, tra
kand analyze. The mapping of a parallel algorithm to a program is a
omplex task.The resour
es-to-a
tivities assignment (s
heduling), and the partitioning of dataor a
tivities that minimize
ommuni
ation
osts are optimization problems inthe tuple (time, spa
e), typi
ally translated to graph problems, whi
h optimalsolution are not known or are NP-
omplete [4℄. A generi
, heterogeneous andevolving framework requires
exible mapping methods to
reate eÆ
ient andportable appli
ations. Thus, abstra
tion is a more important feature in parallelthan in sequential programming. On the other hand, a parallel programmingmodel is not pra
ti
al if it proposes a so abstra
t interfa
e that it is too diÆ
ultor expensive to �nd eÆ
ient ways to implement it in real hardware ar
hite
tures(existing or evolving). The
hoi
e of a parallel programming model involves atrade-o� between portability and eÆ
ien
y.We distinguish two main
ategories of
hara
teristi
 for a PPM. They arerelated to two properties of the semanti
s involved in the model (see Fig. 1.2).A model should propose an interfa
e abstra
t enough to minimize the humane�ort to learn it and use it for software developing (SEC, software engineering
hara
teristi
s). At the same time, the model should be simple and
lose enoughto the low level details to make it possible eÆ
iently bridging programs to a
tualparallel
omputations in a ma
hine (AC, analysis
hara
teristi
s). However,expressive power may be lost if too mu
h simpli�
ation or abstra
tion is used toimprove the quality of these SEC and AC
hara
teristi
s.The sear
h of a
onvenient programming environment is the
urrent HolyGrail quest in parallel
omputing. The problem has been approa
hed for a long

1.2. PARALLEL PROGRAMMING MODELS 5
SEC AC

ComputationsProgramsSpecifications

Figure 1.2: Software engineering (SEC) and analysis (AC)
hara
teristi
s.time. In the 80s, there was an important gap between theoreti
 parallel algorithmdesign (mainly based on PRAM model) and eÆ
ient implementation on real ma-
hines. Data-parallel languages and automati
 parallelizing
ompilers based ondata analysis were the major trend of resear
h for easy and eÆ
ient parallelprogramming. Nonetheless, the restri
tive data-parallelism model and the im-possibility of re
onstru
ting
ertain parallel stru
tures from sequential
ode1 ledto the development of alternative systems for dire
t and free expressions of par-allelism (mainly message-passing interfa
es), that were failing to provide analysis
hara
teristi
s [89℄.In the 90s, the introdu
tion of the restri
ted but portable and
ost driven
omputation model BSP [185℄, and the more detailed but less restri
ted
ommu-ni
ation
ost model LogP some years after [49℄, brought new attention to parallelprogramming models in general, and to those aimed to
ost measurement in par-ti
ular [16, 57, 76, 133, 161℄. Performan
e modeling be
ame an important issue.In the middle of 90s, the performan
e analysis study of Van Gemund lead to theintrodu
tion of the parallel programming model SPC [70, 71℄. In this model thedependen
e stru
tures that
an be generated are restri
ted to nested-parallelismstru
tures (those that
an be represented by a Series-Parallel (SP) graph [184℄),extended with a simple
ontention me
hanism. This basi
 restri
tion in the syn-
hronization stru
tures allowed by the model is related with the possibility ofusing a new performan
e analysis te
hnique, with adjustable a

ura
y in termsof a ma
hine model. SPC provides a simple parallel software development frame-work. However, some syn
hronization stru
tures are not dire
tly representablein nested-parallelism, and they must be reprogrammed, possibly adding depen-den
es that were not in the original problem. Thus, the utility of a restri
ted1When a naturally parallel appli
ation is programmed in a sequential model, the
on
urren
yspa
e is
ompressed in only one point of the
on
urren
y axis. Con
urrent tasks are pushedinto the time axis, imposing an arbitrary order on them. Thus, important information about
on
urren
y
ould be lost.

6 CHAPTER 1. INTRODUCTIONsyn
hronization programming model is endangered by the potential loss of per-forman
e in
ertain type of appli
ations. We will
ome ba
k to this importantissue along the next se
tion.The study and
omparison of unrestri
ted and restri
ted parallel program-ming models (like SPC) brought to light an important feature of PPMs. Mostof their properties (SEC,AC) are related to the ability to dete
t and evaluateproperties of
ommuni
ation and syn
hronization. Restri
ted models that havegood analyzability
hara
teristi
s for both
ommuni
ation and syn
hronization,
an a
hieve all the SEC and AC requirements.1.3 Syn
hronization Ar
hite
tureWe propose the
on
ept of Syn
hronization Ar
hite
ture (SA) to be the abstra
tdes
ription of the syn
hronization stru
tures and
ommuni
ation pro
esses whi
h
hara
terize a given PPM, together with their fundamental properties. PPMs
anbe
lassi�ed in terms of their syn
hronization ar
hite
ture, de�ned by the me
ha-nisms whi
h are provided for expressing syn
hronization, and the stru
tures that
an be
reated by them.To
lassify parallel programming models, Skilli
orn and Talia have proposedthe following
riteria [174℄. (1) PPMs with support for dynami
 pro
ess or threadstru
tures; (2) PPMs with only stati
 pro
ess or thread stru
tures, but no syn-ta
ti
 limits on
ommuni
ation; (3) PPMs with only stati
 pro
ess or threadstru
tures and synta
ti
 limits on
ommuni
ation. They
laim that: \Modelsthat allow dynami
 pro
ess or thread stru
ture
annot restri
t
ommuni
ation[...℄ even models that restri
t
ommuni
ation within a parti
ular synta
ti
 blo
k
annot limit it over the whole program. Thus su
h models
annot guarantee thatthe
ommuni
ation generated by the program will not overrun the total
ommu-ni
ation
apa
ity of a designated parallel
omputer. [...℄ some programs that
an be written in the model will perform badly, and it is not straightforward todete
t whi
h ones".Although we do agree this is a good
andidate for a general
lassi�
ation ofPPMs, we think that it
an be
learly re�ned. In fa
t, restri
ted syn
hronizationmodels
an impose stru
ture on the way threads are
reated and syn
hronized,to derive dynami
 but restri
ted thread stru
tures with a predi
table number of
ommuni
ations. Even for some dynami
 thread stru
tures, it is still possible toobtain
ost measures and �nd an eÆ
ient way to map the
omputations onto thema
hine, as shown in Table 1.1.Thus, we propose new more detailed
riteria, in
luding di�erent
lasses of syn-
hronization restri
tions. First, we distinguish two types of syn
hronization [9℄:(1) Condition syn
hronization (CS), whi
h implies an order to be preserved inthe exe
ution of two tasks or statements, and that is typi
ally asso
iated to data

1.3. SYNCHRONIZATION ARCHITECTURE 7(a) Communi
ationThread stru
ture Restri
ted Unrestri
tedStati
 Predi
table Predi
table�Dynami
 Unpredi
table(b) Comm. & Syn
h.Thread stru
ture Restri
ted Unrestri
tedStati
 Predi
table Predi
table�Dynami
 Predi
table� Unpredi
table� Depending on the exa
t stru
tures and restri
tions of the modelTable 1.1: PPMs
lassi�
ations: (a) Skilli
orn& Talia [174℄, and (b) our proposal.dependen
es or
ommuni
ation; and (2) mutual ex
lusion (ME), that preventsthat two tasks or statements to be exe
uted at the same time, although the orderin whi
h they are �nally exe
uted is not relevant. These types of syn
hroniza-tions
an be
onsidered orthogonal, in the sense that a PPM
an support oneor both of them independently. Some models simply la
k any form of expli
itsyn
hronization (e.g., HPF [1, 27℄), some do not provide any expli
it dynami
syn
hronization me
hanisms (e.g., Fortran-M [67℄), while others impose restri
-tions on the form of the stati
 syn
hronization stru
tures (e.g., BSP [185℄).In se
tion 2.2 we will introdu
e a
lassi�
ation of the syn
hronization spa
ein terms of three di�erent
hara
teristi
s: (1) CS stru
tures to be allowed, (2)the ME me
hanisms, and (3) the data-dependen
e of syn
hronization stru
tures.In parti
ular, we distinguish two
omplementary
lasses of CS stru
tures: oneunrestri
ted and one restri
ted to a spe
i�

ompositional form
alled nested-parallelism, SP or Series-Parallel. SP stru
tures are restri
ted to nested-paralleltask
ontrol stru
tures or, in other words, to the re
ursive appli
ation of prim-itives with the semanti
s of
obegin-
oend [9℄. Models whi
h allow only SP re-stri
ted stru
tures are
alled SP-models (e.g. BSP, SPC). The asso
iated taskgraph of these stru
tures is in the
lass of Series-Parallel graphs or SP-graphs forshort.Beside the previously mentioned engineering aspe
ts (SEC) the introdu
tionof restri
tions on a PPM's syn
hronization ar
hite
ture has a favorable e�e
t onits analysis
hara
teristi
s (AC). For instan
e, improved s
heduling te
hniqueshave been designed for SP restri
ted DAGs [63, 20, 142, 159, 157℄. One of thereasons behind their advantages is that the number of edges in an SP graphis bounded to be a linear fun
tion of the number of nodes (O(jEj) = O(jV j).Another reason stems from the
ompositional nature of SP-graphs, whi
h allowsa re
ursive lo
al analysis of properties. Thus, many s
heduling algorithms show

8 CHAPTER 1. INTRODUCTIONa very low
omplexity measure when applied on SP graphs. Moreover, many
ombinatorial problems whi
h are NP-hard for generi
 graphs are known to belinear on Series-Parallel graphs [179℄. Cost analysis (e.g.
riti
al path analysis) isalso improved. Even more, analyti
al
losed form
ost expressions
an be derivedfor SP graphs [71℄. At a more abstra
t level, there exists a formal algebrai

hara
terization of the languages
onstru
ted on SP semanti
 models (
alled SP-languages), with their extended re
ognition automata [125, 126, 127℄.However, the restri
tions imposed on the stati
 syn
hronization stru
tures doeliminate some expressive power from the model. In some situations, tasks that
ould be theoreti
ally exe
uted in parallel must be serialized as a
onsequen
eof nested syn
hronization. This
ould lead to a performan
e loss whi
h, unless
arefully estimated, would
learly
ompromise the use of these models in parallelprogramming.To illustrate this point, let us
onsider the task graph asso
iated to a 1D
ellular automata with just 3
ells, where a fun
tion dependent on parametersevaluated at neighbor
ells (the ones given by a sten
il) is applied in parallela
ross all the
ells along 3
onse
utive iterations. In Fig. 1.3(a) a task graphasso
iated with a generi
 PPM
omputation is presented. Ea
h edge representsa
ommuni
ation or a syn
hronization. The version in Fig. 1.3(b) is a task graphasso
iated with the
hoi
e of a model whi
h restri
ts
ommuni
ation so thatit
an only syn
hronously take pla
e at a barrier syn
hronization. The dashedline represents the barrier. The bla
k nodes
an be exe
uted in parallel in the�rst example, but are serialized in the se
ond. If exe
ution times of the bla
knodes is tb = 10, and white nodes tw = 1, the total exe
ution time (without
ommuni
ation
osts) is T1 = 12 in the �rst example, and T2 = 30 in the se
ondone, whi
h give a performan
e penalty of almost 3.
(a) (b)Figure 1.3: Example of parallelism loss at programming levelThis potential loss of parallelism is introdu
ed at a programming level whenin the design phase, as a
onsequen
e of the restri
tions of the abstra
tion levelwe are using to des
ribe the problem, and it will be readily propagated throughthe following development phases. We are spe
i�
ally interested in any potential
omputation time penalty for
ed by the restri
ted expressive power of a PPM.On the other hand, the quality of the low-level implementation phases
an beimproved with restri
ted CS models. Spe
i�
ally, SP-restri
ted programming

1.4. PROBLEM STATEMENT AND THESIS 9shows interesting features for s
heduling and mapping, not found in non SP-restri
ted models, as mentioned earlier.1.4 Problem statement and thesisFrom the previous dis
ussion, a number of interesting open questions arise whi
hwe will address in this work. It is not yet
lear what type of programming modelsare more
onvenient for nowadays and near future parallel programming. It willbe highly interesting to �nd obje
tive
hara
teristi
s that we
an use to evaluateor
lassify the potential bene�ts and drawba
ks of a given model. As mentionedearlier, Skilli
orn and Talia proposed in [174℄ a set of interesting properties forideal parallel programming models that promotes low
ost software developmentand maintenan
e, eÆ
ien
y and portability. A

ording to them, a model should\be easy to program, have software development methodology, be easy to under-stand, guarantee performan
e, and provide a

urate information about
osts".These
riteria are mainly subje
tive, and
an be diÆ
ult or impossible to agreeabout the adequa
y of a given model to it. On the evolution of future parallelprogramming models
lear dire
tions and requirements must be proposed. The-oreti
al
omparisons between well-known parallel
omputing models has beenshown (see for example [16, 161, 128℄). However, no rationale has been o�ered inthe more abstra
t level to explain the similarities and di�eren
es, Quantitativeevaluation of parallel programming models has been tried previously fo
usingon eÆ
ien
y and performan
e evaluation a

ura
y [114℄. Related design
har-a
teristi
 are studied in [112℄. Although the experimental approa
h is similarto ours in the low level, we are more interested in determining the origins ofthese quantitative di�eren
es at more abstra
t levels and to predi
t the e�e
t ofdesign de
isions in parallel programming languages and models in both, softwareengineering and analizability
hara
teristi
s (SEC,AC).The problem we want to ta
kle is dete
ting any relation between the SAof a PPM and its software development and analizability
hara
teristi
s, in or-der to present
lassi�
ation
riteria of SAs it terms of their
hara
teristi
s forparallel programming. If restri
ted SA
lasses appear to have advantages overunrestri
ted
lasses, a related question is if there are methods to map knownappli
ations in unrestri
ted SA
lasses to restri
ted ones, and how mu
h perfor-man
e impa
t may impose su
h high level transformations.In the thesis proposal we are presenting here, we identify, �rst, the syn-
hronization ar
hite
ture (SA) as a key property of PPMs with respe
t to itssuitability for software engineering and analysis, and a good
riterion to
lassifyPPMs. Some
lasses of restri
ted SA leads to good
hara
teristi
s in softwareengineering as well as analysis, while others prevent them. The most importantfeature of an SA is the
lass of
ondition syn
hronization it allows (NSP vs. SP).

10 CHAPTER 1. INTRODUCTIONThe
hoi
e of a restri
ted SA may entail a loss of parallelism at the pro-gramming level of abstra
tion (possibly propagated to lower levels). We proposean empiri
al evaluation system of PPMs to grade them in terms of this loss ofparallelism as a fun
tion of their SA. Based in our value system, we promotethe
lass of SP-restri
ted PPMs as a promising PPM for general-purpose parallel
omputing. SP restri
ted SA models present a good trade-o� between expres-siveness and software engineering and analizability
hara
teristi
s. Moreover, weshow that most appli
ations
an be mapped to SP (nested-parallelism) stru
turewith minimal performan
e impa
t.1.5 Approa
hIn this dissertation we study the problem from three di�erent perspe
tives. A
on
eptual review of the SA of parallel ar
hite
tures,
omputation and program-ming models, programming languages, and appli
ations is needed to identify thebest
riteria for
lassifying the syn
hronization stru
tures found at any detaillevel of a parallel system. On
e the
lasses are determined and the restri
tedSP
lass arises as the
lass with the most promising features, a further study ofthe properties of its stru
tures is needed. Then, the se
ond step is a theoreti-
al study, based on graph theory, of the properties of NSP and SP stru
tures,in
luding an study of the transformation of stru
tures in di�erent
lasses. Thethird step entails an experimental framework: ideas and te
hniques developed onthe theoreti
al study
an be used to experimentally
ompare the behavior andperforman
e of appli
ation stru
tures in di�erent
lasses. This empiri
al studyvalidates results and proposals analyzed in the previous steps and reveals thereal parameters and behavior of real appli
ations when programmed in di�erent
lasses of SA.Con
eptual approa
h: After de�ning the SA
on
ept and establishing the dif-ferent abstra
tion levels of study, it in
ludes a
lassi�
ation of the SAs foundat any level: From parallel ar
hite
tures and well-known parallel
omput-ing or programming models to the appli
ations spa
e. In this approa
hwe relate the SA
lass with the programming models expressive power,analysis
hara
teristi
s and the virtues and
aws asso
iated for mappingappli
ations to them. The NSP vs. SP
lassi�
ation appears as the morerelevant feature of a PPM. We also present a
on
eptual dis
ussion of thepossible mapping strategies of appli
ations, to PPMs in a di�erent andmore restri
ted
lass.Theoreti
al approa
h: This approa
h is based on a theoreti
al study of themodeling
apa
ities and restri
tions of SP models in an abstra
t level, and

1.6. OUTLINE 11their signi�
an
e. A formal analysis of the NSP and SP graphs, their re-lation and the distan
e from NSP to SP forms is introdu
ed. We presentheuristi
 transformation te
hniques and algorithms to
onvey NSP stru
-tures into SP approximations that introdu
e minimum
hanges in topologyor performan
e. We develop an analysis framework to predi
t the loss ofperforman
e introdu
ed at the programming abstra
t level as fun
tion ofSA. The framework is based on the use of graph theory, topology
lasses,and task workload metri
s. We measure performan
e di�eren
es in termsof
riti
al path.Experimental approa
h: We present a
omparison of using programming mod-els or languages in di�erent SA
lasses to implement real appli
ations, in-
luding the e�e
ts of typi
al implementation traje
tories. Here we do notrestri
t ourselves to the highest abstra
tion levels, but we use the aboveframework to dis
uss the performan
e e�e
ts of various mappings and im-plementation issues at lower level. Thus, two di�erent frameworks arestudied:1. Oriented to the whole program spa
e.We study the results of enfor
ing SP restri
tions on a sample of thewhole graph spa
e, and on syntheti
 graphs, relating the modeled per-forman
e loss to generi
 and simple graph and workload parameters.2. Oriented to appli
ations.Based on our parallel appli
ations
lassi�
ation presented in the
on-
eptual approa
h, we sele
t a
olle
tion of representative appli
ationsfrom all relevant SA
lasses. We
ompare exe
ution times and perfor-man
e e�e
ts produ
ed when real
odes programmed in generi
 andrestri
ted SP models are run in several ma
hines models. The impa
tof SP restri
tions is empiri
ally predi
ted and
ompared with previousresults.As we will show along the following
hapters, the results of this three ap-proa
hes will fully support our theses: presenting the SA as the key fa
tor inthe analysis
hara
teristi
s of a PPM, and
onsequently in the software engi-neering of parallel appli
ations, and promoting the SP restri
tion of
onditionsyn
hronization as one of the most relevant
hoi
es in the design of a PPM.1.6 OutlineThis dissertation is organized following the three di�erent approa
hes presentedin the previous se
tion. Chapter 2 presents the
on
eptual approa
h. After

12 CHAPTER 1. INTRODUCTIONintrodu
ing some
on
epts and terminology (in
luding SA), we present our
las-si�
ation
riteria for SA. Then, we travel bottom-up along the di�erent abstra
-tion levels studying the SA of parallel ar
hite
tures, programming models andappli
ations. Interesting
on
lusions are dis
ussed for ea
h new layer. In Chap-ter 3 we present the theoreti
al approa
h. We formally de�ne SP graphs andstudy their stru
tures. Simple transformation te
hniques and problems are dis-
ussed, after whi
h two new heuristi
 algorithms are introdu
ed. The impa
tof the transformation is studied from di�erent perspe
tives. Chapter 4 in
ludesan exposition of the motivations and de
isions taken to build our experimentalframework. Graph appli
ation modeling te
hniques are introdu
ed in this phaseof the study. A broad summary of the results obtained in ea
h phase is presentedand dis
ussed. In Chapter 5 we re
all the results and ideas presented along thewhole work, and we present our
on
lusions.

Chapter 2Con
eptual approa
hI did not paint it to be understood, but Iwished to show what su
h a s
ene was like.J.M.W. Turner, 1775-1851This
hapter is an attempt to bring the reader a travelogue through theparallel programming world. After the introdu
tion of some
on
epts and termi-nology, we will initiate a trip along the �elds of parallel programming, a land fullof sight spots where the syn
hronization stru
ture
olors are showing up frominside everything that blossom. From the rough and
hanging o
eans of parallelar
hite
tures and low level exe
ution models, we will
y up to the low-lands ofmapping, where the implementation
oods are dire
ted by the river
oasts of
ompilation. In the upper valleys we will �nd the programming models whi
hallow this
ompilation te
hniques and the abstra
tions that hide the details tothe programmer. Finally, we will
limb up the high abstra
tion peaks to �ndtheir snow
rowns, where appli
ations and parallel algorithms dwell, nurturingthe waterfalls where all the implementation line begins. All around, syn
hroniza-tion stru
ture will be a friendly guide that will show us se
rets beneath what theuntrained eye
at
hes. Throughout this trip we will learn how syn
hronizationstru
ture helps us to understand the roots of advantages whi
h show, and thediÆ
ulties to be ta
kled, when di�erent parallel programming models are used.First, we will dis
uss about models and modeling, to propose general de�-nitions for parallel programming and
omputing models, and des
ribe the dif-ferent detail levels involved in parallel
omputing. Then, we will introdu
e thesyn
hronization ar
hite
ture
on
ept, presenting
lassi�
ation
riteria, useful fordete
ting the good and bad properties of syn
hronization stru
tures regarding an-alyzability and expressive power. These
riteria are used in the following se
tionsto
lassify models and appli
ations, showing the relevan
e of syn
hronization ar-
hite
ture at any level of detail. 13

14 CHAPTER 2. CONCEPTUAL APPROACH2.1 Parallel models and de�nitionsIn this se
tion we begin to prepare the luggage we will need for our trip. Weestablish some terminology that sometimes have
onfusing meanings, typi
allywhen
oming from di�erent
ommunities related to parallel
omputing. We alsode�ne the main
on
epts about parallel programming models we will use fromnow on.2.1.1 Parallelism and parallel
omputingAlthough parallel
omputing is somehow a
omplementary
on
ept to sequential
omputing, they share a main substrate. They solve problems applying a pro-grammed
olle
tion of a
tions,
hosen from a redu
ed set, where ea
h of themmodi�es a well-de�ned environment in a deterministi
 way.The important di�eren
e between parallel and sequential worlds is how thesea
tions intera
t with the environment and how they are ordered in the time spa
e.In sequential
omputing the programmer is responsible for the order in whi
h theinstru
tions are exe
uted and only one of them
an modify the environment in agiven instant of time. When the restri
tions of time order are relaxed, and many(a given number) of a
tions
an be exe
uted simultaneously or in no spe
i�edorder, the programmer has new freedom degrees to exploit, but she/he fa
esnew asso
iated problems. When two given a
tions modify an initial environmentstate in non-
ompatible ways, they must be prevented to exe
ute simultaneouslyto preserve the
onsisten
e of the
omputation until it arrives at a known statewhere the problem is solved. Thus, we distinguish a
tions that
an be exe
utedin parallel and a
tions that must be exe
uted sequentially.We
all parallelism to the possibility of exploiting time ordering relaxationand simultaneous exe
ution of a
tions for problem solving. Thus, parallel pro-gramming is related to uses and te
hniques to express a solution to a given prob-lem in a
omputational environment where parallelism is possible. And parallel
omputing refers to the evaluation of solutions in su
h environments.Parallel
omputing and programming is histori
ally asso
iated with high-pri
ed ma
hines and high-performan
e. However, parallelism is a broader wordthat
an be asso
iated with many terms, most of the times with un
lear bound-aries among them. For example:Con
urren
y: Typi
ally asso
iated with the basi
 problems of parallelism, likeanalyzing mutual dependen
es and using syn
hronization me
hanisms toa

ess shared resour
es. Sometimes,
on
urrent
omputing refers to me
h-anisms of time-sharing to provide simulated parallel exe
ution in multitaskenvironments with restri
ted number of pro
essing elements.Distributed
omputing: More related to the te
hniques for using parallelism

2.1. PARALLEL MODELS AND DEFINITIONS 15in environments where a
tive elements are loosely-
oupled and/or havediverse nature.High-performan
e
omputing (HPC): While mainly using parallelism, HPCis fo
used on the extra
tion of high performan
e peaks from spe
i�
 (s
i-enti�
) appli
ations with new or re
ent
omputing te
hnologies.Parallel
omputing: Mostly related to the programming and use of real par-allel ar
hite
tures, where several pro
essing units operate with a hardwareor software layer that allows intera
tion among them.We will use parallel
omputing in the broadest sense, referring to the exploitingof parallelism in any
omputational environment.2.1.2 ModelingHuman beings use modeling or models to abstra
t reality in order to representit in a simpli�ed way whi
h allows them to reason about it, developing theories.However, the exa
t meaning of the terms model and modeling depends on manyissues related to the nature of what is being modeled, the purpose of the model,the level of detail required and the intended te
hniques to be applied. Thus,talking about, and espe
ially de�ning what a programming or
omputing modelis, is te
hni
ally diÆ
ult, as di�erent people understand or think di�erently aboutthem.In the parallel
omputing world, there does not yet exist a referen
e ar
hi-te
ture or programming model a

epted as universal. We present in this se
tiona tentative distin
tion of modeling levels and their relations in a parallel
ompu-tation environment, that will be useful for
on
eptually analyze both, well-knowmodels of parallel
omputation, and the s
ope of our study.The �rst distin
tion we must introdu
e is that programming and
omputingare not the same thing. While programming is the a
tivity oriented to express orpres
ribe a solution to a problem (or family of problems) with a
onstrained setof a
tions,
omputing is the a
tivity oriented to evaluate programmed solutionsin a
omputational environment. Thus, parallel programming models and parallel
omputing models are not exa
tly the same, although the boundaries are blurred,as programming and
omputing are inter-related a
tivities. Many models par-tially
over aspe
ts of both programming and
omputing a
tivities, and they tryto �ll in the gap between them. They are usually
alled bridging models. Wewill dis
uss about them in the next se
tion.2.1.3 Parallel
omputing and programming modelsNow we will walk through the abstra
tion levels, from the highest to the lowestof the
omputing/programming a
tivities, giving names to what we �nd on our

16 CHAPTER 2. CONCEPTUAL APPROACHway. The reader
an follow our trip in Fig. 2.1.
Programming model

(Solution design)

Parallel architecture

(Hardware)

Parallel programming languagePPL

(Evaluation)
Execution model

Level 1

Level 2

Level 3

Level 4

PPM Parallel programming model

Parallel computing modelPCM

Bridging model

PPL’ PPL’’ PPL’’’

Figure 2.1: Abstra
tion levels of modelingThe reality that we try to model is the programming and
omputing taskwith real ma
hines able to use parallelism. The programming task is done byimplementing an algorithm or appli
ation spe
i�
ation in a programming lan-guage with
apabilities to express parallelism. A programming language is aninstan
e (with given words and syntax) of a programming model (whi
h providespe
i�
 semanti
s).Thus, a Parallel programming model (PPM) is an abstra
t des
ription (orabstra
t virtual ma
hine) to express parallel a
tions independently of the un-derlying exe
ution level. Message-passing interfa
es,
on
urrent obje
t-orientedprogramming and other similar tools are mainly fo
used at this level. We
all aninstan
e or spe
i�
 notation for a PPM a Parallel programming language (PPL)Thus, a PPM de�nes a family of PPLs (a family of possible languages that allowthe programmer to express exa
tly the same parallel semanti
s).A
omplete virtual ma
hine in
ludes the de�nition of a basi
 informationunit and a
on
ise instru
tion set with
lear semanti
s. In parallel programmingthe instru
tion set must in
lude syn
hronization operations. The reader mustnoti
e that a PPM de�nes an abstra
t virtual ma
hine that in fa
t indu
es a
omputation model. A PPM is a programming interfa
e that hides some exe-
ution details and issues of the underlying exe
ution model . That is what we
all a Parallel
omputing model (PCM). An e�e
tive parallel
omputing modelmust be a�ordable to be eÆ
iently implemented in real parallel ma
hines andmany times it is highly in
uen
ed by real ar
hite
ture model
apabilities. Atthe same time, it is expe
ted that a good parallel
omputing model provides areliable
ost analysis te
hnique to test the behavior and performan
e expe
ta-tions of programmed solutions. Examples of this level in
lude abstra
tions su
h

2.1. PARALLEL MODELS AND DEFINITIONS 17as PRAM [65℄ or LogP [50℄ models.Finally, at the lowest level, ma
hines are abstra
ted by parallel ar
hite
tures.They propose a model for hardware
apabilities of the ma
hine, de�ning a kind oflow-level virtual ma
hine. A parallel ar
hite
ture may in
lude a spe
i�
 ma
hinedes
ription (e.g. The Conne
tion Ma
hine [103℄), or a more generi
 model (e.g.NUMA ar
hite
tures [51℄, Beowulf systems [177℄). PPMs and PCMs should beabstra
t enough to provide an easy interfa
e to the programmer, and at thesame time, they should be portable (eÆ
iently implementable) a
ross the mostrelevant parallel ar
hite
tures.For example: MPI [48℄ or PVM [178℄ are di�erent languages (level 1) thatimplement the semanti
s of the same PPM: Message-Passing (level 2). Messagepassing assumes an underlying PCM based on a bounded number of pro
essorsrunning asyn
hronously and ex
hanging point to point messages, su
h as LogP(level 3). At the lowest level, su
h a PCM
an be dire
tly implemented on aNOW, a
luster or even in a shared-memory ar
hite
ture (level 4), with possiblydi�erent low-level implementation me
hanisms on ea
h.PPMs and PCMs are highly related. Sin
e most of the times they are di�er-ent only in the point of view (from the programmer or from the implementationlevel), they share many
ommon problems, and the solutions to them may besimilar. This is the reason why nowadays there exists a wide
on
ern about bridg-ing models for parallel
omputation. These models in
lude the main features ofa PPM, o�ering a high-level parallel programming interfa
e, and give detailsabout performan
e
ost modeling and low-level implementation issues asso
iatedwith the PCM (typi
ally representing a given ar
hite
ture or real ma
hine witha small number of parameters). They try to jump over the gap between two
ommunities: The ar
hite
ture design
ommunity (
on
erned by eÆ
ien
y andimplementation) on one hand, and the parallel solution design
ommunity (
on-
erned with programming te
hniques and parallelism exploiting) on the otherhand. Many models
an be
onsidered bridging models, although the
on
eptwas proposed with BSP [185℄. We will review some bridging models and their
hara
teristi
s in se
tion 2.4.In the following paragraphs we review other de�nitions and ideas found inthe literature about what parallel programming and
omputing models are orshould be.Skilli
orn & Talia de�ne a PPM in [174℄ as an interfa
e separating high-level properties from low-level ones. It is an abstra
t ma
hine providing
ertainoperations to the programming level above and requiring implementations forea
h of these operations on all the ar
hite
tures below. It is designed to sep-arate software-development
on
erns from e�e
tive parallel-exe
ution
on
ernsand provide both abstra
tion and stability.A similar idea introdu
ed by Maggs in [129℄: A PCM de�nes an abstra
texe
ution engine, powerful enough to produ
e a solution to relevant
lasses of

18 CHAPTER 2. CONCEPTUAL APPROACHproblems, whi
h must re
e
t the salient
omputing
hara
teristi
s of pra
ti
alparallel
omputing platforms. The model is both, des
riptive and pres
riptive.It des
ribes realisti
 platforms behavior, and at the same time it suggests hintsand dire
tions for new hardware development, as it models features desirable forinteresting programming and
omputing te
hniques.2.1.4 Detail levelsFrom the more abstra
t spe
i�
ations of a problem solution, to the real imple-mentation and program, there exist several detail levels that
an be
onsideredand in
luded in a model. Most of them are
learly related to the abstra
tionlevel where they typi
ally
an appear. We introdu
e here a
lassi�
ation of thesedetail levels from M
Coll, as presented in [35℄. From the maximum abstra
tionto the lowest level of detail, a PPM/PCM
an in
lude or model the followinglevels (we present some examples of models that in
lude a given level):Spe
i�
ation: Unambiguous des
ription of a
omputational problem (e.g. Z,CSP, �-
al
ulus).Programming: Notation for a pre
ise, high-level des
ription of
orre
t and ef-�
ient solutions to a given
omputational problem (e.g. HPF, O

am).Cost analysis: Basis for evaluation and
omparison of eÆ
ient methods for aprogrammed solution to a
omputational problem (PRAM, BSP, LogP).Ar
hite
tural (also
alled mapping level): Framework for the des
riptionof implementations of programs (e.g. monitors, semaphores, RPC, message-passing).Physi
al (also
alled ma
hine level): Des
ription of a real ma
hine
har-a
teristi
s in whi
h to implement and solve a program (e.g. distributed-memory vs. shared-memory models, NOWs).A programmer typi
ally walks through these levels top-down during the de-sign and implementation until the program
an be exe
uted in a real ma
hine.The term implementation is sometimes used for the whole pro
ess of transform-ing a problem spe
i�
ation in real
ode for a given ma
hine. In our framework,it typi
ally means the pro
ess of transforming a program (spe
i�ed in a PPMnotation for the programming level) into a ready-to-run exe
utable.2.1.5 Requirements of PPMsWhat
hara
teristi
s should have a PPM/PCM to be a good
andidate for generalall-purpose parallel programming? We dis
uss here a proposal from Skilli
ornand Talia [174℄. They propose six main requirements for a PPM/PCM:

2.1. PARALLEL MODELS AND DEFINITIONS 19Easy to program: A PPM should
on
eal details about de
omposition of the
omputation in threads,
ommuni
ation and syn
hronization between them,and any mapping de
isions to adapt the
omputation to the underlyinghardware model.Software development te
hnology: A �rm semanti
 foundation is needed tobridge from spe
i�
ations to programs.Easy to understand: To edu
ate existing software developers.Ar
hite
ture independent: Even with new evolving or future te
hnologies.(In [129℄ we also read that a PPM should be somehow pres
riptive, andpoint into new interesting dire
tions for hardware development).Guaranteed performan
e: Although it is not needed to exploit it to the bestpossible in ea
h ar
hite
ture, espe
ially at the expense of mu
h higher devel-opment and maintenan
e
osts. \Implementations should aim to preservethe order of the apparent software
omplexity and keep
onstants small".Cost measures: They should
over exe
ution time, pro
ess utilization, devel-opment, et
. They must be
ompositional and
onvex.These requirements
an be divided in two broad
ategories. The �rst three re-quirements are fo
used on the software development
hara
teristi
s (more relatedwith the PPM), and the last three ones are fo
used on the good mapping
hara
-teristi
s (more related to the indu
ed PCM). The a
hievement of the requirementsdepends on the modeling de
isions taken in the design of a PPM/PCM at thedi�erent detail levels (see se
tion 2.1.4). These de
isions de�ne the power of themodel expressiveness and analyzability , being foundations of the feasibility of thesoftware development and good mapping requirements
ategories respe
tively.Spe
i�
 restri
tions at the programming level, that somehow redu
e the num-ber of appli
ations that have a natural mapping from spe
i�
ations to the stru
-tures a

epted at this level, may produ
e bene�ts for the lower levels. Spe
if-i
ally, advantages may appear on
ost analysis te
hniques and implementationtransformations to map appli
ations into the ar
hite
tural level.The programming model, formally, provides a set of rules or relationships thatde�nes the meaning of a set of programming abstra
tions. Its obje
tive is to allowreasoning about program meaning and
orre
tness [129℄. Thus, a model mustbe simple enough to allow analysis and stable software developing te
hniques.At the same time it must provide meanings to express problems in a naturalway (obvious to any programmer),
omplying to the original spe
i�
ations of theproblem solution and obtaining eÆ
ient implementations and good performan
ein real ma
hines. Su
h mapping de
ision should be helped by a performan
e
ostmodel, based on a suÆ
ient detailed but abstra
t enough ma
hine model. Cost

20 CHAPTER 2. CONCEPTUAL APPROACHmodels that allow to plug di�erent ma
hine models in a standardized des
riptionlanguage or formalism are the best
andidates. The programmer may trade
omplexity and a

ura
y in the pro
ess to determine the best implementation ofan algorithm for a given ma
hine [70℄.Our study is mainly fo
used on the
ross relationships between the program-ming,
ost analysis and ar
hite
tural (or implementation) detail levels and theirimpa
t on the expressive and analysis power of the model. We have identi�edthe syn
hronization stru
tures supported in the programming model as a basi

omponent of a PPM design. We have found it responsible for an importanttrade-o� between expressiveness and analyzability, whi
h are foundations for thetwo PPM/PCM requirements
ategories. This matter is dis
ussed in the follow-ing se
tions.2.2 Syn
hronization ar
hite
tureAppli
ations that exhibit the same syn
hronization stru
tures usually have prop-erties that
an be exploited through the programming and implementation pipe-lines. PPMs
an restri
t or support spe
i�
 kinds of stru
tures in order to o�eradvantages in software engineering, programmability and portability (automati
or intera
tive performan
e analysis, veri�
ation, et
.) Identifying important
lasses of programming stru
tures with interesting properties be
omes a
hal-lenge for parallel software engineering.We propose the
on
ept of syn
hronization ar
hite
ture to
lassify parallelsystems regarding its main syn
hronization stru
ture properties. In this se
tionwe propose and des
ribe a
lassi�
ation of the di�erent main types of syn
hro-nization stru
tures.De�nition 2.2.1 A Syn
hronization ar
hite
ture (SA) is the formal des
riptionof the properties that de�ne the
ommuni
ation stru
tures and syn
hronizationme
hanisms either present in a spe
i�
 appli
ation or supported by a given PPM.2.2.1 Types of syn
hronization: CS, MEAlthough several names are used in the literature, we distinguish only two maintypes of syn
hronization (see e.g. [9, 122℄).Condition syn
hronization (CS): It is used when an operation or pro
essmust be delayed until a
ertain
ondition is satis�ed. It is typi
ally asso-
iated to data dependen
es,
ommuni
ation or other pro
esses ending. Itimplies an exe
ution order in the pro
esses or operations involved for the
omputation to be
orre
t. It is also
alled stati
, deterministi
 or eventsyn
hronization.

2.2. SYNCHRONIZATION ARCHITECTURE 21Mutual ex
lusion (ME): A
riti
al se
tion is a sequen
e of statements thatmust be exe
uted as an atomi
 operation. When two or more
riti
al se
-tions or pro
esses
annot be exe
uted at the same time (in parallel), wesay they are mutually ex
lusive. If two or more mutual ex
lusive pro
essestry to begin their exe
utions, only one of them
an pro
eed, but the orderin whi
h they are exe
uted is not relevant for the
omputation
orre
tness.It is also
alled dynami
 or non-deterministi
 syn
hronization.These types of syn
hronization are orthogonal in the sense that a PPM
ansupport both or either of them independently. Nevertheless, they are only dif-ferent from the programming point of view. In the exe
ution model, the MEsyn
hronization is transformed in CS,
reating an order of exe
ution for themutual ex
lusive
riti
al se
tions. This transformation is done by s
heduling al-gorithms in the PCM implementation or dire
tly by the hardware (e.g. through
ommuni
ations
ontention). The di�eren
e is the freedom for the
riti
al se
-tions to be s
heduled in any order, that allows the underlying exe
ution layerto dete
t or apply a di�erent order for a parti
ular exe
ution of the
ode. Thisorder is
hosen to maximize the performan
e and must be determined by the
omputation status, the exe
ution times of other tasks, and previous s
hedulingresults.2.2.2 Mutual ex
lusion, mapping and bounded resour
esIn this se
tion we dis
uss the relation of ME nature with mapping tasks at lowlevels of detail. Thus, ME appears to be highly related to implementation detailsoriented to deal with restri
ted resour
es. Pro
essors are typi
ally a restri
ted re-sour
e. The dis
ussion evolves to the relative importan
e of supporting boundedor unbounded number of logi
al pro
essing elements in a PPM, that is relatedto the parallelism granularity supported.A PPM must in
lude CS me
hanisms. Although some problems
an be solvedwith only ME, there are many others whose solutions need an spe
i�
 order ofexe
ution in some operations for the
omputation to be
orre
t. On the otherhand, ME ex
lusion may be implemented by a programmer in terms of CS
re-ating an unne
essary order in the tasks involved. The programmer fa
es the riskof degrading performan
e if the order
hosen is not the optimum for a spe
i�
exe
ution of the program, but many times she/he has a good heuristi
 to de
idewhat should be an a

eptable order. Furthermore, many times ME is introdu
edby programmers to solve mapping problems in environments where the PCM orexe
ution model
annot solve them dire
tly.The main purpose of ME is to let the programmer deal with restri
ted re-sour
es. These resour
es
an be of any nature, but they are intrinsi
ally related tothe ar
hite
ture, model, or design of real ma
hines (e.g. shared-memory a

esses

22 CHAPTER 2. CONCEPTUAL APPROACHin shared-memory ar
hite
tures that do not provide an impli
it
ontention me
h-anism). At the more abstra
t level of spe
i�
ation ME s
ar
ely appears. Onlywhen the programmer (or
ompiler designer) is fa
ing mapping problems,
on-sidering a restri
ted number of resour
es (e.g. a restri
ted number of pro
essors),ME be
omes really important. Expli
it ME
an be used by the programmer toannote the tasks whi
h
an produ
e
ontention problems, for its implementationin ar
hite
tures that do need it, and for being used in a
ost model during themapping.Consider the following example. A
lassi
al parallel solution for load balan
-ing in many irregular problems is the farm paradigm, also
alled work-stealingstrategy (see e.g. [43, 189℄). In problems solved with this strategy, there arek work providers and n workers. The workers repeat a simple
y
le until the
omputation is �nished: Get work from a work provider and do the work. Thework providers a
t as resour
es that must be a

essed through
ontention by theworkers. See a graphi
 representation of the generated stru
ture in Fig. 2.2. Forwork balan
ing reasons and simpli
ity, in most examples there is only one
en-tralized work provider k = 1. In some appli
ations the work done
an produ
emany other pie
es of work to do in the future whi
h are sent to a work providerwhen the ex
lusive a

ess for this operation is obtained.

END

BEGIN

1

1

2

2

3

3

n

n

Get-Work

Do-Work

1

1

2

2

3

3

n

n

Get-Work

Do-Work

w = Work supply resourcei
i=1..k

ME(w)

ME(w)

Figure 2.2: Workers-Farm s
heduling strategyThis des
ription
orresponds to a mapped and free s
heduled solution for theproblem. The original problem only
onsiders that many workers
an do pie
esof a job in parallel. The original problem solution only spe
i�es that manyworkers
an get a pie
e of job and do it iteratively. If the number of pro
essorsis not bounded, then, m simultaneous workers
an do one of the many m pie
es

2.2. SYNCHRONIZATION ARCHITECTURE 23of the job. If the work produ
es more m0 pie
es, then, m0 new workers in m0new pro
essors
an start pro
essing these new m0 pie
es, as soon as they areavailable. Nevertheless, the number of pro
essors is typi
ally a limited resour
e.When mapping to n pro
essors one logi
al
hoi
e is to start n workers, andlet them pro
ess the pie
es of work iteratively. In a se
ond mapping phase, ifwe
onsider k = n work providers, ea
h worker has an ex
lusive font of workpie
es, and the
omputation does not need mutual ex
lusion. However, for thekind of irregular and data-dependent problems that this strategy is oriented tosolve, a worker
an produ
e many more pie
es of work than others. We want tobalan
e the load su
h that no worker is idle while others have still many items topro
ess. Thus, workers that be
ome idle should
onta
t the work providers to getmore job pie
es. One or more
entralized sour
es of work are needed, a
ting asresour
es and needing mutually ex
lusive a

ess to avoid several workers
reatingra
e
onditions when downloading or uploading job pie
es.This load balan
ing strategy is a mapping de
ision that works appropriatelywhen the
omputation is highly irregular and the
omputation time of a workerdoing a job pie
e
ompensates the
ommuni
ation and
ontention delays. Thenumber of work providers
an be sele
ted depending of many
ost fa
tors and loadpredi
tions. All these mapping issues are fa
ed by a programmer implementinga farm dire
tly, when the original problem de�nition was mu
h simpler. In fa
t,the original solution stru
ture is hidden or even lost in the mapped-s
heduled
ode generated. We argue that this mapping de
ision must be postponed tothe mapping phase, done by the PCM implementation, guided by informationprovided by the programmer either, on the
ode or intera
tively.An interesting question derived from the previous dis
ussion is whether aPPM should for
e the programmer to work with a �xed number of logi
al pro-
essors or with an unbounded number of them. As is dis
ussed in followingse
tions about existing PPMs, working with an unbounded number of pro
essorsallows the programmer to exploit the maximum level of �ne-grain parallelism inthe problem. However, in most situations, this is not an eÆ
ient solution in realimplementations. Fine grain parallelism
an
reate a huge amount of small taskswith too frequent
ommuni
ation, redu
ing the parallel sla
kness1 and unbal-an
ing the
ommuni
ation/
omputation ratio, in
rementing the
ommuni
ation
osts over the
omputation. On the other hand, if the programmer must takein a

ount that he is working with a �xed number of pro
essors, sometimes heis lead to deal with this restri
ted resour
e dire
tly, fa
ing and solving the datapartition, s
heduling and other mapping details. This
ould
ompromise porta-bility and the possibility of using powerful software development te
hniques. Inse
tion 2.4 we dis
uss PCMs that try to fa
e this problem from di�erent pointsof view.1The granularity of the
omputation partition among tasks [185℄.

24 CHAPTER 2. CONCEPTUAL APPROACHThe best solution is to �nd a good mapping te
hnique that transforms �ne-grained parallelism expressed in an abstra
t form by the programmer in
oarse-grained parallelism in the best possible form, adapted to the number of pro
essorsand other ma
hine details. An a

urate, minimum
ost model that dete
ts atleast the asymptoti
 performan
e alterations of a given data-layout, s
hedulingor other mapping transformations is a key for this kind of te
hniques.From the above dis
ussion, we suggest that an ideal PPM should abstra
tthe programmer from the number of pro
essors that he is going to use, lettinghim only to show hierar
hi
ally the di�erent levels of parallelism in the prob-lem solution (from the
oarsest to the �nest). The PPM/PCM should in
ludean automati
 or intera
tive pro
edure to map this kind of programs to the re-stri
ted resour
es of a given ar
hite
ture using: (1) ME, (2) an asymptoti
allya

urate
ost model supplied with the target ma
hine model and parameters, (3)a proper s
heduling te
hnique to transform �ne-grained parallelism to the propergranularity, eliminating unne
essary
ommuni
ation and leading to the properparallel-sla
kness needed to obtain an eÆ
ient program.We
on
lude that ME is not needed at the highest abstra
tion level of spe
-i�
ation, but it is helpful to express some solutions to spe
i�
 problems and tohelp the PCM implementation to take de
isions about where and how to dealwith
ontention problems that are not solved by typi
al underlying ar
hite
tures.2.2.3 Classi�
ation
riteria for SAsWe
an
lassify SAs a

ording to the di�erent properties (in expressiveness vs.analizability trade-o�) they indu
e in a PPM/PCM or appli
ation. We propose
riteria based on three orthogonal axis as shown in Fig. 2.3. The two �rst axis
orrespond to the two orthogonal types of syn
hronization (CS and ME syn
hro-nization). They are orthogonal in the sense that a PPM
an support both oreither of them independently. The third axis is based on a
riterion that distin-guish data-dependent from non-data-dependent syn
hronization stru
tures. CSand ME are
ombined by the programmer to
reate the appropriate syn
hro-nization stru
tures for a given appli
ation. Some appli
ations will always
reatea given syn
hronization stru
ture or
ombination. However, appli
ations thatare data-dependent may
reate pro
esses and any type of syn
hronization (MEor CS) dynami
ally. Thus, it is possible that the exa
t syn
hronization stru
-ture
reated by an appli
ation will be not known until exe
ution time. Thisthird
riterion be
omes important to dete
t if syn
hronization stru
tures maybe analyzed and manipulated stati
ally at
ompile time or only dynami
ally atrun-time.The relevant
lasses identi�ed in ea
h of the three axis are:1. CS syn
hronization subtypes:

2.2. SYNCHRONIZATION ARCHITECTURE 25

Mutual exclusion Data-dependency

Condition Synchronization

SP

ME

NME

NSP

NDS

DS

Figure 2.3: SA
lassi�
ation
riteriaWe propose only two
omplementary main
ategories of CS stru
tures re-garding the properties of the PPM that derivate from its
lass: (1) Hi-erar
hi
al, SP, or Series-Parallel (also known as nested parallelism); (2)Non-hierar
hi
al, NSP, or Non-Series-Parallel.2. ME syn
hronization subtypes:We
onsider two
lasses: (1) PPMs not supporting mutual ex
lusion (NME),or appli
ations whi
h do not need it; and (2) another
omplementary
lassfor PPMs supporting, or appli
ations whi
h use, ME.3. Data-dependen
y subtypes:We distinguish between: (1) Non-Data-Dependent syn
hronization stru
-tures (NDS), and (2) Data-dependent syn
hronization stru
tures (DS),
reated by a PPM whi
h allows dynami
 thread
reation [174℄ or data-dependent syn
hronization stru
tures (determining whi
h and when pro-
esses
ommuni
ate at run-time). Parallel algorithms may also be designedwith non-data dependent stru
tures or may use semanti
s that need data-dependent (dynami
) syn
hronization.Thus, we propose eight SA
lasses, where some of them
an be empty atsome abstra
tion or modeling levels if no useful parallel
omputations (PPMs orappli
ations) present su
h syn
hronization stru
tures. Ea
h
lass will be namedby a triplet (a;b;
), where a will be the
lass of CS, b will indi
ate if ME
an beexploited and
 if data-dependent syn
hronizations are possible. In the followingse
tions we will fully des
ribe ea
h axis sub
lass, presenting examples of PPMsand programs for ea
h one.

26 CHAPTER 2. CONCEPTUAL APPROACH
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
S

(SP,ME,DS)

(SP,NME,DS)

(SP,ME,NDS)

(SP,NME,NDS) (NSP,NME,NDS)

(NSP,NME,DS)

(NSP,ME,DS)

(NSP,ME,NDS)

Figure 2.4: SA
lassi�
ationWe will
onveniently represent the SA spa
e in two dimensions as in Fig. 2.4.In this graphi
 representation, the less restri
tive SA
lasses are in the top right
orner, and the more restri
tive are in the bottom left
orner. Fig. 2.5 shows theidea of in
reasing restri
tiveness from one
lass to another with small arrows, andthe intuitive idea of general in
reasing restri
tiveness from the top right
ornerto the bottom left
orner with a big arrow.2.2.4 Condition syn
hronization: CS
lassesPPMs that do not support
ondition syn
hronization must base all solutions inME. They
annot solve many
on
urren
y problems that need fairness, shouldensure no-starvation or should avoid dead-lo
k
onditions. We
onsider this
asea degenerated
lass of PPMs not fully useful for general parallel
omputation.Appli
ations based mainly in ME for problem solving typi
ally in
lude some formof CS at least to
reate pro
esses or threads and to wait for them to end beforeanother stage begins, or the appli
ation �nally ends (see e.g. se
tion 2.5.5).We will present now the two
lasses of CS stru
tures with an example of apossible parallel programming language and a possible program for ea
h
lass.

2.2. SYNCHRONIZATION ARCHITECTURE 27
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
SFigure 2.5: Restri
tiveness in
rease of SA
lassesA. SP (Series-Parallel)This
lass
ontains the SAs whi
h only allow CS stru
tures whi
h dependen
es
an be represented by a series-parallel partial order set or series-parallel dire
teda
y
li
 graph (see se
tion 3.2.1). Series-parallel stru
tures are generated by theso
alled nested-parallelism, nesting (or re
ursive applying) series and parallel
ompositions. They appear in PPMs with language primitives with the samesemanti
s as the
obegin,
oend
onstru
tors [9℄. The end of the parallel se
tionimpli
ates a barrier syn
hronization before it pro
eeds. Next tasks are dependenton all of the tasks in the previous parallel se
tion. Communi
ations are impli
itand only o

ur during the fork and join phases of a parallel se
tion.A formal de�nition of SP languages based on SP partial order sets and SP-algebras is presented in [126℄. Automata theory
an be extended for re
ognitionof SP languages (see [127, 125℄).For example,
onsider a PPL where the only
ondition syn
hronization that
an be expressed is impli
it in
obegin,
oend statements. Arbitrary
omputationblo
ks are identi�ed by an integer in a do <integer> statement. An example ofa possible
ode and its task graph representation is shown in Fig. 2.6. Thenumbers in the task graph represent the numbers of the
omputation blo
ks in

28 CHAPTER 2. CONCEPTUAL APPROACHthe
ode. The syn
hronization stru
tures that
an be
reated are
onstru
ted byre
ursive appli
ation of spawning parallel se
tions, and serial
omposition. Theuse of global variables or data in tasks from di�erent threads of parallel se
tions
ould
ompromise the program
orre
tness, as the model
onsiders the tasks indi�erent subthreads
ompletely non-dependent.(1) begin(2) do 1;(3)
obegin(4) t1: do 2;(5) t2: do 3; do 4;(6)
obegin(7) t1: do 5; do 6; do 7;(8) t2: do 8;(9) t3: do 9; do 10;(10)
oend(11) do 11;(12) t3: do 12; do 13; do 14;(13)
oend(14) do 15;(15) end
3

4

5 8

7

6

9

10

11

15

12

13

14

1

2

Figure 2.6: Example of series-parallel
ode and stru
tureSub
lasses of SP
lassIn SP
lass of SAs we
an distinguish two sub
lasses asso
iated with well-known
on
epts related to the syn
hrony in PPMs, and widely used in the literature.Presented in order of de
reasing syn
hronization restri
tiveness, they are:Lo
kstep: Ea
h
omputation step is syn
hronized among all pro
essing ele-ments in the system. SIMD ma
hines in Flynn's
lassi�
ation [64℄ workswith these SA (see also PRAM model dis
ussion in se
tion 2.4.1). Typi-
ally, lo
kstep me
hanism assume unit
ost for the operations and no
ostfor the syn
hronization me
hanism.Bulk-syn
hronous: Ea
h pro
essor exe
utes a series of lo
al
omputationalsteps or tasks before all pro
essors syn
hronize together in a full barrier.Communi
ation or a

esses to shared memory only o

ur su
h that theresults are only available in the next phase, after the full syn
hronization.(See BSP, QSM and some PRAM derivate models in se
tions 2.4.2, 2.4.3and 2.4.1 respe
tively). The re
ursive appli
ation of bulk-syn
hronizity
reates SAs that are in the full SP
lass.

2.2. SYNCHRONIZATION ARCHITECTURE 29The relation between these sub
lasses is presented in Fig. 2.7. SP andNSP
lasses are
omplementary. Lo
kstep is a more restri
ted
lass than bulk-syn
hronization that is in turn a sub
lass of SP syn
hronizations.
CS

SP Class NSP Class

Bulk-synch.

Step-lock

Figure 2.7: Classes of
ondition syn
hronizationB. NSP (Non-Series-Parallel)This is the
lass of the SAs whi
h allows stati
 stru
tures whose dependen
es
an NOT be represented by an SP partial order set or SP dire
ted a
y
li
 graph.Any kind of dependen
es
ombination expressed with CS
an be found in anappli
ation programmed in this kind of model.PPMs in this
lass are also
alled asyn
hronous. Non-series-parallel modelsare related to the
on
ept of syn
hronization by point to point message-passingor me
hanisms as signal, wait primitives. Consider a toy PPL where arbitrary(1) do (> 1 > a,b)(2) do (> 2 >
)(3) do (b > 3 > e,f)(4) do (a > 4 > d)(5) do (e > 5 > g)(6) do (
,f > 6 > h,i,j)(7) do (d,g > 7 > k,l)(8) do (i > 8 > m,n,o)(9) do (j > 9 > p,q)(10) do (n,p > 10 > r,s)(11) do (o,q > 11 > t)(12) do (l,r,s > 12 > u)(13) do (s,t > 13 > v)(14) do (k,u > 14 >)(15) do (m,v > 15 >)
b

a
c

d e
f

g h
i

j

k l m n
o p

q

r s t

u v

21

3

5

4

6

7 8 9

10 11

12 13

14 15Figure 2.8: Example of non series-parallel
ode and stru
ture
omputation blo
ks are identi�ed by an integer number, and they are exe
utedprovided that a
olle
tion of pre
onditions, identi�ed by a name, are true. At

30 CHAPTER 2. CONCEPTUAL APPROACHthe end of the
omputation a
olle
tion of post
onditions
an be issued. Thesyntax used will be the statement do (pre
onditions list > taskNumber > post-
onditions list). Any task with no pre
ondition will be exe
uted (in parallel) atthe beginning of the
omputation. In Fig. 2.8 we show an example of a programwhi
h generates a
omplex non-SP graph. Any kind of syn
hronization stru
tureor generi
 graph
an be generated with su
h a language. (For this example toylanguage it is possible to
reate
omputations that never end, due to in�nite
y
les or
onditions impossible to be satis�ed).2.2.5 Mutual ex
lusion: ME
lassesWe distinguish two
lasses in the ME axis: PPMs that do, and PPMs that do notprovide ME me
hanisms. We in
lude a dis
ussion about the di�erent natures andME me
hanisms in the des
ription of the related
lass. Appli
ation de�nitionsalso may or may not use ME semanti
s. In se
tion 2.2.6 we dis
uss the problemsof simulating ME semanti
s with CS.A. NME (No mutual ex
lusion)Models and appli
ations in this
lass do not support or need ME me
hanisms.In previous se
tions we have shown examples of PPLs and programs whi
h donot use ME (see Fig. 2.6 and Fig. 2.8).B. ME (Mutual ex
lusion)In this se
tion we dis
uss the di�erent me
hanisms that support ME. We willuse as example a simple problem where n threads need to a

ess a global vari-able (a

essible in shared-memory or through
ommuni
ation me
hanisms a
rossthreads) to use it as a
ounter. ME must be used to avoid ra
e
onditions. Thetypi
al me
hanisms are:1. Shared-Variable paradigm with mutual ex
lusion primitives:Some PPMs provide the programmer with me
hanisms or primitives thathave impli
it ME semanti
s. In this
ase the programmer
an dire
tlyspe
ify whi
h tasks
annot be exe
uted in parallel (simultaneously), with-out spe
ifying any impli
it order. Any one
an be exe
uted before theothers.The exa
t me
hanisms
an be of any nature: Atomi
 operations on vari-ables, atomi
 transa
tions,
riti
al se
tions spe
i�
ation, monitors, ... Themain advantage of dire
t ME primitives is that the
ompiler
an easily de-te
t and reason about the e�e
ts of the unordered syn
hronization in theprogram performan
e. An approximation te
hnique to the
ost modelingof ME is given by Van Gemund in [70℄.

2.2. SYNCHRONIZATION ARCHITECTURE 31(1) a=0(2) !$OMP PARALLEL, shared(a)(3) myId = OMP GET THREAD NUM()(4) !$OMP CRITICAL(5) a=a+1(6) WRITE(*,*) "Thread ",myId," s
ores ",a(7) !$OMP END CRITICAL(8) WRITE(*,*) "Ending thread ",myId(9) !$OMP END PARALLEL(10) WRITE(*,*) "End of
omputation"
a=0

1

1

1

2

2

2

3

3

3

n

n

n

a=a+1; WRITE

WRITE

WRITE

THREAD_NUM

Figure 2.9: Example of
ode and stru
ture with ME primitivesConsider for example OpenMP [149℄. It provides a parallel se
tion pragmaOMP PARALLEL and another pragma
alled OMP CRITICAL to spe
ify apart of
ode that is a
riti
al se
tion. Criti
al se
tions of
ode are mutuallyex
lusive for all the threads in the same parallel se
tion. The simpli�ed
odein Fig. 2.9 shows an example using OpenMP in FORTRAN language. Inthe asso
iated task graph we
annot use normal oriented edges to representthis dependen
e, as it does not indu
e any order in the tasks. We useshaded nodes to represent this dynami
 dependen
e. The shaded nodeswill be exe
uted sequentially but in no spe
i�
 order. The number in anode represents the number of the thread exe
uting the task. The s
reenresults of this
ode exe
ution depend on the order in whi
h the threadsget a

ess to the
riti
al se
tion, but they will be
onsistent as no ra
e
ondition in the a = a+ 1 statement
an be produ
ed.2. Message-Passing paradigm with programmed ME:Other models do not provide primitives with ME semanti
s, but they havea
ontention me
hanism that
an be use to manually program mutual ex-
lusion.Consider for example a SPMD parallel language whi
h begins a parallelse
tion with a parallel() statement, a fa
ility to get the own thread num-ber get id(), and has a message-passing interfa
e with send(p,i), re
v(p,i)operations, where p is the number of pro
essor to send to or to re
eivefrom, and i is an integer. Suppose we allow the re
eive operation to get amessage from any pro
essor, the �rst that arrives at the in-port. For ourexample language, if p = �1, then the re
v(p,i) operation will return in pthe number of the pro
essor from whi
h the next message
omes. We areallowing a kind of
ontention between arriving messages in the in-port ofthe re
eiving pro
essor. We
onsider a
ase in whi
h if several messages aresent simultaneously the order of arriving
annot be predi
ted. In the
ode

32 CHAPTER 2. CONCEPTUAL APPROACHin Fig. 2.10 we show an example of using this feature to produ
e mutualex
lusion, using one thread as a (monitor like) dynami
 syn
hronizationserver. Again, the number in a node represents the number of the threadexe
uting the asso
iated task. The results will be similar to those of theprevious example for ME primitives.(1) parallel(n+1) f(2) myId = get id();(3) if (myId==0) f(4) a=0;(5) for (i=1; i<=n; i++) f(6) p=-1; /* From any */(7) re
v(p,foo);(8) a=a+1;(9) send(p,a);(10) g(11) g(12) else f(13) send(0,foo);(14) re
v(0,result);(15) printf("%d reads %d",myId,result);(16) g(17) g(18) printf("End of
omputation");
recv; a=a+1;

send

recv; a=a+1;
send

recv; a=a+1;
send

getId

send

printf

send
recv; a=a+1;

0

0

0

0

0

1

1

2

2

2

n

n

n

getId; a=0

printf

recv

1 2 n

1

Figure 2.10: Example of
ode and stru
ture with programmed MEAlthough it is still possible to produ
e similar results as using ME primi-tives, the programs get more
ompli
ated, the programmer must fa
e semi-s
heduling issues, and the global e�e
t of the mutual ex
lusion is hidden tothe
ompiler. Typi
ally, in these programming models, the analysis of the
ontention must be done at a very low level, where the original semanti
sof the mutual ex
lusion are lost,
ompli
ating the overall
ost analysis withnew low-level parameters.2.2.6 Mutual ex
lusion vs.
ondition syn
hronizationSome PPMs do not in
lude any me
hanism for mutual ex
lusion (NME). Whensu
h a model needs to deal with a problem like the one proposed as examplein se
tion 2.2.5, the only possible solution is to use
ondition syn
hronizationbetween the tasks that
annot be exe
uted in parallel,
reating a spe
i�
 order,that may be not the optimum s
hedule.Consider a SPMD language extension of C, with an expli
it parallel region
onstru
t, with a fa
ility to identify the number of the
urrent thread get id() and

2.2. SYNCHRONIZATION ARCHITECTURE 33with semaphore-like operations: wait(
) that waits until

ondition is signaled,signal(
) that signals the
ondition
. Conditions will be identi�ed by an integernumber. Thus, the
ode in Fig. 2.11 shows how to use
ondition syn
hronizationto avoid ra
e
onditions in the a

ess to the shared variable a.(1) a=0;(2) parallel(n) f(3) myId = get id();(4) if (myId==1) f /* thread 1 */(5) a=a+1;(6) printf("%d reads %d",myId,a);(7) signal(2);(8) g(9) else if (myId < n) f(10) wait(myId);(11) a=a+1;(12) printf("%d reads %d",myId,a);(13) signal(myId+1);(14) g(15) else f /* thread n */(16) wait(myId);(17) a=a+1;(18) printf("%d reads %d",myId,a);(19) g(20) g(21) printf("End of
omputation");
2

3

n

2 3 n

1

1

a=0

wait;

signal;
a=a+1; printf;

wait;

signal;
a=a+1; printf;

a=a+1; printf;
signal;

wait;
a=a+1; printf;

get_id

printf;Figure 2.11: Example of none ME syn
hronization
ode and stru
tureHowever,
ondition syn
hronization
reates an ordering over-spe
i�
ation notreally
oming from the original problem. In
ases of not perfe
tly balan
ed situ-ations, where the
ontending threads may arrive at the
riti
al se
tion in randomorder, this over-spe
i�
ation
ould delay threads prepared for exe
ution until theprevious threads in this false order arrives and �nish the
riti
al task. Fortu-nately, not many parallel problems present this kind of unbalan
ed behavior.2.2.7 Data-Dependen
y: DS, NDS
lassesThis
lassi�
ation axis is related to the
reation, from the same program, ofpotentially di�erent syn
hronization stru
tures at run-time (data-dependent).We distinguish only two
lasses.A. NDS(Non-Data-Dependent syn
hronization stru
tures)Many appli
ations
reate the same syn
hronization stru
ture independently ofthe input data (no thread
reation or
ommuni
ation target is de
ided as a fun
-

34 CHAPTER 2. CONCEPTUAL APPROACHtion of the data values). Although not
ommon, PPMs may support only thiskind of data-independent stru
tures. In this
ase, syn
hronization me
hanismsare provided with expli
it information about whi
h pro
esses or threads
ommu-ni
ate at
ompile-time. A PPM that is restri
ted to only non-data-dependentsyn
hronizations must have a predetermined number of named pro
esses run-ning. The name of the pro
ess to whi
h a
ommuni
ation or syn
hronization isissued must not be able to be determined at run-time.(1) initialize(M(1:1000,1:1000))(2) numIterations=3(3) do i=1,numIterations(4) dopar(5)
ellAutom(M(1:251,:), M(1:250,:))(6)
ellAutom(M(250:501,:), M(251:500,:))(7)
ellAutom(M(500:751,:), M(501:750,:))(8)
ellAutom(M(750:1000,:), M(751:1000,:))(9) end-dopar(10) end-do(11) write(M)
2 3 41

initialize, numIterations=3

1 2 3 4

1 2 3 4

write

R

R

R

R

cellAutom

cellAutom

cellAutomFigure 2.12: Example of stati
 syn
hronization
ode and stru
tureLet us
onsider an example PPL, where the parallelism
an be only expressedby a dopar, end-dopar
onstru
tion that
ontains no
ode, but a maximum ofp fun
tion
alls with one input and one output parameter. Ea
h fun
tion isexe
uted in an independent pro
ess that re
eives the input parameter from theroot pro
ess and
ommuni
ates the output parameter ba
k to the root pro
ess.The semanti
s of the language do not allow
on
i
ts by synta
ti
ally for
ing thatthe variables whi
h re
eive the output parameters int the root pro
ess must bein non-overlapping memory
ells. The fun
tions inside a parallel
onstru
tionmust not
ontain other parallel
onstru
tion. In this model, the syn
hronizationstru
ture is
ompletely non-data-dependent if the dopar
onstru
tion may notbe inside a
onditional statement. Hen
e, no run-time de
isions may a�e
t theparallelism or
ommuni
ation stru
ture. An example of a stati

ellular automatalike program in su
h a PPL is shown in Fig. 2.12. The input parameter of ea
hfun
tion in
lude the frontier lines of the matrix, while the output parameters dore
eive only the
omputed part, with non-overlapping lines.B. DS(Data-Dependent syn
hronization stru
tures)Almost all PPMs allow an impli
it or expli
it form to
reate data-dependent syn-
hronization stru
tures. Typi
al
ases of these syn
hronization me
hanisms are

2.3. EXECUTION-LEVEL MODELS 35
ommuni
ation/syn
hronization primitives inside
onditional statements,
om-muni
ation
hannel names sele
ted at run-time by a
omputed value, data-dependent asyn
hronous
ommuni
ations, wild
ards for message re
eiving primi-tives in message-passing, dynami

reation of pro
esses inside
onditional or loopstatements, et
.(1) MPI INIT(err)(2) MPI COMM SIZE(MPI COMM WORLD, numP, err)(3) MPI COMM RANK(MPI COMM WORLD, myId, err)(4) IF (myId==0) THEN(5) read(*,*) s(6) END-IF(7) MPI BCAST(s,1,MPI INTEGER,0,MPI COMM WORLD,err)(8) DO i=1,s(9) neig = MOD(myId+i,numP)(10) CALL MPI SEND(myId,1,MPI INTEGER,neig,0,MPI COMM WORLD,err)(11) END-DO(12) DO i=1,s(13) neig = MOD(myId+numP-i,numP)(14) CALL MPI RECV(le
,1,MPI INTEGER,neig,0,MPI COMM WORLD,status,err)(15) write(*,*) myId, "re
eive: ", le
(16) END-DO(17) MPI FINALIZE(err)
1 2 30

1 2 30

s=1

1 2 30

1 2 30

s=2

Figure 2.13: Example of dynami
 syn
hronization
ode and stru
tureIn Fig. 2.13 we present an example of a FORTRAN-like MPI based
ode thatprodu
e di�erent syn
hronization stru
tures depending on a run-time value. Thevalue is read from an input devi
e and determines the number of
ommuni
ations,and the pro
esses to whi
h they are sent. Two examples of the generated graphare shown for values s = 1; s = 2 and exe
utions with 4 pro
essors.2.3 Exe
ution-level modelsIn the following se
tions we will use the SA
lassi�
ation to show that bene-�ts and disadvantages found at di�erent modeling levels are strongly related tothe
on
epts used for our SA
lassi�
ation
riteria. Our trip along the parallelprogramming abstra
tions begins in the lower level, where the unknown o
eansof parallel program exe
ution are shaking the dangerous
li�s of ma
hine mod-

36 CHAPTER 2. CONCEPTUAL APPROACHels. The ro
ks �ght with the �er
e waters, trying to resist in the middle of themoaning winds to form an established
oast line. People working in parallelar
hite
tures try to rule this broken seaside, in
onstant
hange, applying allnew a�ordable te
hnologies. In their e�orts, some ma
hine models have beena
knowledged and are being used as abstra
tions for development of higher levelprogramming tools.The ma
hine models we review in this se
tion are more or less establishedideas. Sometimes they are thought as equivalents of Von Neumann ar
hite
turefor parallel
omputing, but many of the times they are
onsidered little abstra
-tions of
urrent te
hnology trends in the
on
urren
y and high performan
e ra
e.Nevertheless, there exist a
onvergen
e of parallel ma
hine models at hardwareand organization levels [51℄.2.3.1 SA
lass of ma
hine modelsMost ma
hine models are designed to provide full
apa
ity of
ommuni
ation andsyn
hronization among pro
esses. Thus, they are mainly in the SA
lass thatpresents no restri
tion (NSP,ME,DS). The two main trends of parallel ar
hite
-tures have been shared memory-address spa
e and distributed memory-addressspa
e or message-passing models. We dis
uss also the data-
ow ma
hine model,be
ause it is a di�erent and interesting graph-based approa
h to generi
 parallel
omputing. There are other non-generi
 models that are not
onsidered in ourstudy, e.g. systoli
 arrays (simple lo
k step appli
ation oriented
ir
uits), ve
torma
hines, and data-parallel ma
hines. Their ar
hite
tures are spe
i�
ally de-signed to obtain better performan
e for spe
i�
 types of
omputations. Thus,their SAs are highly dependent on them. The following des
riptions are mainlybased on [51℄.
Global memory

...

Cache Cache CacheCache

P1 P2 P3 Pn...P1 P2 P3 Pn...

Global memory

...

Cache coherence systemSimple shared-memory

Access hardware

Access hardware

Figure 2.14: Shared address spa
e ma
hine models

2.3. EXECUTION-LEVEL MODELS 37Shared address spa
eShared address spa
e systems have hardware support for global a

ess to anymemory
ell from any pro
essor. The laten
y of memory a

ess
an be uniform(UMA) or non-uniform (NUMA) depending on the physi
al
on�guration of thememory a
ross the ma
hine, the presen
e of
a
hes with a
oheren
e system, andthe pro
essor to memory a

ess hardware (see a blo
k diagram of two typi
al
on-�gurations in Fig. 2.14). But it is anyway transparent to the upper levels. Thiskind of ma
hines provide di�erent me
hanisms to prevent ra
e
onditions whena

essing memory
ells
on
urrently. However, the programmer is responsiblefor using the syn
hronization and
ontention me
hanisms provided by the ar
hi-te
ture (operative system or hardware) to
reate programs with �xed semanti
sand no sto
hasti
 behavior. ME is then programmed with expli
it primitives thatimplement lo
k systems. CS is
reated through similar primitives also hardwiredin the operative system (e.g. semaphores) or the hardware itself (e.g. CrayT3Eprovide even a hardware barrier me
hanism, and
a
he
oheren
e hardware maybe exploited in

NUMA ma
hines for the same purpose [102℄). As they arebased on some kind of
ag set,
ag test me
hanism, the CS stru
tures
reatedby pro
esses are not restri
ted.Message-PassingMessage-passing (distributed address spa
e) ma
hines are based on a modelwhere pro
essors only have a

ess to a lo
al memory, and
ommuni
ate withother pro
essors to obtain remote data by ex
hanging messages. There existmany di�erent message
ommuni
ation me
hanism, all of them abstra
ted as aninter
onne
ting network from the ma
hine model point of view (see a blo
k dia-gram of these ma
hine models with two example
on�gurations of the abstra
tnode elements in Fig. 2.15). Messages are used to
reate CS in a natural way(when the pre
ondition is a
tivated, a message is sent to all the pro
esses wait-ing for it and the re
eption of the message �res the a
tion). Messages are intransit through the
ommuni
ation network for an unknown and typi
ally un-predi
table time (usually depends on network traÆ
). Thus, the order of severalmessages sent from di�erent pro
essors at di�erent times
annot be predi
ted.The programmer may program ME using messages. The pro
esses that wantto exe
ute a mutual ex
lusive task (
riti
al region) must send a request messageto a resour
e server pro
ess and re
eive a
on�rmation message from it beforethey pro
eed. After the exe
ution of the
riti
al region, the pro
ess send anending message to the server to indi
ate that it
an send a
on�rmation to otherrequesting pro
esses. Thus, in this model ME must be manually programmed.As presented in [51℄, there exist a
onvergen
e in these two main trends ofparallel ma
hine models. Traditional message passing operations are supported

38 CHAPTER 2. CONCEPTUAL APPROACH
Cache

P

M

Cache

P

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
� ����

�
�
�

�
�
�

�
�
�

�
�
�

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

Interconnecting network

...

M

���
���
���
����
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

������P

Generic multiprocessor nodeSimple local memory

Figure 2.15: Message-passing ma
hine modelsby shared-memory ma
hines using hidden shared bu�er storage with a properAPI. On the other hand, over a message-passing system it is possible to build amore abstra
t layer where a global address spa
e hides the ne
essary messagesto ex
hange data. Thus, in upper abstra
tion levels, even if di�erent PPMs seemto be more oriented to a spe
i�
 ma
hine model, all of them
an be implementedin both types of ar
hite
tures.Data-Flow ma
hinesThese ma
hines ar
hite
ture are based on a hihgly abstra
t exe
ution model.The programs are spe
i�ed as stati
 task graphs. A node is a basi
 operationto be exe
uted when all pre
ondition (input parameters) are available. Afterexe
ution, a node throws its post-
onditions to su

essor nodes. The pro
essorsare based on a mat
hing me
hanism that identi�es ready to run graph nodes(those whi
h inputs are already
omputed) and spawns new threads to exe
utethem. The exe
ution graph has the same topology as the input graph, whi
hstru
ture is not restri
ted. Thus, any kind of NSP CS is possible, although itmust be stati
. In a more dynami
 version, the nodes
an be fun
tion invo
a-tions with
ontext information. Dynami
 syn
hronization stru
tures are possible.As information generated as node output may be used or modi�ed by di�erentsu

essor nodes, lo
k me
hanisms to
reate ME are provided to a

ess memoryelements (by hardware) or entire data stru
tures (by operative system). Thus,ME is impli
it in the low level data a

ess system.

2.3. EXECUTION-LEVEL MODELS 392.3.2 Con
lusions about exe
ution modelsAll ma
hine models are in the less restri
ted SA
lass (NSP,ME,DS); see Fig. 2.16.Parallel ma
hine developers try to satisfy all possible
onsumer requirements.Hen
e, most ma
hine models proposed have the
apa
ity to
reate any kind ofCS stru
ture. Moreover, ME is needed at low levels for shared resour
e
ontrol. Itis a basi
 feature for distributed and parallel operative systems. They should alsohave me
hanisms to
reate or destroy pro
esses and threads to attend new userjobs and system requests. These elements, that appear and disappear at hand,may
ommuni
ate or syn
hronize among them. Although an spe
i�
 installationof the operative system may limit this
apa
ity, the parallel ma
hine models arefully dynami
 and support data-dependent syn
hronization stru
tures.
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
S

Message-Passing

Data-Flow

Shared-Memory

Figure 2.16: SA
lassi�
ation of ma
hine modelsIn generi
 environments, su
h as NOWs or GRID
omputing, it is
ommonto have only software me
hanisms to syn
hronize. Espe
ially in these environ-ments with mixed ar
hite
tures and high laten
ies that ineÆ
iently in
rease thesyn
hronization time with the number of pro
essors, stru
tured and hierar
hi-
al syn
hronization highly in
reases performan
e. Hierar
hi
ally splitting the
omputation in subsets of pro
essors improves lo
ality, and maps well to big het-erogeneous or hierar
hi
al
lusters (see e.g. [119, 187℄). Thus, more restri
ted

40 CHAPTER 2. CONCEPTUAL APPROACHsyn
hronization ar
hite
tures (spe
i�
ally in SP
lass) will be found in higherabstra
tion levels, to improve software development on these generi
 exe
utionmodels.2.4 Bridging models and
ost modelsWalking up from the exe
ution level
oasts, we will travel through the wide landsof
ost evaluation and bridging models (PCM/PPM). We will �nd pleasant slantsof greenery where new proposals
ourish, but most of the time we will
ross vast�elds whi
h old well-known PCMs have ploughed long ago, and where the
ropsso many of experien
e are now hanging on their heads.We review several models frequently found in the literature. All of thempropose a PCM based on an abstra
t parallel ma
hine, give a performan
e
ostmodel (at least for asymptoti
al
omplexity measures) and pres
ribe a SA for thePPM. Some of them are more fo
used on the solution design point of view, butmost of them are introdu
ed as bridging models, proposing a trade-o� betweenprogrammability and eÆ
ient mapping for any ma
hine. We examine here themost popular ones, fo
using on the features relevant to our study, to show howSA is highly related to the analyzability properties of a model. (For a more
omplete survey of parallel
omputation models see e.g. [129, 35, 4℄).2.4.1 Class (SP,NME,NDS): PRAMIn this
lass we �nd an important family of PCMs with a
ommon origin. ThePRAM parallel
omputing model [65℄ has been used for parallel
omplexity mea-surement during more than two de
ades. In PRAM, a parallel
omputer ar
hi-te
ture is highly abstra
ted, leading to a very simplisti
 model for easy program-ming. Although in many referen
es (see e.g. [73, 156℄) it has been presentedand used as the equivalent of a data-parallel programming model, based on theSIMD (Single Instru
tion, Multiple Data-
ow) ma
hine model of Flynn's
lassi-�
ation [64℄, the PRAM model has indeed more expresive power and it is a fullMIMD model.Des
riptionA PRAM ma
hine [65℄
onsist of a
ontrol unit that syn
hronously a
tivates theexe
ution of one ma
hine level instru
tion on an unbounded number of pro
essorsthat, apart from their private memory, work with an unbounded global memoryspa
e of uniform time a

ess (see Fig. 2.17). When the exe
ution begins thesame program is loaded in ea
h pro
essor (SPMD model). The pro
essor P0 isthe only pro
essor a
tivated when the
omputation begins, but the instru
tionset in
ludes a fork operation to a
tivate other pro
essors whi
h may evolve in

2.4. BRIDGING MODELS AND COST MODELS 41di�erent ways as they have their own program
ounter, a
umulator register andan unbounded number of private memory
ells. Note the
on
eptual similaritywith the shared-memory ma
hine model blo
k diagram in Fig. 2.14.
�����������
�����������
�����������
�����������

P1 P2 P3 Pn

Global memory

...

Synch. control

...Figure 2.17: PRAM
omputing modelThe
ost of a PRAM algorithm is the produ
t of the parallel time
omplex-ity by the number of pro
essors used. Time
omplexity is easily measured asthe pro
essors operate syn
hronously and global memory a

esses have uniformlaten
y in
luded in the pro
essors step.Derivates of the basi
 PRAM model exist to
over the problem that appearswhen more than one pro
essor issues simultaneous a

esses to a
ell in the globalmemory (see e.g. [156℄). They a�e
t the programmer in the te
hniques availablefor algorithm design, but the stronger the model (the more expressive power) thefurther from easy implementation of the model in a real ma
hine. The PRAMmodel
an be
onsidered:EREW (Ex
lusive read, ex
lusive write): Two pro
essors are not allowedto read or write at the same memory
ell simultaneously.CREW (Con
urrent read, ex
lusive write): Only simultaneous reads areallowed in the same
ell, but only one pro
essor
an write. This is thedefault PRAM model.CRCW (Con
urrent read,
on
urrent write): Reads and writes to same
ell are possible in the same step. A poli
y for handling
on
urrent writesmust be spe
i�ed, leading to more sub
lassi�
ations of the model (seee.g. [156℄).PRAM models
an be simulated, sometimes eÆ
iently, in other variants ofPRAM or in other parallel
omputing models (see e.g. [97, 128℄).Syn
hronization ar
hite
tureThe basi
 PRAM model presents a extremely restri
ted SA. The CS is restri
tedto a syn
hronous advan
e step by step, or lo
kstep (a sub
lass of SP). All tasks

42 CHAPTER 2. CONCEPTUAL APPROACHin one step depend on all tasks of the previous step. Whether all pro
essorsexe
ute the same instru
tion or they exe
ute di�erent ones does not a�e
t thesyn
hronization stru
ture. The most important simpli�
ation for the
ost modelis the assumption of similar laten
y in memory a

esses and
omputation steps,for
ed by the syn
hronization
ontrol.We
onsider PRAM to be in the NDS SA sub
lass be
ause even if data-dependent appli
ations may be programmed, the syn
hronization stru
ture istransformed to a stati
 lo
kstep stru
ture. Although pro
essors may a
tivateother pro
essors at any moment, the PRAM algorithms are typi
ally designedin two phases [156℄: In the �rst phase a suÆ
ient number of pro
essors are a
ti-vated, and then, in the se
ond phase, all pro
essors a
tivated are used to exe
utethe program with no new a
tivations. In this
ase, the number of pro
essorsused for a given
omputation is �xed. Let us analyze now the allowed syn
hro-nization patterns among them. The number or index of the pro
essor and thevalues of memory
ells may be used in
onditional statements. Thus, in prin
iple,the exa
t instru
tions and memory lo
ations a

essed in one
omputation phase
an be
ompletely data-dependent. From this point of view, the
ommuni
ationstru
ture
an be also data-dependent. However, from a more abstra
t point ofview, the lo
kstep me
hanism transforms any
ommuni
ation stru
ture in a fullall-to-all syn
hronization stru
ture. On one hand, programmer do fa
e an stati
programming model, as the syn
hronization stru
ture is syn
hronized and mem-ory laten
ies or
ommuni
ation problems are transparent. On the other hand,data-dependent appli
ations may be programmed, being the lo
kstep me
hanismthe responsible to deal with the dynami
 behavior during implementation.The obje
tive of PRAM is to simplify the
ost model assuming unit
ost for
omputation step and
ommuni
ation. One
an see PRAM as syn
hronized onlybe
ause of equal laten
y on the operations. This simpli�es the algorithm design,but the implementation should keep the
ommuni
ation stru
ture expressed inthe algorithm, in the presen
e of real laten
ies and even with asyn
hronous exe-
ution in ea
h pro
essor. In this
ase, the implementation of a PRAM algorithm
an express regular but not fully-syn
hronized patterns between ea
h layer of
omputation (a SA in NSP and DS
lass). As it is shown in the dis
ussionbelow, these di�eren
es between spe
i�
ation (using a
ost model in a highlyrestri
ted SA) and implementation (in unrestri
ted SA), is one of the reasonswhy PRAM fails to provide good mapping features.The basi
 PRAM model la
ks ME me
hanisms, as they are not needed in alo
kstep SA. The only shared resour
es are the memory
ells. The EREW modeldo not allow writing algorithms that need
ontention
ontrol, while the CREWmodel assumes the possibility of simultaneous reading but no writing
ontentionis allowed. In the CRCW model, a
ontention poli
y for
on
i
ts prevents theneed of ME. However, if an arbitrary non-deterministi
 poli
y is assumed, MEmay be expli
itly programmed. One pro
essor may be used as resour
e (
riti
al

2.4. BRIDGING MODELS AND COST MODELS 43region) server, using the non-ordered
ontention in a memory
ell to
ommuni
atethe requests. Thus, for non-deterministi

ontention poli
ies, CRCW is in
lass(SP,ME,DS).Dis
ussionThe simpli
ity of the model allows immediate
ost measures. The parallel time
omplexity is in the order of the number of instru
tions exe
uted (as any opera-tion is syn
hronized among all pro
essors), and no more parameters are
onsid-ered. However, the simpli
ity of the model makes it to ignore important detailsof real parallel and distributed programming.First, global memory a

ess in uniform time is not portable. It is not easilysimulated in non-uniform memory a

ess (NUMA) ma
hine, and the model doesnot
onsider the
ost of full
ommuni
ation in a distributed memory ar
hite
ture.Thus, the model does not dis
ourage the design of algorithms with a very �negrain of parallelism. Communi
ation patterns
an produ
e bottlene
ks that
om-pletely negle
ts performan
e improvement and s
alability. The time needed for
ontention solving in real
on
urrent a

esses to memory
ells is also disregarded.Se
ond, the number of pro
essors is unbounded. It is
onsidered that a �xednumber of pro
essors
an simulate a set of PRAM pro
essors, but the implemen-tation of the syn
hronization system, a load balan
e me
hanism when PRAMpro
essors are dynami
ally swit
hed on and o�, and the
ost of the simulationwith
on
urrent memory a

esses are diÆ
ult issues and
an
ompletely modifythe
omplexity bounds of the original algorithm.The
on
lusion is that PRAM model is adequate for basi
 theoreti

om-plexity measurement, or gross
lassi�
ation of algorithms. However, it is soun
on
erned about real ma
hine details that the mapping problem of PRAMalgorithms is far from dire
t, and many details must be still
onsidered by theprogrammer to keep the original features of the algorithm for a spe
i�
 ma
hine.However, for its simpli
ity, and for assuming unit resour
e
osts, it en
ouragesthe algorithm designer to expose all possible parallelism in the problem (evenif this �ne-grained parallelism will have a non-eÆ
ient or even a non-a�ordable
ost). Thus, it surely will survive as an interesting tool for theoreti
al purposes.PRAM extensionsMany extensions of the original PRAM model have been proposed to solve themodel short
omings. They typi
ally try to ta
kle one of the main importantfeatures not
ontemplated in basi
 PRAM, although some of them try several atthe same time. Some are still too simplisti
 and they do not usually map well inreal ar
hite
tures. Others lead to mu
h more
ompli
ated or even non-pra
ti
al
ost models. In general they try to preserve simpli
ity, by assuming restri
ted

44 CHAPTER 2. CONCEPTUAL APPROACHSA. Evolution to real bridging models
an be noti
ed in some of them. Considerthese few examples (see [129, 35℄ for a detailed survey of more alternatives):Contention problems: An extended family of PRAM models known as theQRQW-PRAM [75℄ (Queue read, queue write PRAM) deals with the
on-tention problem in memory a

esses. This model is better suitable for ar
hi-te
tures with pipelining
ontention rules in
ells, and suÆ
ient pro
essors-to-memory bandwidth. EÆ
ient implementations in other ar
hite
turesare not supported. This model support programmable ME using the
on-tention queues, moving the SA to ME
lass (still in lo
kstep sub
lass of SPCS).Asyn
hrony: It is another important issue in PRAM model extensions. Someexamples of partial asyn
hrony are in the Asyn
hronous PRAM [74℄ andthe APRAM [46℄ models. In these models di�erent pro
essors may exe-
ute at di�erent time rates, skipping the lo
kstep me
hanism. Neverthe-less, expli
it syn
hronization is needed to keep
onsisten
y in write/readoperations. Thus, these models propose global or partial syn
hronizationme
hanisms. Communi
ation through write/read operations between syn-
hronization points is limited to eliminate dependen
es (e.g. no read aftera write in the same global memory
ell before a syn
hronization point).There exists several variants:APRAM: Syn
hronization o

urs in �xed rounds. SA moves to bulk-syn
hronous SP sub
lass.Phase Asyn
hronous PRAM: Full syn
hronization is expli
itly usedby the programmer for
onsisten
y in read/write operations: Bulk-syn
hronous SA.Subset Asyn
hronous PRAM: The programmer
an use full syn
hro-nization in hierar
hi
al subsets of pro
essors. SA moves from lo
kstepand bulk syn
hronous sub
lasses. SP syn
hronization stru
tures areallowed. As the subsets of pro
essors may be
reated dynami
ally bydata-dependen
es, the syn
hronization stru
tures are
hange to DS
lass. The SA is in (SP,NME,DS).All these models still keep an a�ordable
ost model due to the SP-restri
tedCS stru
tures.Another model
alled Asyn
hronous QRQW-PRAM [77℄
ombines
on-tention in
ells and real asyn
hrony, where dependen
es through a

esses toglobal memory
an appear in any form. Thus, SA moves to (NSP,ME,DS)
lass. However, to avoid the problems of
omplexity, redu
ibility and anal-ysis in the
ost model, derived from unstru
tured CS, it for
es the program-mer to
onstru
t the program in a way that it assures
orre
tness under

2.4. BRIDGING MODELS AND COST MODELS 45the worst
ase assumption on the �nite delays in
urred by the pro
essorsin queuing global memory a

esses. The
ost model uses an optimisti
 syn-
hronous assumption. Thus, the
omplexity introdu
ed by the NSP SA,is moved not to the
ost model (that works properly for bulk-syn
hronousstru
tures), but to the programmer de
isions. Many PRAM algorithmsmust be re
onsidered and reprogrammed to get pro�t of this model, andto assure
orre
tness if the simpli�ed
ost model is to be used.Communi
ation laten
y: Several variants
onsider di�erent laten
y valuesfor a

essing lo
al or global memory. Some well-known examples are theLPRAM and BPRAM models.LPRAM model [3℄ distinguish only two laten
y times: One for a

essinglo
al memory (unit time) and one for a

essing global memory
ells (a newlaten
y parameter). It is suggested that LPRAM algorithms should restri
ttheir behavior to perform two di�erent kind of steps. Communi
ation steps(where the a

esses to global memory has a high �xed
ost), or
omputationsteps (where pro
essors work in lo
al memory in unit time). Thus, the
ostmodel in
ludes two types of steps with di�erent
osts, but the SA does not
hange and the analyzability is not a�e
ted.The Message-Passing Blo
k PRAM (BPRAM) [2℄ in
ludes a startup
ostfor a message (or a

ess to a global memory blo
k) and a
onstant
ostfor any word in the message (pipelined read/write operations). Thus, itrewards the sent of long messages, and en
ourages the design of algorithmsthat exploit data lo
ality to form
ohesive blo
ks that
an be moved fast.A pro
essor
an send and re
eive at most one message in a step. Thismodel does not greatly modify the SA. As long as di�erent blo
k a

esses
an have di�erent
osts, the lo
kstep is inherently substituted by a bulk-syn
hronous a
tivity. The
ost model of a step is a little more
omplexdue to new parameters for more a

urate predi
tions. But the overall
ostmodel simpli
ity is similar be
ause of the still SP-restri
ted SA
lass.We
on
lude that many extensions of PRAM model try to
over featuresignored in original PRAM to jump over the implementation gap. Some try toimprove a

ura
y by adding new parameters and a little
omplexity to the lowlevel details of the
ost model, but keeping a restri
ted SA to make the overallsolution simple and easy to handle. Others move to unstru
tured SAs, leading to
ost models that be
ome too
ompli
ated. Some of them are so far from originalPRAM model that no algorithm developing te
hniques and pra
ti
e have beenyet exerted. In general we noti
e how newly introdu
ed features that seriouslymodify the SA lead to important
hanges in the
ost model or mapping propertiesof the model.

46 CHAPTER 2. CONCEPTUAL APPROACH2.4.2 Class (SP,ME,NDS): BSPThe Bulk Syn
hronous Parallelism model [185℄ was introdu
ed as a more realisti
bridging model for a parallel ma
hine. BSP and variants have been studied formore than a de
ade and its introdu
tion has produ
ed a lot of expe
tation andinterest. However, its a

eptan
e is not
omplete due to its restri
ted parallelexpressive power. We fo
us on several key features of BSP and espe
ially in ex-tended BSP models that support nested parallelism, as they provided the nearestframework to a pure SP parallel programming model.Des
riptionA simpli�ed model of a parallel
omputer,
alled the bulk-syn
hronous parallel
omputer (BSPC)
onsists of: (1) A �xed number p of pro
essors with lo
almemory; (2) an inter
onne
ting network with limited bandwidth and simplebounded laten
y parameters; (3) a �xed
ost barrier syn
hronization system.The BSP
omputer works in supersteps. In ea
h superstep every pro
essorworks independently with its lo
al memory and data. During the
omputationphase every pro
essor sends or re
eives at most h messages of little size (typ-i
ally one word) to other pro
essors (if h = p every pro
essor
ommuni
ateswith all the others). This is
alled an h-relation (see e.g. [173℄). Data re
eivedfrom other pro
essors are not available until next superstep. After the
om-putation/
ommuni
ation phase, a full barrier syn
hronization is issued. Everypro
essor begins the next superstep at the same time (the full syn
hronization
an be inherent to the
ommuni
ation phase when h = p).Two main interpretations of how BSP superstep works and its
ost modelexist (see Fig. 2.18). The main premise for the model is a
onsisten
y statementthat assures that data
oming from other pro
essors during superstep s are notused for
omputing before the beginning of superstep s+ 1. Thus,
ommuni
a-tions
ould be issued during the
omputation phase at any moment, providedthat transfered data arrived during the
urrent superstep are not used in thetarget pro
essor before the beginning of the next superstep.Interpretation 1: Completely horizontal model. The messages are delayed un-til the end of the
omputation phase (all pro
essors end their
omputationfor this superstep), and sent during a
ommuni
ation phase. See for exam-ple [114, 173℄.Interpretation 2: Overlapping model. The messages are sent during the
om-putation phase, overlapped with
omputation. Examples of this interpre-tation
an be found in [76, 133℄.The
ost parameters of the model are:

2.4. BRIDGING MODELS AND COST MODELS 47

�������������
�������������
�������������

�������������
�������������
�������������

��������������
��������������
��������������
��������������

...

Barrier

...

Barrier

su
p

er
st

ep

Communication

Synchronization

Computation

1 2 3 p 1 2 3 p

Overlapping comm.No overlapFigure 2.18: BSP
omputing modelp: Number of pro
essor elements.g: The
ost per
ommuni
ation (the basi
 throughput of the
ommuni
ationsystem while in
ontinuous use).Some simplifying assumptions are made here. The
ost of establishinginitial
ommuni
ation is generally ignored, as long as the minimum numberof
ommuni
ations per pro
essor in a superstep is
onsidered to be enoughto negle
t this innitial laten
y, in
omparison with the total
ommuni
ation
ost. Global
ommuni
ation stru
ture
an also be exploited to hide it.Another simpli�
ation assumed by the
ost model is that messages aresmall (in the order of the pro
essor word), in order to always have similarsending laten
y time.L: Periodi
ity. The
omputing unit for a superstep.As originally proposed by Valiant [185℄, ea
h L time units the system
he
ksif every pro
essor has �nished its superstep a
tivity. Then,
ommuni
a-tions are �nished and a new superstep begins after a full syn
hronization.During a superstep ea
h pro
essor
an do L
omputation steps, and
ansend/re
eive at most bL=g
 messages.L parameter has other meanings depending on the interpretation of themodel used. See following dis
ussion about the
ost model.The
ost measurement is easy as any
omputation works in supersteps of
L+gh time
omplexity (
 is the number of periods of L time used by pro
essorsbefore they end the
omputation phase).

48 CHAPTER 2. CONCEPTUAL APPROACHAuthors using the horizontal interpretation typi
ally
onsider another param-eter l for the
ost of the barrier syn
hronization, and they
ompletely split
ompu-tation and
ommuni
ation
osts. In this
ase, wi represents the work/
omputationtime of ea
h pro
essor during the superstep and hi the total number of messagessent by the pro
essor i. The
ost model of a superstep is:T = maxi=1:::pwi + maxi=1:::p ghi + lOther authors using this interpretation
onsider L to be the minimum
ostof a superstep. Thus, L represents the time for syn
hronization and a
tivationof next superstep and it substitutes l in the formulae.However, in the se
ond interpretation,
omputation and
ommuni
ation over-lap. Typi
ally L is
onsidered a minimum laten
y parameter that representsthe minimum time length of a superstep imposed by the hardware. Let beW = maxi=1:::pwi and H = maxi=1:::p hi. Thus, the superstep
ost model is:T = max(W; gH) + lOr, in other versions: T = max(W; gH;L)The parameters L; l; g are empiri
ally measured for a given ar
hite
ture anda given number of pro
essors p. The
ost model
an be used to test how analgorithm maps to a range of values for the parameters
ombination (the BSPspa
e). Thus, if the
ost model shows to be a

urate enough, the programmer
aneasily predi
t whi
h algorithm is going to perform best for an spe
i�
 ma
hine.In [49℄ we read that being the L parameter (the duration of a superstep orperiodi
ity)
al
ulated as a fun
tion of h it must be
onsidered for the worstpossible h. In this
ase, the
ardinality of interpro
ess
ommuni
ation
an bedi�erent in di�erent supersteps leading to performan
e losses in some steps. TheExtended BSP (E-BSP) model [113℄ in
ludes an extended
ost model based onmore
omplex and variable routing relations. It provides reliable measures forunbalan
ed
ommuni
ation patterns in di�erent supersteps and models lo
ality(network proximity) in
ommuni
ations.ImplementationsImplementations of the BSP model in generi
 ar
hite
tures have been developedsin
e 1993. Mainly the Oxford BSP library [138℄, the Green BSP library [92℄ andthe BSPlib library [101℄ whi
h in
ludes Dire
t Remote Memory A

ess (DRAM)and Bulk Syn
hronous Message Passing (BSMP). BSPlib has almost be
ome astandard or at least a referen
e point for BSP implementation resear
h and pro-gramming. New implementations with nested parallelism approa
h are dis
ussedbelow.

2.4. BRIDGING MODELS AND COST MODELS 49Syn
hronization ar
hite
tureThe SA of the BSP model is highly restri
ted. The only
ondition syn
hroniza-tion stru
tures allowed are sequen
es of supersteps, and a superstep is a parallel
omposition, always with the same degree of parallelism. Ea
h parallel threadis a series of tasks of any length. These stru
tures are in the bulk-syn
hronoussub
lass of SP CS
lass. The restri
tion of using always p pro
essors in ea
h su-perstep is not important for the SA point of view. The laten
y parameters L; l; gare typi
ally dependent on p. The purpose of �xing p is to use �xed and knownvalues of parameters throughout all supersteps for
ost formulae simpli�
ation.At the same time it is a reasonable
hoi
e to use as many pro
essors as possibleduring all the program exe
ution.Some kind of
ontention is produ
ed by the arbitrary arriving of messagessent to the same pro
essor. Thus, even if no ME primitive is
onsidered in themodel, ME
an be programmed and the SA is in the ME
lass.For the same reasons dis
ussed in the PRAM model in se
tion 2.4.1, theSA is stati
 and non-data-dependent, in the sense that the programmer do notfa
e the problems of dynami

ommuni
ations among pro
essors. She/he seesonly one bulk syn
hronization and
ommuni
ation step, independently of the in-ternal dynami
 stru
ture
reated in lower implementation levels. Programmingdata-dependent appli
ations is possible, but the bulk syn
hrony barrier systemis responsible for transforming the dynami
 stru
ture into an stati
 one, mak-ing it transparent for the programmer. Thus, we
onsider BSP to be in the(SP,ME,NDS)
lass.Dis
ussionThe thesis of Valiant [185℄ is that when the programmer uses enough parallelsla
kness2 the model behaves neutral with respe
t to the number of pro
essors,and the programs run eÆ
iently as long as the
ommuni
ation is at least balan
edwith the
omputation. The value of L
an be pre-
al
ulated for any ma
hine andh value
ombination, for any program to run with optimal eÆ
ien
y (in
onstantfa
tors) for this model.It is
laimed by Valiant that the implementation of this model in any ar
hi-te
ture is possible loosing only little eÆ
ien
y (no logarithmi
 losses). Su

essfulimplementations of BSP models and appli
ations
on�rms it for many
ases (seereferen
es in [173, 100, 91℄). The model lets the programmer determine whi
halgorithm is better suitable for any ma
hine simply
he
king the results of the
ost model for the given parameters measured for the ma
hine, and knowing theh-relation
ardinality of the algorithm.2Programs are written for v virtual pro
essors to run on p physi
al pro
essors where v ismu
h larger than p (e.g. v = p log p)

50 CHAPTER 2. CONCEPTUAL APPROACHNevertheless, obje
tions and
ounter-obje
tions to this model are stated. Thea

ura
y of the
ost model is not so high, although it is \very reliable in modelingthe overall behavior of an appli
ation, in
luding the predi
tion of breakpoints atwhi
h the performan
e
hanges" [91℄. In the same paper it is also
laimed thatthe a

ura
y
ould be in
reased by adding new parameters, but this will made themodel more
omplex and the algorithmi
 trade-o�s less obvious. Nevertheless,as far as the SA does not
hange, the main analyzability properties that leads toan a�ordable
ost model will not
hange. The
hoi
e of modeling parameters ofthe underlying ma
hine is a trade-o� between a

ura
y and
omplexity that
anbe applied to the same
ost modeling te
hniques [70℄.BSP
ost model ignores possible delays due to
ontention problems derivatedby many pro
essors sending messages to a given pro
essor at the same time. Thesolution is to use spe
i�
 message ordering adapted to the
omputation. Imple-mentations of BSP
an do it internally, but most of the time the programmershould be aware of the problem and provide a solution
hanging the order inwhi
h messages are sent in the algorithm [112℄. Thus, the programmer is fa
inga mapping problem derivated by the limited number of resour
es (pro
essors andnetwork interfa
es).At the same time full barrier syn
hronization is
laimed to be an expensiveme
hanism that most ma
hines do not provide by hardware, and a me
hanismwith no �xed
ost, whi
h s
ales-up with the number of pro
essors. Hill andSkilli
orn studied the pra
ti
al implementation of barrier me
hanisms in [102℄.The performan
e of the di�erent me
hanisms available in shared memory ar
hi-te
tures is good enough, but diÆ
ult to predi
t without very low-level detailedknowledge. For distributed memory ar
hite
tures, whi
h rely on message-passingmodels, performan
e of barrier syn
hronization is predi
table and reliable, butpoor in general. However, better syn
hronization systems are
onstantly devel-oped and it is reasoned that syn
hrony is an important feature to improve analyz-ability and
orre
tness proo�ng. The model suggests this dire
tion for hardwaredevelopers. Software alternatives to dire
t barrier syn
hronization exist:1. When h = p and every
ommuni
ation is delayed until the end of thesuperstep, the
ommuni
ations
an be optimized and the barrier is impli
itin the h = p information ex
hange [57℄.2. A spe
ial system of zero-
ost emulation of a barrier that
an be used inspe
ial
ir
umstan
es was proposed in [62, 8℄. It is implemented in thePUB library with the name oblivious syn
hronization [25℄. When everypro
ess knows exa
tly the number of messages that other pro
esses aregoing to send to it during a superstep (the exa
t re
eiving h-arity), when itre
eives that number of messages it
an pro
eed to the next superstep. The
onsisten
y is maintained, as long as no pro
ess uses data re
eived duringa superstep until next lo
al superstep begins.

2.4. BRIDGING MODELS AND COST MODELS 513. A relaxed barrier syn
hronization emulation by a handshake proto
ol onlybetween
ommuni
ation pro
esses is proposed in [121℄. It uses the numberof the superstep (s) in the sending pro
ess as
ontrol information in themessage to keep the
onsisten
y statement (data are not used before thes + 1 superstep in the re
eiving pro
ess). The eÆ
ien
y of the system isimproved due to the relaxation of the syn
hronization phase.However, these systems only work under spe
ial assumptions (e.g. knownnumber of re
eiving messages), and the relaxation of the syn
hronization
om-promises the simpli
ity of the
ost model be
ause of a
hange in the SA. It isdiÆ
ult to deal with the la
k of syn
hrony and still keep
ost measures tight, es-pe
ially in irregular or not highly-balan
ed problems. A new
ost model shouldbe devised, but the la
k of syn
hrony
an lead to NSP SA and non-redu
ible
ostmodels. An approximation to this problem has been presented in [81℄.Another pro�table feature is that BSP model is mainly used in the mostgeneral
ase where h = p (assuming a full interpro
ess
ommuni
ation in ea
hsuperstep). For this
ase, implementations may exploit the impli
it and ex-pli
it knowledge of the
ommuni
ation global stru
ture. Repa
king, destinations
heduling and pa
ing te
hniques used in an implementation of the BSPlib im-prove performan
e to a fa
tor of approximately four
omparing with a generi
message-passing interfa
e (MPI) [57℄. This is a good example of how restri
tedand stru
tured syn
hronization ar
hite
tures lead to performan
e improvementsin implementation.An interesting proposal for in
reasing the expressive power of BSP and main-taining or even improving the performan
e, somehow related to the idea of sub-dividing the BSP ma
hine, is the Colle
tive Computing Model (CCM) [163℄. Inthis model the number of possible
ommuni
ation patterns at the end of a normalsuperstep is limited to a
hosen subset that in
ludes all typi
al
olle
tive
ommu-ni
ation s
hemes. A

urate
ost measures
an be obtained for them, and spe
i�
eÆ
ient implementations are possible for su
h a limited number of well-know
ommuni
ation patterns. At the same time they propose a new spe
ial kind ofsuperstep, the division superstep, that splits the pro
essors in groups, distributesdata among them,
omputes spe
i�
 tasks in ea
h group, and redistributes theresults, always trying to bene�t from the redu
ed number of eÆ
ient
ommuni-
ation patterns. However, the division steps are rigid and
annot be nested toextent the SA to an SP
lass. The model keeps the great simpli
ity of the BSP
ost model even in the division steps as the SA is still bulk-syn
hronous. Thisdire
tion is mainly fo
used to the integration of BSP with the eÆ
ient and per-forman
e predi
table
olle
tive
ommuni
ation operations, that are so
ommonlyused in message passing environments (see se
tion 2.5.4).

52 CHAPTER 2. CONCEPTUAL APPROACHNested parallelism in BSPIt has been said that \global barrier syn
hronization is an in
exible me
hanismfor stru
turing parallel programs" [135℄. Trying to keep the good properties ofBSP model but getting more expressive power, some new versions of BSP in
ludesupport for the
on
ept of nested parallelism (SP syn
hronization ar
hite
ture)using the nested BSP
omputers
on
ept. The whole BSP abstra
t ma
hine, withp pro
essors
an be re
ursively subdivided in k BSP subma
hines, ea
h with kipro
essors that work like a small BSP ma
hine, syn
hronizing their pro
essorsindependently of the other sub-ma
hines. When a subset of (perhaps also sub-divided) ma
hines end their work, they must wait to be syn
hronized together.Examples of the implementation of this idea
an be found in the Paderborn Uni-versity BSP (PUB) library [25℄, NestStep [119℄ (that also in
ludes support forvirtual shared memory), H-BSP [39℄, and NBSP [80℄.The BSP model assumes that the
omputer has a global syn
hronizationme
hanism (a bulk property). It has been argued that syn
hronizing a subsetof exe
uting pro
esses
an be a
omplex issue [173℄. However, the same re-port states that ar
hite
tures in whi
h barrier syn
hronization is implemented insoftware
an make to it without any problem. Moreover, many works orientedto �ne-grained parallelism indi
ate that nested parallelism
an be implementedeÆ
iently (see e.g. [180, 131, 19℄).Nested BSP has basi
ally an SP SA
lass. Thus, the
ost model of a nestedBSP
an use the
ompositional analysis properties of SP
lass over the lo
al BSP
ost models. For example, a simple nested theoreti
 BSP
ost
al
ulus namedminiBSP was introdu
ed in [172℄.If the subsets of pro
essors may be
hosen dynami
ally by data-dependen
es,the syn
hronization stru
tures are no more stati
. Nested parallelism move theSA to real SP
lass, where dynami

onstru
tion of the nesting is possible. Thus,nested BSP is in (SP,ME,DS)
lass. SP languages map without mu
h trouble inany implementation of a nested parallel BSP model.Con
lusionThe BSP model proposes a highly restri
ted SA (bulk-syn
hronous) to obtaina very simple and easy-to-use
ost model. At the same time, full syn
hroniza-tion helps in software development be
ause it makes mu
h easier to reason about
orre
tness [91℄. For example the re�nement
al
ulus
an be used to
he
k
or-re
tness in BSP program building [171℄. In the same report it is also said thatthis te
hnique
an be also used for nested BSP. Re�nement
al
ulus works in are
ursive framework, being useful for all SP
lass models.Although the programming dis
ipline imposed by the bulk-syn
hronous ar
hi-te
ture is very user-friendly and easy to understand [91, 72℄, no software engineer-

2.4. BRIDGING MODELS AND COST MODELS 53ing te
hniques that helps the programmer to
atten more
omplex SA s
hemesto only one-dimensional parallelism exist. Automati

attening by the
ompilerhas been only a
hieved for SIMD parallelism [119℄, as e.g. in NESL [18℄. Sim-ulations of other models (as PRAM) are possible in BSP, but for real eÆ
ien
ydire
t BSP algorithm design is desirable. At the same time the programmer isfa
ed with data-partition problems, as the point-to-point message system for
esto expli
itly know where data are and where they must be moved to be used.Data-layout is then �xed in the �nal algorithm.It is an interesting question to determine whi
h range of appli
ations
an beeÆ
iently programmed in a bulk-syn
hronous s
heme [91℄. No measures of thepotential loss of parallelism inherent to the full barrier syn
hronization have beenpreviously shown. Measuring the distan
e from BSP programming to a moreexpressive or generi
 model is an important issue in this dissertation. Althoughwe fo
us in the more broad SP syn
hronization ar
hite
ture
lass, we show thatmost of our results are appli
able to BSP programming.2.4.3 Class (SP,ME,NDS): QSMThe Queue Shared-Memory model is the evolution of the QRQW-PRAM model(see se
tion 2.4.1) to a bridging parallel
omputation model based on laten
y-
ontention in a shared-memory environment. It tries to keep the simpli
ity ofuse of shared-memory with the same
ost model features of BSP or LogP models(see se
tion 2.4.4). QSM detailed des
ription and rationale
an be found in [76℄.Des
riptionThe QSM ma
hine model has a �xed number p of pro
essors with lo
al memoryand
onne
ted to a shared memory global spa
e. Every
ell has a queue ofread/write operations that deals with the
ontention of many pro
essors tryingto read/write the same
ell.Pro
essors exe
ute syn
hronized phases. A phase is an arbitrary interleavingof three possible operations:Lo
al
omputations: Ea
h pro
essor i performs
i RAM operations in its lo
almemory.Shared-memory reads: Ea
h pro
essor i reads ri shared-memory
ells,
opy-ing their
ontents into the lo
al memory. Shared-read operations are notguaranteed to
omplete until the end of the phase. Thus, values
annot beused before the next phase begins.Shared-memory writes: Ea
h pro
essor i writes to wi shared memory
ells.

54 CHAPTER 2. CONCEPTUAL APPROACH
Global memory

��������������
��������������
��������������
��������������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

P1 P2 P3 ...

...

Bulk Synch. control

...
Queues

R/W

Pp

Figure 2.19: QSM
omputing modelCon
urrent reads or writes in a given
ell are possible during the same phase,but not both. The read/write restri
tions allow the emulation of a QSM ma
hinein a MIMD environment, pipelining the shared memory a

esses to amortize thelaten
y of remote a

esses. When multiple writes are issued, any one of them�nally su

eeds.A phase �nalizes when the lo
al
omputations �nish in every pro
essor andall the read/write operations pending in the R/W queues of shared-memory
ells�nish.QSM proposes only two parameters to model the ar
hite
ture features:p: The number of available pro
essors.g: The laten
y parameter for read/write operations in shared-memory. It repre-sents the gap between lo
al instru
tion rate and
ommuni
ation rate dueto limited bandwidth in the pro
essor interfa
e.The
ost model of a phase represents
ontention vs.
omputation vs.
om-muni
ation. Let the maximum
ontention k represent the maximum number ofpro
essors reading or writing to a given shared-memory
ell during the phase.Let mop = maxif
ig, and mrw = maxfri; rwg for the phase. The total
ost ofthe phase is: T = maxfmop; gmrw; kgSyn
hronization ar
hite
tureThe CS SA is bulk-syn
hronous. The model works in syn
hronized phases, noread/write are allowed in the same phase in the same shared-memory
ell, andshared-read values are not obtained until the next phase begins. Thus, no
on-dition dependen
es
an be produ
ed ex
ept from one phase to the next. The

2.4. BRIDGING MODELS AND COST MODELS 55dynami
 data-dependent stru
tures are redu
ed to stati
 ones due to the bulk-syn
hrony (see dis
ussion in se
tion 2.4.2). This model has no ME primitive,but it supports ME. Read/write operations invo
ated by the programmer
an
ontent in the queues of the shared-memory
ells, allowing programmed ME.Dis
ussionThe model presents the fa
ility of a shared memory spa
e, to be used with theusual read/write operations. However, the semanti
s of the read operations ismodi�ed (values
an not be used before next phase), in a way that is equivalentto the
onsisten
y statement of BSP model.In fa
t there is a highly inherent
on
eptual equivalen
e between QSM andBSP model. The read/write a

esses to the shared-memory have similar seman-ti
s to message passing, and they are done in two phases that
an be pipelinedby the pro
essors. Ea
h phase is
harged with a similar laten
y parameter g.The h-relation is substituted by many
on
urrent writes, and many
on
urrentreads.The main di�eren
e with BSP is that in QSM the
ontention in the arrivingmessages (read/write operations in this model), is a

ounted expli
itly. Thus, the
ost model
an predi
t
ontention problems due to non-balan
ed
ommuni
ationpatterns (bottlene
ks that appear when many read/write
on
urrent operationsare issued to the same shared-memory
ell). An interesting remark is that themodel do not
harge any
ost for the syn
hronization me
hanism. This
an fa-vors programming with too small
omputation phases and many syn
hronizationpoints. The
ost model does not penalize this pra
ti
e.EÆ
ient emulations of BSP are possible in QSM and vi
eversa [76℄. Therelationship of emulation possibilities between QSM, BSP and LogP models ispresented in [160℄. The main results indi
ate that these laten
y based modelsare quite similar in
omputational power and modeling solutions of real ar
hi-te
tures. QSM has the advantage of a
omfortable interfa
e based on simpleshared-memory operations, making the data-layout transparent for the program-mer.This model exploits the highly restri
ted bulk-syn
hronous stati
 SA to allowthe insertion in the
ost model of a simple a

ount of the
ontention s
heme(that allows ME), assuming that the bulk-syn
hronization waits for
ontentionproblems to be solved. Again, a restri
ted stati
 SA shows its analyzabilitybene�ts.2.4.4 Class (NSP,ME,DS): LogPAnother important model based on messages and network laten
y modeling isLogP [49℄. It tries to over
ome PRAM and BSP models limitations by
reating

56 CHAPTER 2. CONCEPTUAL APPROACHa more realisti
 and detailed model of real parallel
omputers. In fa
t, its SA isin the most
exible and expressive
lass. Its su

ess is still
ompromised by thehigher
omplexity of use that it introdu
es.Des
riptionIn this model the idealized
omputer ar
hite
ture is similar to the BSP
on
ept ofindependent pro
essors with lo
al memory and a non topology-detailed networkrepresented by few parameters (see Fig. 2.20). This is a representation of a generi
distributed-memory multi
omputer where pro
essors
ommuni
ate by point-to-point messages. Compare it with the blo
k diagrams of message-passing ma
hinemodels in Fig. 2.15.
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

P2 P3 PnP1

M1 M2 M3 Mn...

...

Interconnecting networkFigure 2.20: LogP
omputing modelThe main new features are:Asyn
hrony: No syn
hronization devi
e is
onsidered, as in BSP. In LogP, pro-
essors work at their own path and do not syn
hronize ex
ept by expli
itmessage-passing instru
tions in
luded in the program.Limited bandwidth: In LogP does not exist the
on
ept of h-relations in syn-
hronized phases to limit the amount of traÆ
. Pro
essors
an
ommuni-
ate to their heart's
ontent, limited only by the speed of their networkports (modeled with new parameters). Thus, the network
apa
ity
an beover
ome, produ
ing a stall state. The limited bandwidth of the networkmust be
onsidered.The
ost model in
ludes the following parameters:L: Laten
y upper bound of the
ommuni
ation of a small message (in the orderof a few words).o: The overhead or time during whi
h a pro
essor
annot work when engagedin sending a message. It has been argued that new network interfa
e te
h-nology has redu
ed this overhead to almost negligible times. Thus, someauthors
laim that this parameter may be e�e
tively disregarded.

2.4. BRIDGING MODELS AND COST MODELS 57g: The gap. Time interval between
onse
utive messages re
eption or transmis-sion in a given pro
essor.P : The number of
omputing elements (pro
essor, memory and network interfa
emodules).The
apa
ity of the network is limited by the parameters. No more than dL=gemessages
an be in transit through the network at the same time. Pro
essorsthat try to transmit over the
apa
ity of the network stall until the network isnot saturated. Messages that produ
e stall states
an take more that L timeunits in being sent.The des
ription of the model in
ludes the following remark: \an algorithmmust produ
e
orre
t results under all interleaving of messages
onsistent withthe upper bound of L on laten
y" [49℄. For the general
ost model all messagesare assumed to in
ur in the worst
ase laten
y of L. Although some examples areprovided in the literature, no general pro
edures to derive
ost model formulaeare proposed, as ea
h algorithm
an present a
omplete di�erent behavior thatmust be analyzed on its own.Syn
hronization ar
hite
tureThe model assumes asyn
hrony in the pro
essors work, and point-to-point
om-muni
ation without restri
tions. Any stati
 as well as dynami
 syn
hronizationstru
tures are possible. The expressive power is big, being the SA in the NSPand DS
lasses. ME
an be expli
itly programmed due to the unknown interleav-ing of messages during network transit. No order rule exist in message arriving,allowing non-deterministi

ontention. Thus, the SA is in the (NSP,ME,DS)
lass.Dis
ussionDue to its NSP
ondition syn
hronization, the LogP model does not o�er a sim-ple analyti

ost
al
ulus for performan
e predi
tion. For a generi
 appli
ationthat
an use unstru
tured programming
onstru
tions, it is usually not possibleto redu
e the
ost expressions to simple formulae only dependent in given ap-pli
ation and model parameters values. At the same time, the
omplexity andasyn
hrony of unstru
tured
omputations prevents simple debugging te
hniquesbased on global state
he
king.S
heduling, data partition and mapping de
isions are
ompletely fa
ed by theprogrammer. Even more, the stall states in the network must be dete
ted andprevented by the programmer, as the
ontention is not represented in the
ostmodel (see details about LogGPS below).

58 CHAPTER 2. CONCEPTUAL APPROACHPerforman
e predi
tions are
omputed in an unrestri
ted stru
ture of
ommu-ni
ation produ
ed by the implementation of the appli
ation, and results
annotbe proje
ted ba
kwards through the implementation transformations path (isimpossible to automati
ally determine what e�e
ts are produ
ed by ea
h trans-formation or implementation de
ision). The fast growing
omplexity of testingany possible mapping or transformation make the testing of a wide range of
hoi
es impossible. Thus, the model gives little help for software development inthe generi

ase.LogP has been proven to be useful for optimal design and performan
e pre-di
tion of low level appli
ations [116, 50℄. Some low-level implementations ofmessage-passing
ould support the LogP model of
omputation. However, itssimpli
ity of parameters and ma
hine modeling is not enough to predi
t theoptimized operations of a
omplex message-passing interfa
e su
h as PVM orMPI [5℄. Extensions to the LogP model in
lude:LogGP: Support for long-messages
ommuni
ation laten
ies [6℄.LogGPS: Variable overheads to simulate impli
it syn
hronization of pro
es-sors before long-message transmission in message-passing interfa
es [109℄.LogGPS is indeed a
omplex ar
hite
ture-oriented model, whi
h in
ludeshidden features of optimized messages-passing interfa
es like MPI.LoGPC: Contention in network traÆ
 [139℄.The �rst two extensions model the underlying ar
hite
ture with many low-leveldetails, obtaining improved a

ura
y for spe
ialized
ases. However, the SA isnot
hanged, and the diÆ
ulties of applying the model are still
oming from theunstru
tured NSP syn
hronizations.The LoGPC model presents the same problem as long as the SA is also not
hanged. However, the
ontention
osts are
onsidered and added to the
ostmodel. Thus, it eliminates an important problem of the LogP
ost model, whereappli
ations were not en
ourage to be designed with
ommuni
ation patternsthat do not
ause stall
onditions due to
ontention. Low level trade-o�s between
ontention,
ommuni
ation and
omputation
an be modeled.Con
lusionAlthough it is similar to BSP as a laten
y oriented model, and substantially equiv-alent as a
omputation model in asymptoti
 analysis [16℄, LogP presents worsesoftware development features (e.g. easy of programming,
orre
tness
he
kingand debugging). In this model, the programmer does not only fa
e data-layoutbut many other mapping problems like expli
it s
heduling. Any set of mappingde
isions lead to a new algorithm that must be analyzed in detail with the
ost

2.4. BRIDGING MODELS AND COST MODELS 59metri
s. The LogP model has an NSP SA that prevents easy and methodi
algeneri
 algorithm design, driven by a
ost model.Its extensions
an better represent the behavior of the underlying ar
hite
-ture, and predi
t it with better a

ura
y than the basi
 model. Thus, they aremore suitable for low-level analysis of optimized routing, s
heduling and
ommu-ni
ation s
hemes and tools. Portable low level layers or last phases of parallelappli
ations implementation
an be designed and studied with these extendedmodels.2.4.5 Con
lusions about PCMs SAThe graphi
al
lassi�
ation of the dis
ussed PCMs SA is shown in Fig. 2.21. Inthis se
tion we present some important
on
lusions about it.After this review of parallel
omputing models the main
on
lusion is thatSA is a key
omponent of a PCM for its expressive power and analyzabilityfeatures. Spe
i�
ally, the CS axis be
omes the most related to the
omplexityof the asso
iated
ost model. SP and NSP
lasses show important di�eren
es.The analysis
omplexity of the NSP stru
tures be
omes too hard for anythingbut toy problems. Restri
ting the CS stru
tures seems ne
essary for a
hievingthe PCMs/PPMs requirements proposed in se
tion 2.1.5. SP models appearto be good
andidates for their simpli
ity of programming and analyzability.However, we must determine the expressive power of these models, whi
h types ofappli
ations may or may be not inherently SP, and
he
k if it exists a systemati
form to map more unstru
tured parallel
omputations into SP forms. Morerestri
ted CS sub
lasses of SP, as lo
kstep or bulk syn
hrony, provide only betteranalyzability if important expressiveness restri
tions are assumed (as PRAM),where programmer �nds even more troubles to map NSP appli
ations.We have
lassi�ed PCMs in NDS or DS stru
ture from the point of view ofthe syn
hronization stru
tures
reated at programming level. Highly restri
tedmodels (lo
kstep and bulk-syn
hronous CS) appear to be highly stati
 and data-independent. However, the implementation of the restri
tion me
hanisms (lo
k-step or barrier) is the responsible of hiding the dynami
s of the
ommuni
ationin
luded by the programmer, to keep the stru
ture stati
. In this sense, re-stri
ted PCMs provide only stati
 syn
hronization stru
tures, but they anywayallow the programming of dynami
 or data-dependent appli
ations. It would bea risky restri
tion not to support data-dependent
ommuni
ation stru
tures, asmany appli
ations need them (see se
tion 2.6). All PCMs, ex
ept PRAM model,
onsider a �xed number of pro
essors. Appli
ations that dynami
ally generatethreads may need extra programming to pre-s
hedule the threads into the �xednumber of pro
esses. This shows that PCMs are oriented to the mapping level,where
ost models be
ome important. Models in full SP
lass in
lude a dynami
slevel not whi
h does not appear in bulk-syn
hronous and lo
kstep SP sub
lasses.

60 CHAPTER 2. CONCEPTUAL APPROACH
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
S

CRCW-PRAM ***

Asynchronous QRQW-PRAM
Nested BSP

Notes: * Lock step subclass of SP

** Bulk synchronous subclass of SP

*** Only for non-deterministic contention policies

P
R

A
M

**

*

A
P

R
A

M

P
h

as
e

P
R

A
M

QRQW
PRAM

LogP

BSP

QSM

Subset PRAM

Figure 2.21: SA
lassi�
ation of PCMsThe origin is the possibility of data-dependent
ontrol of the parallelism nesting.This dynami
 makes the stati

ost analysis mu
h more diÆ
ult and not alwayspossible. Programming te
hniques that do not allow dynami

ontrol of nestingin SP models, would be more desirable with respe
t to
ost analysis.Only more restri
ted PRAM models do not allow ME, be
ause it is inherentlyavoided by the lo
kstep system and
ontention solving poli
ies. However, thissituation restri
ts some of the expressive power in the model. Some appli
ationsthat need mutual ex
lusion (see se
tion 2.6)
an not be dire
tly programmedin these restri
ted PRAM models. The PCMs studied that in
lude ME me
ha-nisms have something in
ommon: Instead of using primitives with impli
it MEsemanti
s (as lo
ks), the ME is programmable by queuing up memory a

esses ormessages, assuming non-deterministi
 orderings. Some restri
tions to the queuelengths may dire
tly or indire
tly help in
ost modeling (for example limited

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 61bandwidth, limited number of messages among pro
essors, or limited number ofmessages in the same
omputation step). The reason is that
ontention queuesmodel real ma
hine e�e
ts produ
ed in the lowest level.It seems that exists a
onvergen
e in the restri
tions that PCMs assumeto provide an a

urate
ost analysis for generi
 appli
ations. Nowadays, bulk-syn
hrony is a typi
al feature whi
h allows the transformation of dynami
 and
omplex syn
hronization stru
tures in stati
 and analyzable ones. ME is sup-ported by programmable
ontention through (somehow limited) queue systemsof non-deterministi
 re
eption. However, the
ompletely unrestri
ted message-passing oriented models, as LogP, are popular be
ause they model the
urrenttrends of high-performan
e programming, where
omplex syn
hronization stru
-tures are generated due to manual low-level optimizations.2.5 Parallel programming languages and modelsOur trip is taking us now to the mountain shoulders, where PPLs provide theprogrammer with higher abstra
tion levels. In the shadowy depth of narrowvalleys, near the qui
k waters, we will �nd
lassi
al approa
hes that lead dire
tlyto the PCMs low lands. Trekking up-hill through the more dangerous ro
kypaths, we will make to the more abstra
t PPLs. In hidden gla
ier valleys newmodels with di�erent
on
eptual proposals feed the rainbowed waterfalls, whi
himpressive view we enjoyed from the valleys.We review many popular and
on
eptually interesting parallel programminglanguages. They have been designed from the higher abstra
tion levels, butthey also impli
itly impose a PPM. Most of the time, languages that have beendeveloped with other design prin
iples in mind than to be good parallel
om-putation models present di�erent approa
hes and solutions to the analyzabilityvs. expressiveness problem. We will study some of them in terms of their SAand other
hara
teristi
s related to the de
isions taken during the model de-sign. The expressiveness vs. analyzability trade-o� is
onsidered in ea
h
ase.A more detailed study of parallel programming languages and a
omprehensive
lassi�
ation
an be found e.g. in [174℄.2.5.1 Class (SP,NME,DS): Pure nested parallelismSome languages in
lude only pure nested parallelism stru
tures of syn
hroniza-tion. A well-known example is Cilk [19, 42℄ (see other examples
ommentedin [187℄). This language proposes a multi-threaded model, where spawning andjoining of threads is only possible hierar
hi
ally. The only possible syn
hroniza-tion between threads is through the spawning/joining pro
ess. Thus, the possiblesyn
hronization stru
tures are always in SP
lass and no ME exists in the model.However, spawning of new threads
an be data-dependent, with no restri
tion

62 CHAPTER 2. CONCEPTUAL APPROACHfor the number of threads that are spawn at any time (the programmer doesnot
on
ern about the number of real pro
essors). Thus, the SA is in
lass(SP,NME,DS).The good point of Cilk is that it uses the analyzability advantages of theSP stru
ture to implement a run-time work-stealing s
heduling algorithm. Ita
hieves good performan
e even with highly dynami
 stru
tures. Many appli
a-tions with typi
al non-stru
tured solutions have been programmed in SP stru
-tured Cilk, experimentally showing minimal loss of performan
e [42℄. The SPstru
ture
an be further exploited with other simple s
heduling poli
ies to beeÆ
iently adapted to wide-area and hierar
hi
al networks [187℄.2.5.2 Class (SP,ME,NDS): Nested parallelism with METhe nested parallel SP programming languages that support ME in
lude spe
i�
primitives with ME semanti
s. We �nd in this
lass an important programmingset of primitives oriented to shared-memory ar
hite
tures (OpenMP), as well asmore abstra
t proposals (as SPC). Both are oriented to stati
 and non-data-dependent syn
hronization stru
tures. Nevertheless, both examples may
reateless restri
tive SA stru
tures when me
hanisms not promoted but supported inthe models are used.OpenMPThe OpenMP [149℄ programming tool has be
ome a major trend for program-ming in shared-memory ma
hines (and possibly distributed-memory in the fu-ture, as several proposals for mixed message-passing and shared-memory supportare appearing [36℄). The main advantage of OpenMP is that it provides the pro-grammer with a portable and easy to understand interfa
e of pragma dire
tives toparallelize sequential
ode (for reusability purposes), getting pro�t of the sharedmemory
apabilities of the underlying implementation. OpenMP is the result ofa
ommon e�ort of several vendors and
orporations, thus, it is well supportedand is widely being used.Shared memory a

esses should be
ontrolled to avoid ra
e
onditions. Thetypi
al way is to in
lude a dynami
 non-deterministi
 a

essing me
hanism to
reate ME. OpenMP provides two types of ME dire
tives to
reate
riti
al se
-tions: (1) For
ode pie
es, or (2) for atomi
 a

ess to a given variable for asingle operation. At the same time it allows a parallel se
tion of
ode to de
laretheir own private variables for programming
exibility (whi
h do not introdu
enew properties in the syn
hronization me
hanisms). The main parallel
ontroldire
tives provide only nested parallelism for
ode se
tions, or for loops in adata-parallelism fashion. However,
urrent implementations may support onlyone level of parallelism, running sub-threads sequentially in the main thread

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 63that
reates them. Thus, the main programming model is nested parallelism (SP
lass), while most implementations relay on a more restri
ted BSP like model.Global redu
tion operations3 and a barrier me
hanism is also supported. Al-though not popular, designers of OpenMP in
luded
ompulsory support of anexternal library for lo
k-variable based syn
hronization. It has been added tolet the programmer to
reate any kind of
omplex CS stru
tures. Thus, the fullimplementation moves to NSP and DS
lasses.Thus, the spirit of the OpenMP model is in the (SP,ME,NDS)
lass, or eventhe (SP,ME,DS)
lass if data-dependent
ontrol of the (mostly unsupported)nested parallelism is allowed. But the use of the external lo
k variable me
hanismallows all kind of unrestri
ted stru
tures: (NSP,ME,DS)
lass.OpenMP does not propose a spe
i�

ost model or software engineeringmethodology. However, while using only the nested parallelism (SP
lass)
on-dition syn
hronization s
heme, the restri
tions in
luded in the design allowsprogram
ompilers to in
lude interesting mapping and optimization features.However, the semanti
s of OpenMP nested dire
tives are
omplex and poorlyde�ned [44℄.Be
ause OpenMP is designed to operate in shared-memory environments,pro
esses have dire
t a

ess to the full memory spa
e. Thus, in NUMA ma
hinesany variable usage may imply a bounded but unpredi
table
ost for the memorya

ess or
ommuni
ation. Shared memory a

esses, not marked by a dynami
syn
hronization me
hanism,
ould produ
e inherent
ommuni
ations and syn-
hronizations that
hange the apparent stru
ture or produ
e non
orre
t results.These perturbations
an only be dete
ted by the
ompiler using data-dependen
eanalysis of the sequential
ode and internal data deployment information.The OpenMP standard does not in
lude data distribution dire
tives. Al-though interesting for the uni�
ation with a distributed-memory environment [17℄,re
ent studies
laim that for state-of-the-art

NUMA shared memory
omputers\reasonable balan
ed page pla
ement s
hemes in
ur modest performan
e losses,and the OpenMP runtime environment
an use page migration for implementingimpli
it data distribution and redistribution s
hemes without programmer inter-vention" [144℄. Thus, the programmer
an work in a proper abstra
tion level toa
hieve portability.SPC programming modelThe SPC (Series-Parallel & Contention) model [71℄ proposes a restri
ted SP syn-
hronization ar
hite
ture that allows improved analysis te
hniques to be usedduring the implementation path. SPC is a nested parallelism model plus non-deterministi

oordination expressed as mutual ex
lusion restri
tions. An an-3Redu
tion
an be for
ed to be non-syn
hronized. But in this
ase, the values of the redu
tionvariable are unde�ned until an expli
it syn
hronized dire
tive is issued.

64 CHAPTER 2. CONCEPTUAL APPROACHalyti

ost estimation model is asso
iated with SPC programs [71, 170℄. Thea

ura
y depends on the level of detail of the target ma
hine model used. SPCis designed to obtain bene�ts from expli
it and stru
tured syn
hronization. Itis a programming paradigm with respe
t to the
oordination of the programparallelism, based on a pro
ess-algebrai
 spe
i�
ation model. The model is pre-sented as a
oordination language. Thus, its
onstru
ts
an be used to expressparallelism and
oordination, using any sequential programming language for
omputation.An SPC program
onsist in a
olle
tion of pro
esses equations, mutual ex-
lusion de
larations and
omputation parts asso
iated with pro
esses. Computa-tions are fun
tional units de
lared in any sequential language, thus their syntax isnot spe
i�ed in SPC. The set of pro
ess equations
onstitutes one parallel pro
essexpression through substitution. (By
onvention, the expression tree is rooted bya spe
ial pro
ess
alled main). Pro
esses
an be
omposed with serial (;) or paral-lel (jj) operators. For
orre
t binding of
ompound pro
ess expressions, delimitersare allowed (f; g). Parallel
omposition works with
obegin/
oend semanti
s [9℄,thus, it implies a full syn
hronization after tasks
ompletion. No hidden
ondi-tion syn
hronization is allowed. The programmer must avoid data-dependen
esbetween di�erent pro
esses for program
orre
tness.Conditional and iterative exe
ution of tasks are supported, although they
an introdu
e a kind of probabilisti
 (data-dependent) e�e
t that produ
es dy-nami
 syn
hronization stru
tures, a�e
ting the performan
e analysis (see dis
us-sion below). Resour
es are
omputation providers that introdu
e limitations onthe parallelism exploited. A resour
e
an be logi
al (e.g. a
riti
al se
tion, aserver) or physi
al (e.g. a pro
essor). In SPC, they are modeled with a globalname. The programmer spe
i�es whi
h resour
es are needed to pro
eed withea
h task. Mutual ex
lusion is asso
iated with task to resour
es assignment(task ! r1; r2; :::; rn). Tasks
ontending for a resour
e will be serialized in thes
heduling phase.The SPC model restri
ts CS stru
tures to those whi
h the asso
iated taskgraph is Series-Parallel [184℄. The non-deterministi

ontention for global namedresour
es has impli
it ME semanti
s. Thus, the SA is in (SP,ME,NDS)
lass. If
onditional and iteration statements are allowed in the pro
ess equations, thendynami
 stru
tures are possible: (SP,ME,DS)
lass.The
ost estimation in SPC is based on several performan
e modeling te
h-niques [70℄: When the model allows only series-parallel stati
 syn
hronizationstru
tures a simple analyti

ost
al
ulus
an be introdu
ed, based on
riti
alpath analysis of the generated graph. (See the equivalent
al
ulus for nested BSPin [172℄). The mutual ex
lusion e�e
t in performan
e
an be only approximated.Algorithmi
 te
hniques that keep lower/upper bounds are provided in the
ostmodel [70℄. Although synta
ti
ally not yet provided, the use of resour
es withseveral units is allowed in the asso
iated
ost modeling language Pamela [69℄. In

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 65the
ase of iterative or
onditional
onstru
ts that are data dependent, with nopossible probability derivation, only
lassi
al simulation te
hniques are availableto get performan
e approximations. However, the stati
 and dynami
 part of theappli
ation performan
e model
an be substituted by the analyti
 and approx-imation expressions obtained by the previous te
hniques, highly improving thesimulation performan
e.Using only expli
it stru
tured syn
hronization (SP + ME), interesting analy-sis te
hniques are possible to help de
isions during the implementation traje
tory.Full
ost-driven mapping to any ar
hite
ture is possible ex
ept for irregular data-dependent appli
ations with no load-balan
ing or s
alability properties.2.5.3 Class(NSP,NME,NDS): Mapping oriented modelsIn this se
tion we dis
uss features of models oriented to express syn
hronizationstru
tures generated by typi
al appli
ations (like neighbor syn
hronization, stati
a

ess patterns and spe
i�
 data mappings). We study two important examples:HPF as example of the long-ago introdu
ed data-parallelism programming model,and some new proposals evolved from the skeletons world.HPF and data-parallelismLanguages based on the data-parallelism paradigm are originated on the SIMD(Single instru
tion, multiple data) model. In this model, the operands of a givenparallel instru
tion are a set of data pie
es with the same type, and all pro
essorsexe
ute the same operation on a di�erent subset of them.In the 1980s there was a signi�
ant resear
h in parallelizing
ompilers. How-ever, sequential languages obs
ure or eliminate the parallelism inherent to anappli
ation with sequential
onstru
ts as loops or re
ursion, that are diÆ
ult toanalyze for parallelism dete
tion. Writing a parallel program in a sequential lan-guage is not a natural approa
h. In the early 1990s, there appeared extensions ofsequential languages that
ould express the parallelism asso
iated with exe
utingthe same operations on di�erent pie
es of a data stru
ture partition (e.g. ViennaFortran [40℄, Fortran D [104℄). Compilers and environments for data-parallelismwere widely studied [1℄. The most famous language derived from these e�ortswas HPF (High Performan
e Fortran) [27, 108℄.Data-parallel languages typi
ally in
lude parallel
onstru
ts su
h as parallelarray operations, forall and where statements, and intrinsi
 fun
tions.ME typi
ally
annot be exploited in these languages. The data-parallel modelallows the programmer to
reate repetitive stati
 CS stru
tures. The tasks as-so
iated with the data operations are syn
hronized with next tasks through a�xed pattern, as the model simply repli
ates the same operation, with the samedependen
es, in ea
h pie
e of data. Thus, the generated syn
hronization stru
-

66 CHAPTER 2. CONCEPTUAL APPROACHture presents a repeated syn
hronization pattern between ea
h
onse
utive pairof task layers. In some situations this property
an alleviate the analysis problemderived from the NSP stru
ture, but typi
ally any new pattern must be studiedand analyzed.Compilers take advantage of this stru
ture regularity to optimize the
odes.Stati
 mapping and s
heduling is typi
ally easy. One problem with the model isthat the exa
t syn
hronization pattern must be extra
ted analyzing the
ode in-side parallel
onstru
ts. Many times the programmer must help the
ompiler withdata-distribution or alignment information. The te
hnique is sensible to
hangeswith the target ma
hine ar
hite
ture and
ommuni
ation system. The se
ondproblem is the restri
tions of the model. Only data-parallelism (�ne-grain paral-lelism)
an be eÆ
iently expressed. Many appli
ations (
oarse-grain, less regular,dynami
, fault prone ...) present task-parallelism that
annot be eÆ
iently ex-pressed in this model [32, 33℄. Many e�orts to
ombine data-parallelism with orwithin more generi
 task-parallelism languages exist [66, 94, 41, 15, 11, 150℄.Nevertheless, data-parallelism is an interesting and produ
tive model [30,145, 110℄. Many
omputing intensive appli
ations or parts of bigger appli
ations(mainly latti
e and matrix
omputations)
an be eÆ
iently exploited by data-parallelism methods.From skeletons to stru
tured languagesAlgorithmi
 templates or skeletons try to identify and exploit the stru
ture ofa family of algorithms. Parallel stru
tures that have
ommon properties
an beused as a skeleton or a programming paradigm. The programmer must identifythe skeleton that �ts with her/his appli
ation, and �ll in the exa
t
omputationdetails. Spe
i�

ompiler transformations and te
hniques
an then be fully ex-ploited. Skeletons are usually implemented in high-order fun
tional languages,where a skeleton fun
tion that en
apsulates the parallel behavior
an re
eive asparameters other fun
tions that are internally used as the
omputation part ofthe generated tasks.Several libraries or sets of program skeletons have been proposed and stud-ied [43, 53, 26℄. Identifying parallel stru
tures present in appli
ations are a key for
onstru
ting su
h sets [31, 152℄. More information about skeletons
an be foundin [45℄. A further re�nement of the skeletons idea, known as ar
hetypes [132℄,
ombines broadly-de�ned
omputational patterns with data-
ow
onsiderationsfor systemati
 development of parallel programs.Skeletons are �xed-stru
ture templates. Thus, the ME and CS stru
turesallowed are the ones de�ned in ea
h set or library. Ea
h skeleton en
apsulatesthe abstra
t des
ription of a very
on
ise syn
hronization stru
ture. Many par-allel skeletons proposed are stati
 well-known syn
hronization stru
tures, su
h aspipeline or neighbor syn
hronization. They are spe
i�
 examples of high regular

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 67NSP stru
tures that have been individually studied and analyzed. There areskeletons that support ME. It is at least typi
ally supported in a given skeleton
alled farm (see se
tion 2.2.2 for the
lose relation between ME and the farmparadigm). This spe
i�
 skeleton is in SP and ME SA
lasses. Data-dependentand data-independent versions are possible.What skeleton libraries propose is a set of given syn
hronization ar
hite
tures
hemes for whi
h interesting appli
ations
an be derived, and for whi
h eÆ
ientspe
i�
 mapping, s
heduling and optimizing methods are well-known. In thissense, the skeletons model is the most restri
tive one, sin
e only a given set of�xed stru
tures
an be programmed. However, many parallel appli
ations �ts inthese skeleton stru
tures. The skeletons key is that they
apture the
ommonparallel stru
ture of many appli
ations, and
an produ
e eÆ
ient and reusable
omponents (see e.g. [54℄).Stru
tured languagesA further step in parallel stru
ture analysis leads to the stru
tured languagesapproa
h. In these languages several parallel
onstru
ts, based on typi
al stru
-tures found in appli
ations,
an be
omposed to form a more
omplex appli
ationstru
ture (see e.g. P3L [152℄). The key of the appli
ability of this languages is a
ost model whi
h is able to
ompose the predi
tions based on the basi
 stru
tures.At the same time,
omposition of basi
 stru
tures leads to software developmentbased on well-de�ned de
omposition te
hniques of the problem.There are still appli
ations that do not properly �t in the basi
 stru
turesproposed. They must be modi�ed and mapped by the programmer. The
ost
al
ulus is also not so simple and the di�erent te
hniques of
omposition in
reasethe
omplexity of the analysis.Skeletons in the nested parallelism frameworkA new approa
h to skeletons idea is introdu
ed in the Frame language [44℄. Inthis language a nested parallelism skeleton is implemented as a set of primitivesthat
an be
omposed generating high-level SP stru
tures. This s
heme provides
lear semanti
s and a familiar synta
ti
 framework for programming (SP advan-tages). In a further step, the programmer has the option of using inside the highlevel nested parallel stru
ture other low level unstru
tured
omputations. This
an be done with other skeletal elementary units, or by allowing the programmerto a

ess the underlying
ommuni
ation or parallel software layer in a
ontrolledform. Thus, the programmer has a

ess to the advantages of both, SP program-ming semanti
s and spe
ialized and optimized non-SP parallelism. We see thisoption as a promising resear
h dire
tion. Currently, Frame does not support MEin the high level stru
ture.

68 CHAPTER 2. CONCEPTUAL APPROACH2.5.4 Class (NSP,ME,DS): Message passingThe message passing model is based on
ommuni
ation models [107, 34, 188℄.Standard interfa
es and implementations of this model like MPI [48, 140℄ orPVM [178, 155℄ are widespread used, and it is nowadays one of the most
ommonmodels for general parallel programming environments.Its su

ess is derived from the generi
 approa
h it uses, giving only the me
h-anisms to
ommuni
ate and expli
itly syn
hronize isolated pro
esses throughabstra
t
hannels. Thus, it allows the programmer to
reate and exploit anykind of parallelism that �ts a problem solution. At the same time it is a low-levelmodel, for whi
h eÆ
ient and highly optimized implementations in real hard-ware are possible. In fa
t it is highly related to the implementation level and themessage-passing ma
hine model (see se
tion 2.3.1).In the message-passing model a pro
ess is an independent a
tive element. Itexe
utes a sequential
ode and it uses a lo
al memory spa
e. Pro
esses
an be
reated and destroyed dynami
ally, either by other pro
esses or externally bythe system (typi
ally in the
ontext of distributed
omputing). Abstra
t named
hannels
an be established between pro
esses for
ommuni
ation. The sequential
ode
an send data through a named
hannel, or try to re
eive data through anamed
hannel. Sent data is kept in the
hannel until the target pro
ess is in astate in whi
h it tries to read it. Syn
hronization is produ
ed when a blo
kingre
eive operation waits for the arrival of a message. Pro
esses
an s
an several
hannels at the same time for data, rea
ting in di�erent ways depending on whi
h
hannel data is re
eived �rst.This kind of point-to-point
ommuni
ation is enough to express any
omputa-tion and
ommuni
ation s
heme. Nevertheless, extended primitives for
olle
tive
ommuni
ations (redu
tion, broad
ast, s
an, barrier syn
hronization ...) are in-
luded in interfa
es and implementations. For these
olle
tive operations, usingrestri
ted pro
esses groups is typi
ally possible, in order to
reate virtual
om-muni
ation topologies. To hide many
ommuni
ations in one primitive is a morehigh level abstra
tion. Thus, it simpli�es programming and allows better opti-mized implementations of the
olle
tive operations. Furthermore, programmingwith
olle
tive operations
an lead to even more high-level transformations forperforman
e improvement and software development te
hniques [90, 88℄.The model allows any
ondition syn
hronization s
heme. Thus, it is in theNSP
lass. There are no ME primitives, but non-deterministi

ontention exist,be
ause a pro
ess
an be waiting for data from di�erent sour
es at the same time,rea
ting in di�erent ways depending on the order in whi
h messages are arriving.This feature
an be exploited to produ
e programmed ME. The sending andre
eiving of messages
an be data-dependent. Thus, dynami
 syn
hronizationstru
tures are allowed. In many interfa
es even the number of a
tive pro
essesmay
hange. Thus, the SA is in (NSP,ME,DS)
lass.

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 69The
ounterpart of the model advantages is that being a so low-level model,the programmer fa
es problems about parallelization grain, data-partition, mapand s
heduling of any new appli
ation
onsidered. As the stati
 or dynami
 stru
-tures allowed are
ompletely unrestri
ted, no spe
ial heuristi
s or te
hniques
anbe exploited by the
ompiler or run-time environment for a generi
 appli
ation.The
ompiler
an not mat
h the send and re
eive primitives for synta
ti
 orsemanti
 validation or reasoning.The theoreti
al models on whi
h message-passing is based, provide a
al
ulusto derive possible or forbidden states of the system. Nevertheless, the fast growing
omplexity of the sear
h spa
e makes su
h tests intra
table for anything but toyproblems. Extensions of LogP also try to model the internal features of message-passing interfa
es (see se
tion 2.4.4), but they o�er no help in software design.They
an predi
t the
ommuni
ation behavior of a given
ommuni
ation pattern,but do not provide a systemati
 pro
edure to analyze a full subset of the possiblesolutions or design sear
h spa
e, due to the NSP SA.However, the message-passing interfa
es hide the
ommuni
ation details, and
an be used as an eÆ
ient abstra
t
ommuni
ation layer when a

urate measuresof given
ommuni
ation patterns are a�ordable. More high-level programmingte
hniques
an be applied or integrated in an environment that, underneath, usesmessage-passing for
ommuni
ation [87, 182, 191℄.Other authors
omplain about the non-deterministi
 behavior of message-passing interfa
es. It leads to non-reprodu
ible and more diÆ
ult to debug de-velopments, that is antitheti
al to s
ienti�
 methods. An interesting approa
hto eliminate the non-determinism in a message passing model is FortranM [67℄.It is based on extensions to sequential languages (in this
ase, Fortran) withsemanti
 and synta
ti
 restri
tions in the
reation and manipulation of
ommu-ni
ation
hannels. Nevertheless, FortranM provides non-deterministi

onstru
tsfor appli
ations where it is needed. Thus, the programmer
an restri
t the useof non-determinism and she/he has more
ontrol on the type of SA used (NMEor ME). Its modular or obje
t-oriented approa
h make it easy to
ouple withdata-parallel modules (see se
tion 2.5.3).2.5.5 Class (NSP,ME,DS): Maximum abstra
tionIn this se
tion we dis
uss two more abstra
t example models that �t in the SA
lass with maximum expressive power: Con
urrent obje
t-oriented programmingand tuple spa
es. They present a PPL/PPM with powerful semanti
s. ManyPPL solutions in
lude both of them. The
ounterpart is the problems of
ostanalysis and eÆ
ient implementation.

70 CHAPTER 2. CONCEPTUAL APPROACHCon
urrent obje
t-oriented programmingIn a pure
on
urrent obje
t-oriented model, a
omputation is a
olle
tion ofpro
esses that a

ess and use shared obje
ts with a
ontention me
hanism toavoid ra
e
onditions. Thus, it
an be viewed as a model without CS that reliesonly in the
ontention me
hanism to
ontrol the parallelism. The
ontention is
ontrolled by monitors asso
iated with obje
ts. A monitor also implements ame
hanism to wait for or notify the su

ess of a guarded
ondition [106℄. Thus,
ondition syn
hronization is a�ordable if a
omplete monitor implementation isprovided in the language.For example, the JAVA syn
hronization model is based on inherent monitorsasso
iated with the obje
ts. Not only methods, but also
ode pie
es
an be mademutually ex
lusive using the monitor asso
iated to a given obje
t. The primitiveswait, notify, and notifyAll, asso
iated with the Thread obje
t,
an be used insidesyn
hronized methods, along with spe
i�

ondition �elds, to
reate and
ontrol
ondition syn
hronization.The underlying model for
on
urrent obje
t-oriented programming is also amessage-passing model when non-shared-memory ar
hite
tures are used. Remotemethod invo
ations
reate
ommuni
ation
hannels for the data interfa
e whena

essing obje
ts information a
ross pro
esses. Three main di�eren
es (advan-tages)
an be observed with respe
t to pure message-passing:� The remote method invo
ation is done a
ross a shared name spa
e of ob-je
ts.� ME
an be dire
tly used as it is impli
it in method invo
ations
ontrolledby monitors.� Data are asso
iated with obje
ts and methods. Although data partitioningde
isions are still fa
ed by the programmer, they
an be helped by thisarrangement.From the previous dis
ussion it follows that a basi

on
urrent obje
t-orientedmodel has no CS and uses only ME to
ontrol parallelism. The impli
it
on-tention me
hanisms (
alls to monitor prote
ted methods) have ME semanti
s.The SA is always in
lass ME. However, monitors allow the
reation of
ondi-tion syn
hronization and
ertain implementations make use of remote methodinvo
ation to
reate other CS me
hanisms. Both lead to NSP stru
tures. Con-dition syn
hronization stru
ture is unrestri
ted and dynami
. New obje
ts are
reated and unpredi
tably used during exe
ution of the system. Compilers andrun-time systems do not get mu
h help to de
ide where to lo
ate obje
ts, or howto s
hedule pro
esses to pro
essors from the unknown and non-SP stru
ture. Themain syn
hronization
ontrol in this model relies on monitors and mutual ex
lu-sion, then, in an impli
it dynami
 syn
hronization system. However, analyzing

2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 71dynami
 mutual ex
lusion is not as easy or a

urate as
ondition syn
hroniza-tion analysis [70℄. SA in NSP
lass inhibits analyzability also in the dynami
syn
hronization spa
e.The monitor system and the global name/address spa
e makes this model amiddle point between pure message-passing and the more
omplete global tuplespa
e model des
ribed below.Coordination languages a la Linda. Global tuple spa
es.The tuple-spa
es are a
oordination and
ommuni
ation system, independent ofthe
omputation language [37, 38, 68, 148℄. Tuple-spa
es provide a PPM witha high-level abstra
t virtual ma
hine, separated from the
omputational issues.The PCM is
onsidered to provide a global shared spa
e of data pie
es
alledtuples. A tuple is a named
olle
tion of data �elds of any nature. Pro
esses workasyn
hronously and ex
hange data by writing, reading, inserting and extra
tingtuples in the tuple spa
e. The language also provides primitives for
he
king thepresen
e of tuples and information in the global spa
e.The
ondition syn
hronization is done through
he
king, writing, and readingtuples. There is no restri
tion about whi
h pro
esses syn
hronize and when theydo it. Multiple pro
esses
an
he
k the same tuple at the same time. Thus,the language is ri
h in expressive power and full of possibilities for
onditionsyn
hronization stru
tures. The
ounterpart is that it leads to NSP SA
lass.Operations of
he
king and reading/writing/modifying tuples
an be atomi
.Thus, the languages provide primitives with ME semanti
s. The SA is in theME
lass. There are no restri
tions to the use of the syn
hronization me
hanismor even to the manipulation of threads. The system is fully dynami
 and data-dependent (thus, the model is in the
lass DS).Due to the NSP
ondition syn
hronization s
heme, the
ost model presentsthe problems asso
iated to any NSP model. EÆ
ient implementations on realar
hite
tures are not so simple, as the
ommuni
ation problems that arise tomaintain the shared tuples are
omplex. However, the tuple synta
ti
s are
lean,and the
ompiler
an do some semanti

he
king and veri�
ation. They providea good abstra
tion for a maximum expressive power PPL/PPM.2.5.6 Con
lusions about PPLs/PPMs SAIn Fig. 2.22 we show the lo
ation in the SA spa
e of the more relevant modelsreviewed in this se
tion. The arrows represent a possible
hange in the SA
lasswhen some extensions are added to the basi
 model. The main
on
lusionsobtained previously for PCMs and bridging models (re
all se
tion 2.4.5), are
on�rmed and extended in this more abstra
t level. SA is an important featureof the PPLs/PPMs for its expressiveness and analyzability features.

72 CHAPTER 2. CONCEPTUAL APPROACH
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
S

Cilk

Data-parallelism

Skeletons *

Concurrent O-O

MPI / PVM

Frame

Tuple-Spaces

OpenMP

SPC

Farm skeleton *

Notes: * Specific application SAsFigure 2.22: Classi�
ation of PPLs/PPMs reviewedComparing with PCMs and bridging model, a �rst observation is that themore abstra
t models usually in
lude ME primitives instead of relaying in a low-level programmable ME me
hanism. The lower mapping level is oriented to easierimplementations in a full range of real ar
hite
tures, promoting programmablemutual ex
lusion. However, in the more abstra
t level of programming, themodels are more oriented to simplify the programming task. Primitives withimpli
it ME have
lear semanti
s and are easy to use. Ex
ept for the
ase ofOpenMP (
learly oriented to shared-memory ar
hite
tures), the implementationof ME in other ar
hite
tures is not so dire
t, although it is
learly promoted fromthe higher abstra
tion levels.At this level we
an also see that models whi
h allow NSP CS stru
tures arein the lower or higher extremes of restri
tiveness. Models in the NSP
lassesthat o�er mapping solutions or reliable
ost analysis are based on analyzing andusing only a small set of well-know stru
tures and solutions for parallel prob-lems. They are oriented to spe
i�
 appli
ations stru
tures, like data-parallelism

2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 73or skeleton based models, that are all in the (NSP,NME,NDS)
lass. On theother hand, full NSP models are oriented to maximum expressive power, like
on
urrent obje
t-oriented programming, tuple spa
es or message-passing, all in(NSP,ME,DS)
lass. In these models, the programmer gets little help to under-stand or predi
t the system behavior. Mapping and optimization de
isions mustbe taken manually and must be based mainly on the programmer's experien
e.At the opposite side of the CS axis, we �nd SP models. In this
ase, there isnot su
h an extreme diversi�
ation. In fa
t, the most popular SP based models,either do not support ME (pure nested parallel languages su
h as Cilk), or areoriented to stati
 syn
hronization stru
tures (as OpenMP or SPC). The reasonis that restri
ting the SA to the SP
lass is always introdu
ed in a model toin
rease the analyzability
hara
teristi
s of the model. In the
ase of Cilk, thedynami
 s
heduling algorithm works with the CS information available. Thus,no ME me
hanism exists but data-dependent syn
hronization is available. In the
ase of OpenMP or SPC, ME me
hanisms are
onsidered, but no data-dependentstru
tures are promoted to still get mapping bene�ts derived from the stati
 SPstru
ture. However, is important to noti
e that both SPC and OpenMP allowalso dynami

onstru
tions to let the programmer implement any kind of ap-pli
ation. In the
ase of using data-dependent stru
tures, the programmer isresponsible for expli
itly programming some kind of s
heduling and mappingtasks. Therefore, the bene�ts of using SP stru
tures regarding automati
 map-ping are prevented. OpenMP goes even further, allowing the programmer to
reate NSP stru
tures with the lo
k-managing external library. For a modernand
ommer
ial oriented language it would be a real short
oming if the so manyunstru
tured-mind oriented programmers
ould not implement their ideas with-out restri
tions. Manual mapping and optimization is still
urrent pra
ti
e inparallel programming.2.6 Syn
hronization ar
hite
ture of appli
ationsFinally, we are to
limb the highest peaks of abstra
tion, where appli
ations liesurrounded by the
louds of parallel algorithmi
s. For this upper perspe
tive,we will
ontemplate all the lands we have previously traveled along. PPLs andPPMs are interfa
es to express the parallelism of an appli
ation. Thus, we studythe SAs present on typi
al parallel appli
ations, kernels, and parallel problemssolutions. We also dis
uss how do they map to restri
ted SA
lasses.This
lassi�
ation of the SA of appli
ations is intended to help the readerto understand the real purposes, bene�ts and disadvantages of the di�erent re-stri
ted and unrestri
ted PPMs. At the same time it will point us to
ase-studyappli
ations for the mapping problem (systemati
ally transformation of syn
hro-nization stru
tures a
ross di�erent SA
lasses). In the following
lassi�
ation

74 CHAPTER 2. CONCEPTUAL APPROACHwe are not trying to be exhaustive, but we are only presenting some well-knownexamples of parallel solutions and appli
ations whi
h are representative of ea
hSA
lass. The graphi
al representation of this
lassi�
ation is shown in Fig. 2.26.2.6.1 Class (SP,ME,NDS/DS)There are two typi
al programming paradigms or problem solutions that arebased on the use of ME: Farms and non-ordered ma
ro-pipelines.Farms: Many irregular and dynami
 appli
ations are dire
tly programmed us-ing a pure ME s
heme through a workers-farm or work-stealing paradigm(
entralized or de
entralized load balan
ing s
heduling algorithms). Thus,many highly irregular appli
ations, derived e.g. from graph explorationor
ombinatorial sear
h [156, 189℄, are transformed to this stru
ture. Thes
heduling module is then reported about the possibility of non-deterministi
syn
hronization between
omputation pie
es. Appli
ations of this type aretypi
ally dynami
 (tasks generate new data pie
es to pro
ess), but thenumber of tasks may also be stati
ally determined by the problem nature.ME-Ma
ropipeline: Ma
ro-pipeline is a wide-a

epted name for a syn
hro-nization stru
ture that represents a generi
 solution for many problems.Consider ma
ro-pipelines representing problems based on the parallel exe-
ution of n pro
esses
omposed by m tasks or stages, su
h that the stage iof a pro
ess needs ME with the i stages of all the other pro
esses (typ-i
ally due to the use of a shared resour
e). An example
ode of su
ha ma
ropipeline programmed with semaphores is presented in Fig. 2.23.These ma
ro-pipelines
an be programmed as a
olle
tion of task serieswith no CS between di�erent series and ME among the i-depth tasks.Other ma
ro-pipelines not based on resour
e restri
tions are not in this
lass and will be dis
ussed below. The number of stages is known in almostall situations. If the number of pro
esses is also known the stru
ture willbe stati
, else it will be dynami
.(1) MEma
ropipeline() f(2) Semaphore s[m℄;(3)
reateSemaphores(s);(4) initializeSemaphores(s,1);(5) spawnThreads(n);(6) pro
ess(...);(7) syn
Threads(n);(8) g
(1) pro
ess(...) f(2) int stage;(3) for(stage=0; stage<m; stage++) f(4) P(s[stage℄);(5) do(stage);(6) V(s[stage℄);(7) g(8) gFigure 2.23: Example of a ME-Ma
ropipeline

2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 75If the programming model sele
ted for implementation dire
tly supports MEprimitives, the appli
ation stru
ture is formed by spawning n tasks that syn
hro-nize only by ME to obtain more data pie
es in the farm, or to avoid
on
urrenta

ess to the same resour
e in ME-Ma
ropipelines. If ME is not supported, afalse order originally not present in the problem de�nition should be introdu
edwith CS (see se
tion 2.2.6). The solution probably will in
ur in high losses if SPsyn
hronization is for
ed.It is arguable whether this kind of solutions must be expli
itly programmedwith ME or they
an be even automati
ally dete
ted and s
heduled by a
ompiler.2.6.2 Class (NSP,ME,NDS/DS)No typi
al parallel appli
ations are found in these
lasses. In problems where MEis used to provide a solution, it is frequent that no CS is needed ex
ept to
reatesequen
es of pro
esses that use only ME to avoid intera
tions, or full barriersto syn
hronize between iterations. Thus, they
an be programmed in a nested-parallel restri
ted model (SP,ME,NDS/DS). We are not taking into a

ount hereimplementations that use ME only to simplify
ommuni
ation phases when usinga shared-data spa
e. In this
ase the original appli
ation does not really need MEand they
an also be programmed in their relative (NSP,NME,NDS/DS)
lasses.2.6.3 Class (SP,NME,NDS)In this
lass we found appli
ations that dire
tly map to CS stru
tures in the SP
lass. The problem or solution is hierar
hi
al or highly syn
hronous. Thus, it
anbe programmed with hierar
hi
al self-syn
hronized pro
esses groups. The stru
-ture is also stati
, dependent only in the input data-size or number of pro
essors,and possibly �xed in
ompilation phase.Types of appli
ations to be found in this
lass are trivial parallel
ompu-tations, stati
 stru
tures derivated from divide &
onquer or bran
h & boundparadigm (sometimes as a data-partition s
heme), and syn
hronized loops.Trivial parallel
omputations: Appli
ations that are easily and dire
tly par-allelized by a wise data-partitioning avoiding
ommuni
ation between tasksduring normal
omputation phases. The only syn
hronization needed is todistribute data and
olle
t results. They do not need a powerful NSPlanguage or model to be programmed. Some examples are found in imagepro
essing algorithms: Geometri
al transformations of a set of di�erent ob-je
ts in n-dimensional spa
es, ray-tra
ing and other rendering algorithms.Other examples are sear
hing and optimization methods like simple MonteCarlo or hill
limbing methods, spe
i�
ally when parallel random numbergenerators are used [31, 189℄.

76 CHAPTER 2. CONCEPTUAL APPROACHRedu
tion trees: Parallel pre�x sums, maximum or leader identi�
ation, et
[73, 156℄.Some sorting algorithms: Merge-sort and radix or bu
ket sort [189, 120℄.Parallel multigrid methods: The overall stru
ture of V-
y
le and multigridsimulation programs based in
ellular automates (not the
ellular automataitself) is hierar
hi
al. Grid lo
al operations to solve partial di�erential equa-tions, or SOR methods in general, present a divide &
onquer SP stru
turethat
an be implemented with only one syn
hronized
ommuni
ation phaseper iteration. Many typi
al solutions to simulation programs in grids usesyn
hronized phases (see e.g. [111℄).Some numeri
al algorithms: Numeri
al integration [189℄. The overall stru
-ture of Strassen matrix multipli
ation [156℄ (although lo
al dependen
es
an be exploited in a
ompli
ate NSP form).Syn
hronized parallel loops: Many appli
ations are programmed with par-allel loops or similar stru
tures. After a
omputation phase, pro
essesinter
hange boundary information with neighbors, or
ommuni
ate in anunpredi
table pattern with other pro
esses. If the problem semanti
s needa full barrier syn
hronization after the
ommuni
ation phase, they
an bedire
tly programmed in an SP form.Be
ause of the easy of programming and understanding of su
h syn
hro-nized stru
tures have, they are used in most situations, even when thesyn
hronization is not in the original problem semanti
s. For example, theOpenMP [149℄ model assumes this kind of behavior for its main primi-tives for parallel loops and se
tions, although variable-lo
ks
an be use toprodu
e NSP patterns at programmer dis
retion. For well-balan
ed appli-
ations the delay introdu
ed by pro
esses waiting for other pro
esses tosyn
hronize is negligible.2.6.4 Class (SP, NME, DS)Divide &
onquer may be used as a load balan
ing te
hnique. In this
ase data-partitions should be dynami
ally
onstru
ted. Many appli
ations also present anadaptable hierar
hi
al stru
ture that is further or re
ursively spawned in a data-dependent form. For example, solutions that are re
ursive over sele
ted pie
es ofdata (like qui
ksort algorithm) for
e dynami
 stru
ture. However, appli
ationsthat split data into equal size
hunks generate a stati
 stru
ture if the data sizeis known from the beginning (like mergesort). Some examples of dynami
 SPappli
ations are:Unbalan
ed sorting: Qui
k-sort [189℄.

2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 77Some geometri
 problems: Convex hull or Voronoi diagrams [56℄.N-body simulations: Barness-Hutt, Fast Multipole Methods and other non-adaptative hierar
hi
al algorithms for N-body simulation are based on ahierar
hi
al divide &
onquer paradigm. (See e.g. [136, 189℄). They areintuitively programmed in SP, as they basi
ally
onstru
t and evaluatedynami
 trees.2.6.5 Class (NSP,NME,NDS)In this
lass we dis
uss appli
ations whi
h their problem natures imply stati
non-hierar
hi
al CS stru
tures. The exa
t syn
hronization pattern is quite dif-ferent for di�erent appli
ations. For example, many high regular and s
alableappli
ations are generated by repli
ation of a lo
al
ommuni
ation pattern. Mostof them are well-known data-parallel solutions, where pro
esses re
eive a pie
e ofa data-stru
ture partition and pro
eed in two phases: Computation and
ommu-ni
ation of boundaries of the data stru
ture with neighbor pro
essors (in a virtualtopology de�ned by the problem, the data partition, and the mapping). They arewidely used in simulation and engineering �elds and they are spe
i�
ally studiedto obtain spe
i�
 high-performan
e optimized solutions. Iterations of a neighborsyn
hronization pattern de�nes an NSP CS stru
ture. Many of them present awell-known repetitive syn
hronization stru
ture that s
ales-up easily.
B

DC

A B

DC

A

B

DC

A B

DC

A

A A A AB B B BC C C CD D D D

A A A AB B B BC C C CD D D DFigure 2.24: D&C blo
k matrix multipli
ation.Irregular divide &
onquer: Not all divide &
onquer te
hniques lead to SPstru
tures. When the
onquer phase merges partial solutions generatedby other pro
esses, an NSP
ommuni
ation pattern may be natural. InFig. 2.24 we show the NSP pattern generated by a typi
al divide &
onquerblo
k matrix multipli
ation, where ea
h pro
essor uses only 7 of the 16pie
es
omputed in the previous phase.

78 CHAPTER 2. CONCEPTUAL APPROACHStati
 dependent pipelines: Pipelines produ
ed by stati

ode dependen
esleads to a typi
al NSP stru
tures. For example, the data-parallel looppresented in Fig. 2.25
reates a ma
ro-pipeline stru
ture that
annot beexpressed by ME.(1) FOR i=1,n-1 parallel=8(2) V [i+ 1℄ = V [i+ 1℄ + f(V [i℄)(3) ENDFORFigure 2.25: Example of stati
 dependent pipelineSimple neighbor syn
hronization: Cellular-automata and other grid/latti
esimulation programs based on sten
ils or lo
al syn
hronization patterns [162℄.Example appli
ations in
lude many physi
s and
hemistry simulations orimage pro
essing programs.Problem solving networks: Many appli
ations based in a spe
i�
 topologyex
hange network as FFT [153℄, odd-even redu
tion or sorting networks [156℄.Matrix s
ienti�

omputing: Most dense matrix s
ienti�

omputing algo-rithms like Gaussian elimination, matrix multipli
ation, QR and LU re-du
tions [79, 78℄
an be programmed in an NSP form to exploit all possibleparallelism. The syn
hronization stru
tures generated for these appli
a-tions is not so symmetri
 as in previous examples. However, they areregular and easily s
alable.For most of these problems, the
omputation phase is exe
uting the same pie
e of
ode on a approximately equal sized pie
e of data for every pro
ess. Syn
hronizediterations (see se
tion 2.6.3) are very popular for these very regular and high-balan
ed
omputations. The performan
e degradation e�e
t of programmingthem in an SP PPM is very small [86℄.Moreover, spe
ifying these regular
omputations in a hierar
hi
al syn
hro-nization stru
ture, with �ne grain parallelism, may allow automati
 mappingte
hniques that perform a good data-partition and load balan
e, minimizing po-tential performan
e degradation.Another solution is to en
apsulate an eÆ
iently programmed solution basedon the NSP
ommuni
ation stru
ture into a skeleton [45℄ or a given language
onstru
tion [152℄. Thus, it
an be used
ompositionally as a language primitiveand inside a hierar
hi
al nested-parallel s
heme [44℄.

2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 792.6.6 Class (NSP,NME,DS)In this
lass we �nd appli
ations that generate non-repetitive spe
i�
 NSP
om-muni
ation patterns depending on the input data and partial
omputation re-sults. Appli
ations in this
lass in
lude:Sparse linear-algebra algorithms: Although most sparse linear solvers try toredu
e their behavior to regular ve
tor operations [99, 186℄, in many spe-
i�
 te
hniques the syn
hronization stru
ture is dependent on the matrixdensity stru
ture (e.g. [124℄). In these appli
ations all the stru
ture may bepredi
ted if the matrix stru
ture is known. Sparse linear solvers are an im-portant
ategory of algorithms for many di�erent domain appli
ations, anddire
t solving methods for sparse linear systems is an important resear
h�eld (see e.g. [96℄).Simulations in graphs: Many stru
tural engineering appli
ations and similarproblems based on iterative PDEs solvers. A graph partitioning algorithmis applied to the input graph to distribute data among pro
essors, minimiz-ing the
ommuni
ation needed due to intera
tions between points assignedto di�erent partitions [154℄.Adaptative grids: PDEs solvers where an adaptative grid is dynami
ally re-�ned [147℄. These problems need dynami
 evolution of the data partition,that
an lead to dynami
 modi�
ation of
ommuni
ation patterns.Dynami
 simulations: Adaptative N-body simulations [136℄ and
hemistry orphysi
s simulations, where parti
les or points are in motion,
hanging thedata elements with whi
h they intera
t to [115℄. In some solutions, thedata partition must evolve dynami
ally.When the irregular syn
hronization stru
ture is predi
table, on
e the data stru
-ture (e.g. an sparse matrix stru
ture) is known, sophisti
ated algorithms
an beused to transform the stru
tures to SP form trying to minimize the losses [85℄.These algorithms may be used even as a pre-s
heduling phase. Multilevel graphpartitioning may also be used to
reate nested disse
tion orderings for solvingsparse linear systems of equations [154℄.The highly dynami
 solutions to simulation problems where
ommuni
ationpatterns evolve along iterations are still a big
hallenge on themselves. In most
ases these solutions are heuristi
 hard-wired load-balan
ing te
hniques highlydependent on the problem. Most of the time
omplex knowledge about the appli-
ation behavior and de
omposition is needed. Good results may be obtained bythe hierar
hi
al appli
ation of di�erent s
heduling poli
es for pro
esses that showdi�erent syn
hronization roles instead of only one plane poli
y [115℄. However,the identi�
ation of su
h pro
esses
lasses is not dire
t and it is not
lear how ahierar
hi
al spe
i�
ation of the original problem
ould help.

80 CHAPTER 2. CONCEPTUAL APPROACH
NSPSP

M
E

N
M

E

N
D

S
D

S
D

S
D

S
N

D
S

Static pipelines

Cellular automata

FFT, sorting networks

Matrix scientific comp.Numerical Integration
Radix, Merge-Sort
Multigrid methods

Monte-Carlo
Visualization

Convex-Hull

Quick-Sort

Barnes-Hutt, FMM

Sparse matrix solvers

Adaptative PDEs

Adaptative N-body

F
ar

m
 p

ar
ad

ig
m

M
E

 p
ip

el
in

es

Figure 2.26: Classi�
ation of example appli
ations2.6.7 Con
lusions about appli
ations SAIn Fig. 2.26 we show a diagram that summarizes the
lassi�
ation of some ex-ample appli
ation types des
ribed in this se
tion. Dashed lines indi
ate typi-
al transitions between
lasses to map appli
ations stru
ture into restri
ted SPPPMs.An important observation is that ME is used only to program appli
ationsmainly based on two SP paradigms that impli
ate a spe
i�
 load-balan
ings
heduling solution, useful for many dynami
 appli
ations. In fa
t, some dy-nami
 NSP appli
ations may be transformed to �t into the farm paradigm, and
onsequently into SP
lass. It is important for a PPM to support ME to easilyprogram this kind of dynami
 solutions.Most appli
ations do not need ME. We have found many of them suitable forSP PPMs. For the appli
ations that do really have NSP CS stru
ture we haveidenti�ed representative examples for any SA
lass. Simple possible mappingsolutions to
onvey their syn
hronization stru
ture into SP SA
lasses have beendis
ussed.

2.7. SUMMARY 812.7 SummaryIn this
hapter we have presented the syn
hronization ar
hite
ture
on
ept andits relevant
lasses a

ordingly to three important
riteria: CS, ME and data-dependen
e. Then, we have explored the di�erent programming abstra
tion lev-els to dete
t the SA
lasses of PCMs, PPMs, PPLs and appli
ations.At the lowest abstra
tion level, exe
ution models provide maximum expres-sive power and syn
hronization opportunities. However, as we travel up to thehigher abstra
tions proposed by parallel programming models, we noti
e thatlow-level based implementation models (as e.g. message-passing interfa
es) arebeing substituted by higher level models with two main trends:1. High abstra
tions with maximum expressiveness power (as e.g. tuple spa
es)2. Restri
ted models with eÆ
ient mapping and software development initia-tives (as e.g. BSP).A parallel
omputation is a mu
h more
omplex obje
t than a sequential
om-putation. More and more parallel programmers are a

epting that a higherlevel of abstra
tion is needed to introdu
e software development and debuggingte
hniques in parallel programming [89℄. However, implementation and map-ping problems plague the highly abstra
t but unrestri
ted programming models.Nowadays, the programming models that look more promising are those whi
hanalyzability
apabilities are improved by introdu
ed expressiveness restri
tions.In our study we have found that the most relevant frontier in this analizabilityvs. expressive power trade-o� is the SP vs. NSP
hoi
e in the
ondition syn
hro-nization axis. Programmers who take the de
ission of
rossing this frontier andfor
e the CS stru
tures to SP form (nested-parallelism), a
hieve an importantin
rease in their analizability
apabilities, opening a full new world of
ompil-ing and run-time te
hniques for veri�
ation, performan
e predi
tion, mapping,s
heduling, portability and software development in general.Although many typi
al parallel appli
ations are perfe
tly suitable for theseSP restri
ted models, some important ones still present a
hallenge for beingeÆ
iently transformed to nested-parallel form. Intuition indi
ates that in many
ases the impa
t of su
h a transformation in the appli
ation performan
e is lim-ited. However, the potential performan
e loss produ
ed by the SP restri
tionintrodu
ed at the programming level, before the appli
ation is
oded, has notbeen yet fully studied. The rest of this dissertation addresses this importantproblem. In
hapter 2 we use graph theory to
hara
terize both NSP and SPstru
tures and we study systemati
 transformations from NSP to SP forms. Wealso investigate the potential performan
e impa
t of su
h transformations. Anexperimental framework to verify the propositions introdu
ed in our study, that
an also be extended for quantitative evaluation of PPMs in general, is presentedin
hapter 3.

82 CHAPTER 2. CONCEPTUAL APPROACH

Chapter 3Theoreti
al approa
h\This is how I will do it: if there is a whelp ofthe same breed to be had in Ireland, I will rearhim and train him until he is as good a houndas the one killed; and until that time, Culain,"he said, \I myself will be your wat
hdog, toguard your goods and your
attle and yourhouse." \You have made a fair o�er," saidCon
hubar. \I
ould have given no betteraward myself," said Cathbad the Druid. \Andfrom this out," he said, \your name will beCu
hulain, the Hound of Culain."Cu
hulain of Muirthemne, 1902Lady GregoryIn the previous
hapter we have
lassi�ed SAs and identi�ed the SP (nested-parallelism) restri
tion as the most important frontier between expressivenessand analyzability. We have also determined that many appli
ations dire
tly mapto models in the SP SA
lasses, but others do not. Although strategies for thismapping are proposed, two important questions arise:� How mu
h potential parallelism loss is introdu
ed by a transformationwhi
h map NSP appli
ation stru
tures to SP form, and is it possible topredi
t it?� Is it possible to derive automati
 transformation te
hniques to map NSPstru
tures to SP form?The latter question is motivated by the fa
t that (1) tool support is an importantenabling fa
tor in the use of SP models for NSP problems, and (2) su
h tools
an be used to partially automate the experiments needed to address the �rstquestion. 83

84 CHAPTER 3. THEORETICAL APPROACHA formal approximation to the mapping of NSP stru
tures to SP form maybe developed with the help of graph theory. The syn
hronization stru
tures ofappli
ations have been for a long time represented with graphs. More pre
isely,DAGs (Dire
ted A
y
li
 Graphs) have been used to represent the Posets (PartialOrder Sets) or dependen
es that CS introdu
e between tasks. These graphs donot dire
tly support spe
i�
ation of ME dependen
es or alternative stru
turesof data-dependent programs. They may be used to represent only one possi-ble stru
ture
reated during the exe
ution of a given program in a given PPM(when ME and data-dependen
es are transformed to CS). Nevertheless, we areinterested mostly in the CS stru
tures, as long as we have previously show thatCS and ME are orthogonal, and we have determined the impa
t of ME in theexpressiveness vs. analyzability trade-o�. To represent the stru
tures
reated bydata-dependent programs we
an use several graph representations of the pos-sible stru
tures generated by the program. A
omplete study of how to extra
ttask graphs from appli
ations is presented in se
tions 4.2.2 and 4.2.3.Hen
e, we will study graph transformations to approximate NSP stru
turesto SP form. The devised transformations will try to minimize the potential par-allelism loss introdu
ed by added dependen
es, that may be responsible of theperforman
e degradation. We study not only the topology impa
t of a trans-formation, but the potential impa
t in the performan
e through
riti
al pathanalysis. For su
h an study, the workload distribution of the graph nodes is
riti-
al. At the highly abstra
t level of programming, no exa
t (or even no) workloadinformation is typi
ally available. In our study, several syntheti
 workload mod-els are
onsidered. In an experimental study with real appli
ations, presentedin se
tion 4.2, we validate and re�ne these workload models to
onsider realexe
ution workloads.In this
hapter we use graph theory to formally present de�nitions and prop-erties of NSP and SP graphs. We also study and
ompare basi
 te
hniques andfull algorithms to transform NSP syn
hronization stru
tures to SP form, min-imizing the potential parallelism loss. The impa
t of su
h transformations istheoreti
ally analyzed and dis
ussed.
3.1 Graph preliminariesWe present here a
olle
tion of mathemati
al notations used throughout the restof this dissertation. They are organized in se
tions about spe
i�
 subje
ts: Basi
graph
on
epts, transitive
losure and redu
tion, simple topologi
al parameters,and task graphs.

3.1. GRAPH PRELIMINARIES 853.1.1 Basi
 graph
on
epts and notationsSin
e graph-theoreti
al de�nitions di�er somewhat in the literature, we de�nehere the basi

on
epts. De�nitions are mainly adapted from referen
es [12, 28,93, 184℄. A reader who is familiar with graph theory may skip this se
tion andrefer to these de�nitions later if it is needed.In this dissertation we denote sets with upper
ase alphabeti

hara
ters(A;B;C; :::), and elements of a set with lower
ase (a; b;
; :::). Calligraphi
 upper
ase alphabeti

hara
ters denote set partitions:De�nition 3.1.1 The symbol P denotes a partition of a set in non-overlappingsubsets: PS = fS1; S2; :::; Sng : Si � S;\i Si = ;;[i Si = S 2De�nition 3.1.2 A dire
ted graph G is a pair (V;E), where V is a �nite setof nodes or verti
es and E � V � V is a set of ordered pairs
alled edges. Thenumber of nodes in a graph is denoted by n = jV j, and the number of edges bym = jEj.There
an be multiple edges between the same nodes. Graphs with multipledire
ted edges are
alled multidigraphs. Self-
y
les (nodes in the form (v; v)) willnot be used in our study. 2De�nition 3.1.3 Two graphs G1 = (V1; E1) and G2 = (V2; E2) are isomorphi
(G1 � G2) if there exists a bije
tive fun
tion f from V1 to V2 su
h that (v; v0) 2E1 () (f(v); f(v0)) 2 E2.For the following de�nitions let G = (V;E) be a dire
ted graph.De�nition 3.1.4 For ea
h edge (v; v0) 2 E, v is the sour
e of the edge and v0is the target of the edge. 2De�nition 3.1.5 For ea
h node v 2 V , indeg(v) is the indegree or number ofedges for whi
h v is the target and outdeg(v) is the outdegree or number of edgesfor whi
h v is the sour
e:indeg(v) = jfe 2 E : e = (v0; v)gjoutdeg(v) = jfe 2 E : e = (v; v0)gj 2

86 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.6 A root or sour
e of a graph is a node v with indeg(v) = 0.R(G) is the set of all roots in G: A leaf or sink of a graph is a node v withoutdeg(v) = 0. L(G) is the set of all leaves in G.R(G) = fv 2 V : indeg(v) = 0gL(G) = fv 2 V : outdeg(v) = 0g 2De�nition 3.1.7 The su

essors set of a node v is the set of target nodes ofedges for whi
h v is the sour
e. The prede
essors set of a node v is the set ofsour
e nodes for whi
h v is the target:Su

(v) = fv0 : (v; v0) 2 EgPred(v) = fv0 : (v0; v) 2 Eg 2De�nition 3.1.8 A subgraph of G is another graph S = (VS ; ES) in whi
hVS � V and ES � E. 2De�nition 3.1.9 A Path from a given node to another p(v; v0) is non-empty asequen
e of nodes
onne
ted by edges that de�nes a possible way from v to v0:p(v; v0) = v; v1; v2; :::; vp; v0;(v; v1); (v1; v2); :::; (vp; v0) 2 EThe length of the path is the number of edges p in the path:length(p(v; v0)) = jp(v; v0)j � 1A non-dire
t path is a path with length more than 1:pnd(v; v0) = p(v; v0) : length(p(v; v0)) > 1A Full path is a path p(v; v0) where v is a root and v0 is a leaf. Pf (G) is the setof all possible full paths in G:Pf (G) = fp(v; v0) : v 2 R(G); v0 2 L(G)gA Cy
le is a path from/to the same node: p(v; v). 2

3.1. GRAPH PRELIMINARIES 87De�nition 3.1.10 A node v0 is said to be rea
hable in the graph G from anothernode v i� exists p(v; v0) or v = v0:v �G v0 () 9p(v; v0) _ v = v0Where it is obvious by the
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.11 A node v0 is said to be stri
tly rea
hable in the graph G fromanother node v i� exists p(v; v0) and v; v0 are di�erent:v �G v0 () 9p(v; v0) ^ v 6= v0Where it is obvious by the
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.12 Two nodes v; v0 are
onne
ted in the graph G i� one of themis rea
hable from the other:v��Gv0 () v �G v0 _ v0 �G vv���Gv0 () v 6�G v0 ^ v0 6�G vWhere it is obvious by the
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol �� alone. 2De�nition 3.1.13 For any node v 2 V , the depth level or d(v) is the length ofthe longest path from a root to that node:d(v) = max(length(p(r; v)) : r 2 R(G)) 2De�nition 3.1.14 A dire
ted a
y
li
 graph (DAG) is a dire
ted graph G =(V;E) with no
y
le. For any node v there is no p(v; v):G 2 DAG () 8v 2 V :6 9p(v; v) 2In this dissertation we only study dire
ted a
y
li
 graphs. From here on, theword \graph" always refers to a DAG.De�nition 3.1.15 A two-terminal dire
ted a
y
li
 graph, also
alled standardtwo-terminal or STDAG is a DAG su
h that there is only one root and only oneleaf in the graph:G 2 STDAG () G 2 DAG; jR(G)j = 1; jL(G)j = 1 2

88 CHAPTER 3. THEORETICAL APPROACHProposition 3.1.16 Properties of STDAGs:1. Any node in an STDAG is rea
hable from the root.2. The leaf of an STDAG is rea
hable from any node in the graph.3. Any STDAG is a
onne
ted graph.4. For any node v 2 V exists at least one full path that
ontains v.Proof: A node v 2 V , is the root or it has at least one prede
essor. If it isnot the root, take any prede
essor of v and pro
eed by indu
tion. Use the samerationale for su

essors and the leaf. The rest is trivial using the de�nitions. 2De�nition 3.1.17 The normalized STDAG G of a DAG G is a two-terminaldire
ted a
y
li
 graph,
onstru
ted from G, adding at most two nodes and O(n)edges to resyn
hronize the possible multiple roots and possible multiple leaves ofG, as follows:Let G = (V;E) be a DAG, G = (V 0; E0):V 0 = V [fvrg if jR(G)j > 1V 0 = V [fvlg if jL(G)j > 1E0 = E [f(vr; v) : v 2 R(G)g if jR(G)j > 1E0 = E [f(v0; vl) : v0 2 L(G)g if jL(G)j > 1 2Proposition 3.1.18 The normalized STDAG G of any DAG G
an be
on-stru
ted in O(n) time
omplexity.Proof: Dete
ting the R(G) and L(G) sets implies
he
king only the in-degreeand out-degree of every node in V . Ea
h node appears at most on
e on ea
h set.Thus, ea
h set has O(n) nodes. When the two sets are known, at most two newnodes are added, and exa
tly one edge per node in ea
h set. 23.1.2 TransitivitiesThe rea
hability relation established by edges in the graph is transitive. Thus,we de�ne the following
on
epts as in [137℄:De�nition 3.1.19 An edge in a graph e = (v; v0) 2 E is a transitive edge i�there is a non-dire
t path between the nodes pnd(v; v0). 2

3.1. GRAPH PRELIMINARIES 89De�nition 3.1.20 The transitive
losure of a graph G = (V;E) is another graphG+ = (V;E+) su
h that E+
ontains an edge (v; v0) i� exists a path p(v; v0) inG. 2De�nition 3.1.21 The transitive redu
tion of a graph G = (V;E) is a subgraphG� = (V;E�), minimal under in
lusion, whose transitive
losure
oin
ides withthat of G. 2De�nition 3.1.22 A topologi
al order of a graph G = (V;E) is any total order�t of V su
h that if (v; v0) 2 E then v �t v0. Ea
h DAG has at least onetopologi
al order. 23.1.3 Topologi
al graph parametersWe de�ne the following basi
 graph topology parameters that we will use to
hara
terize the graphs.De�nition 3.1.23 We de�ne Maximum Degree of Parallelism as the maximumnumber of nodes in a graph that are not dependent on ea
h other:mP (G) = max jL 2 V=���jThis number
an be approximated by the
ardinality of the biggest layer (subsetof nodes with the same depth level) in the graph. We
all it simply Degree ofParallelism: P (G) = maxi jfv : d(v) = igj 2De�nition 3.1.24 The Depth of a graph is the maximum depth level of anynode in it: D(G) = maxv2V d(v) 2De�nition 3.1.25 Syn
hronization Density of a graph G is the amount of edgesrelative to the number of nodes: S(G) = jEj=jV j 2In a graph G, the S parameter (number of edges related to the number of nodes)may provide information not only about dependen
es, but about the overall shapeof the graph. For very high sizes of jEj, the graph will have so many dependen
es

90 CHAPTER 3. THEORETICAL APPROACHthat most nodes will be serialized. For very low number of edges, most nodeswill be dis
onne
ted and the degree of parallelism will be higher. We may de�nea more topology-independent parameter to represent the overall number of edgesin a graph.De�nition 3.1.26 We de�ne Relative Syn
hronization Density as the syn
hro-nization density relative to the number of nodes:Rs(G) = S(G)=jV jOr in other words, the amount of edges relative to the square of the number ofnodes. It represents the amount of edges relative to the maximum number ofpossible edges in a DAG with jV j nodes:Rs(G) = jEj=jV j2 23.1.4 Task graphsIn this thesis we use a
tivity on nodes (AoN) graphs. The nodes represent ana
tivity and the edges a pre
eden
e order for the exe
ution of the a
tivities. Morespe
i�
ally we introdu
e the following de�nitions:De�nition 3.1.27 For a given system, a task is an atomi
 a
tivity whi
h mod-i�es the global state of the system and
an be exe
uted independently of the lo
alstate of other a
tivities (tasks), provided a
olle
tion of pre
onditions. After theexe
ution of the a
tivity a task may produ
e a
olle
tion of post
onditions (de-pending on the system state), in order to allow a
tivation of other tasks. 2De�nition 3.1.28 A task graph T = (V;E) is a DAG in whi
h a node v 2 Vrepresents a task and an edge e = (v; v0) 2 E represents the pre
eden
e relationestablished between two tasks when a post
ondition of v is a pre
ondition of v0.2De�nition 3.1.29 In the
ontext of task graphs, the rea
hability property is also
alled dependen
e. A node v0 is dependent on another node v i� v �G v0. 2A task graph represents a possible evolution of a system given an initial state.In the
ase of a parallel program, a task graph represents the dependen
es of thetasks generated by the program when exe
uted with spe
i�
 input data. Thetask graph generated by a parallel program for a given initial state (input data)is unique only if the program has no ra
e
onditions, and the evolution of thesystem state is independent of the s
heduling of the tasks.

3.1. GRAPH PRELIMINARIES 91A task graph is some times transformed to an STDAG adding a root and aleaf that represent the starting and ending points of the whole system a
tivity.Then, properties of STDAGs
an be exploited.De�nition 3.1.30 The load of a node is a positive number that represents the
ost or span of exe
uting the task in a given parameter axis. The load distribu-tion of a graph is the fun
tion that maps nodes to their load values:� : v 2 V ! R+ 2A typi
al parameter for whi
h load is de�ned is time, where load representsthe exe
ution time of the a
tivity. The total
ost of a graph (the summation ofall its node's load) is asso
iated with the
ost of the
omputation represented bythe graph. The notions of path
ost, and
riti
al path are also de�ned.De�nition 3.1.31 The
ost or load of a graph G, is the sum of the loads of allits nodes: �(G) = Xvi2V �(vi) 2De�nition 3.1.32 The
ost or load of a path, is the sum of the loads of all itsnodes: �(p(v; v0)) = Xvi2p(v;v0) �(vi) 2Let us
onsider some usual
on
epts in distributed
omputing. In
ompleteasyn
hronous
ommuni
ation models, the
omplexity of an appli
ation is relatedto the largest
hain of messages [122℄. Modifying the syn
hronization stru
tures,the
hains of messages are altered, and probably, also the length of the largest
hain. The
omputation times should also be in
luded if they are signi�
ant [122℄.Appli
ation and program syn
hronization stru
tures are modeled with taskgraphs. In our
ase we use AoN graphs, with nodes representing tasks or
om-muni
ations. Thus, the a

umulated load value of the nodes in a full path rep-resents the estimated performan
e time of exe
uting this
hain of nodes, withthe pre
eden
e restri
tions expressed by the whole graph. The maximum loadof any full path, or
riti
al path value (
pv) of the graph, represents the largest
hain of
ommuni
ations or dependen
es, with
omputation times
onsidered.Consequently, the
pv of a graph may be used as an indi
ator of the modeledappli
ation performan
e.

92 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.33 For a given graph G = (V;E) and a given load distribution,the Criti
al paths of the graph P
(G) are the full paths with maximum load. TheCriti
al path value
pv(G) is the load of any
riti
al path.P
(G) = fp 2 Pf (G) : �(p) = max(�(Pf (G))g
pv(G) = �(p) : p 2 P
(G) 23.2 Series-parallel graphs3.2.1 De�nitionsSeries-parallel DAGs, their
onstru
tion and their relation with general DAGs arethe main fo
us of this
hapter. We present here formal de�nitions and propertiesof this kind of graphs. The following de�nitions are adapted mainly from [14,184℄.SP-graphs preliminariesThe
lass of edge series-parallel dire
ted graphs is de�ned re
ursively as follows:De�nition 3.2.1 Edge series-parallel multidigraphs (ESP):1. A DAG with a single edge joining two nodes is ESP.2. If G1 = (V1; E1) and G2 = (V2; E2) are ESP multidigraphs, so are theDAGs
onstru
ted by ea
h of the following operation:� Two-terminal parallel
omposition: Identify the root of G1 with theroot of G2, and the leaf of G1 with the leaf of G2.� Two-terminal series
omposition: Identify the leaf of G1 with the rootof G2. 2De�nition 3.2.2 Series-parallel graphs (SP-graphs):A DAG is SP i� its normalized STDAG is ESP:G 2 SP () G 2 ESP 2De�nition 3.2.3 Non-series-parallel graphs (NSP-graphs):A DAG is NSP i� it is not in the
lass of SP-graphs. 2

3.2. SERIES-PARALLEL GRAPHS 93The
lass of SP-graphs
an be
hara
terized by not exhibiting a forbiddensubgraph. This subgraph represents the basi
 topologi
al
hara
teristi
 asso
iatedwith an NSP stru
ture. We use the term homeomorphi
 to refer to graphs withsimilar topologi
al features, or in other words, graphs that
ontains nodes withthe same partial order relation. We �rst introdu
e a formal de�nition of thehomeomorphi
 term to help us to
hara
terize the relation of a graph with theforbidden subgraph.De�nition 3.2.4 An indu
ed subgraph G0 = (V 0; E0) of another graph G =(V;E), is a subgraph obtained by eliminating some nodes from V and eliminatingfrom E the edges in
ident to those eliminated nodes:G � G0 () V 0 � V;E0 = f(u; v) 2 E : u; v 2 V 0g 2De�nition 3.2.5 A graph G = (V;E) is homeomorphi
 to another graph G0 i�its transitive
losure does
ontain G0 as an indu
ed subgraph:G w G0 () G+ � G0 2Theorem 3.2.6 A DAG is an SP-graph i� it is not homeomorphi
 to the Wgraph of Fig. 3.1; or using an equivalent
hara
terization, i� its transitive
losuredoes not
ontain the W graph of Fig. 3.1 as an indu
ed subgraph. (See proofin [59℄). 2
Figure 3.1: The forbidden subgraph for SP-graphsSP graphs are a sub
lass of planar graphs, and also a sub
lass of k�terminalgraphs (see e.g. [28℄). SP graphs are equivalent to partial 2-trees, a sub
lassof bounded tree-width graphs (see e.g. [21, 28℄). Based in the properties ofthese graph
lasses, linear time
omplexity algorithms to re
ognize SP-graphsare possible.

94 CHAPTER 3. THEORETICAL APPROACHProposition 3.2.7 The re
ognition of a series-parallel digraph
an be done inlinear time. (See proof in [184, 168℄). 2EÆ
ient parallel re
ognition algorithms also exist for SP-graphs and derivated
lasses (see [98, 61, 22, 105, 23℄).An interesting property of SP graphs, that justi�es the tight
omplexitybounds of many algorithms for these graph
lass, is the bounded number ofedges:Lemma 3.2.8 Let G=(V,E) be an SP-graph with no multiple edges. The numberof edges is bounded by (see e.g. [168℄):jEj � 2jV j � 3This lemma is easily proven by indu
tion on the SP-graphs de�nition. 2Lemma 3.2.9 Let G=(V,E) be an SP-graph with no multiple edges and no tran-sitive edges (G = G�). The number of edges is bounded byjEj � 2(jV j � 2)A proof may be found in [84℄. 2SP redu
tionTwo operators whi
h redu
e the series or parallel stru
tures in a graph to a singleedge have been proposed [14℄. The result of the use of these operators in simplegraphs is shown in Fig. 3.2.
s

1

2

3

1

3

1

2

1

2

p

Figure 3.2: Redu
tion operatorsDe�nition 3.2.10 The series redu
tion operator or s�, is a mapping,s� : STDAG � V ! STDAG, a

ording to:Gs�v = (V 0; E0);indeg(v) = outdeg(v) = 1;E0 = E n f(s; v); (v; t)g [(s; t);V 0 = V n v 2

3.2. SERIES-PARALLEL GRAPHS 95De�nition 3.2.11 The parallel redu
tion operator or pÆ, is a mapping,pÆ : STDAG �E ! STDAG, a

ording to:GpÆ(v; v0) = (V 0; E0);jf(v; v0) 2 Egj > 1;E0 = E n f(v; v0) 2 Eg [(v; v0) 2De�nition 3.2.12 A trivial graph is a graph with only two nodes and one edge:Gt = (V;E); V = fv; v0g; E = f(v; v0)g 2De�nition 3.2.13 The symbol ` denotes a sequen
e of one or more redu
tionoperations in a graph: `� fs�; pÆg+`s�� fs�g+`pÆ� fpÆg+ 2De�nition 3.2.14 A series graph is a graph whi
h
an be redu
ed to a trivialgraph using only series redu
tion operations:G 2 SG () G `s� G0 � Gt 2De�nition 3.2.15 The minimal SP redu
tion graph of G, is another graph [G℄obtained by using all possible series and parallel redu
tion operations in G:G ` [G℄;�G0; [G℄ ` G0 2Proposition 3.2.16 A graph G is an SP-graph i� its normalized STDAG,
anbe redu
ed to a trivial graph by series and parallel redu
tion operations.G 2 SP () [G℄ � GtThis result is easily proven by indu
tion on the ESP and redu
tion operationde�nitions. 2

96 CHAPTER 3. THEORETICAL APPROACH3.2.2 Distan
e from NSP to SP graphsIn this se
tion we present formal methods to de�ne and measure the distan
efrom an NSP to an SP approximation graph. These de�nitions motivate sometransformation te
hniques and a distan
e
on
ept to be used later to try tomeasure the impa
t of NSP to SP transformations.We
an measure the distan
e from an NSP to an SP form by the numberof indu
ed forbidden subgraphs it has. This distan
e has shown to be a veryimportant parameter of a graph. Many graph analysis problems that show tobe feasible when the graph is bounded to an SP form, are NP-hard to solvein a generi
 NSP graph. Nevertheless, it is possible to derive algorithms thatare exponential in the distan
e from the graph to an SP form, instead of in thenumber of nodes [14℄.Node redu
tion and
omplexityThe number of forbidden subgraphs in a graph G
an be algorithmi
ally mea-sured by redu
tions or path expressions [14, 143℄. The redu
tion system usesseries and parallel redu
tions to eliminate the parts of the graph that are al-ready SP. After that, only nodes and edges asso
iated with forbidden subgraphsremain. To eliminate one node and its asso
iated forbidden subgraph, a newoperator
alled node redu
tion operator is introdu
ed. It operates on a node thatis
onne
ting one to many or many to one nodes. In the �rst situation, it substi-tutes a node with only one prede
essor for a
olle
tion of edges between its onlyone prede
essor and its su

essors. In the se
ond situation it substitutes a nodewith only one su

essor for a
olle
tion of edges between its prede
essors and itsonly one su

essor. The e�e
t of a node redu
tion in both
ases (indeg(v) = 1and outdeg(v) = 1), is shown in Fig. 3.3.De�nition 3.2.17 The node redu
tion operator or n?, is a mapping,n? : STDAG � V ! STDAG, a

ording to:Gn?v = (V 0; E0); indeg(v) = 1 _ outdeg(v) = 1;If indeg(v) = 1;E0 = E n f(s; v); (v; ti) : ti 2 Su

(v)g [f(s; ti) : ti 2 Su

(v)gV 0 = V n fvgIf outdeg(v) = 1;E0 = E n f(v; t); (si; v) : si 2 Pred(v)g [f(si; t) : si 2 Pred(v)gV 0 = V n fvg 2

3.2. SERIES-PARALLEL GRAPHS 97
*
n

*
n

1 2 n

t

1 2 n

v

t

s s

v

1 2 n 1 2 nFigure 3.3: Node redu
tion operatorAfter all possible series-parallel redu
tions are applied all nodes ex
ept theroot and the leaf are asso
iated with a forbidden subgraph. Any one
an be
hosen for elimination. At least the
hildren of the root have indeg(v) = 1,and at least the parents of the leaf have outdeg(v) = 1. Thus, there are alwaysnodes that
an be node redu
ed. After applying a node redu
tion, new series andparallel redu
tions are usually possible. They should be applied before new noderedu
tions.Dupli
ation of nodesAlthough previous works whi
h present the node redu
tion do not rationale it,this operator is intrinsi
ally related to an NSP to SP transformation based onthe dupli
ation of nodes, also dis
ussed in se
tion 3.3.1. See Fig. 3.4. The noderedu
tion operation intrinsi
ally
reates multiple instan
es of the node that isbeing redu
ed. A di�erent path from/to the unique parent/
hild is
onstru
tedthrough any of the multiple
opies. The dupli
ated nodes are inherently redu
edby serial redu
tion. Thus, the node redu
tion does not add new dependen
es tothe graph, and the non-SP
on
i
t (the forbidden subgraph) disappears.We may de�ne a distan
e from any graph G to an SP form based on theredu
tion
omplexity of G:De�nition 3.2.18 The redu
tion
omplexity of a graph G, denoted by �(G), isthe minimal number of node redu
tions suÆ
ient to redu
e G to a trivial graph.�(G) = min(
); [:::[[[G℄n?v1℄n?v2℄:::n?v
℄ � Gt 2De�nition 3.2.19 The sequen
e of �(G) nodes (v1; v2; :::; v
) that redu
e thegraph G to a trivial graph is
alled the redu
tion sequen
e. 2As was shown by Bein, Kamburowsky and Stallman in [14℄, it is possibleto
ompute �(G) and the redu
tion sequen
e in polynomial time
omplexity.

98 CHAPTER 3. THEORETICAL APPROACH

v
v’1 v’2

*
nG v

*
nG v’

v’v G

indeg(v)=1

outdeg(v’)=1

v’ v’
v2v1

v

Figure 3.4: Intrinsi
 operations in node redu
tionAt the same time the maximum distan
e of a graph to an SP form (redu
tion
omplexity) is limited by the number of nodes:�(G) � n� 33.3 Transformation problem (NSP to SP)In this se
tion we investigate the foundation of full transformation methods toapproximate the stru
tural di�eren
es between NSP and SP graphs. The usualasymptoti
 notation is used for
omplexity bounds throughout the following se
-tions. We use O, and � notation as de�ned in [13℄.3.3.1 SP-izationWe are interested in methods to approximate NSP graphs to an SP form thatboth: (1) keeps the dependen
es information of the original graph; and (2) min-imizes the potential parallelism loss. Di�erent approa
hes are possible:Dupli
ation of nodes: As shown in se
tion 3.2.2, a method to transform anNSP graph into an SP form by the dupli
ation of nodes is possible. The

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 99main interest of this transformation is that it does not add dependen
esto the task graph, and it produ
es no potential parallelism loss. However,the dupli
ation of tasks in
reases the total
ost of a
omputation (it is nota work-preserving transformation). In spe
i�

ir
umstan
es it
an trade
ommuni
ation
osts for
omputation and memory
osts. Dupli
ation oftasks (in other pro
essors) in
rements the total
omputation and resour
es
ost, but it may lead to a higher lo
ality degree, redu
ing the number of syn-
hronization or
ommuni
ation operations among pro
essors that exe
utethe dupli
ated tasks. Task dupli
ation is known to have a favorable e�e
ton minimizing the total exe
ution time in distributed systems s
heduling(see e.g. [158℄).The
ost in
rease is determined by the number of node dupli
ations. Takinginto a

ount that every node redu
tion dupli
ates the node a number oftimes equal to the number of in
ident edges minus one, the number ofnode dupli
ations
an be O(m)! In
ases of small degree of parallelism,very low �(G) and spe
i�
 topologies where the nodes to redu
e have avery small indeg ; outdeg , the bene�ts obtained may
ompensate the global
ost in
rease. Let �(G) be the total
ost of a
omputation represented byG. Let G0 be the SP version of G produ
ed by dupli
ating nodes withany redu
tion sequen
e. Then, if maxv2V (indeg(v); outdeg(v)) = k, thefollowing result
an be derived:�(G0) � k�(G)Also, in the
ase where all nodes in G have the same load, 8v 2 V; �(v) =
,we
an exert the result: �(G0) �
k�(G) + �(G)Although a linear time algorithm for dete
ting the shorter redu
tion se-quen
e exists [14℄, it does not assure that the nodes with less in
ident edgesare the ones sele
ted. The problem of sele
ting a redu
tion sequen
e whi
hminimizes the edges a�e
ted (node dupli
ations) is, as far as we know, notstudied.Another problem with this approa
h is that we are only
onsidering theCS problem. However, if the PPM supports mutual ex
lusion me
hanisms,the nodes to dupli
ate may need to
ontend with others for exe
ution priv-ilege. The dupli
ation of a node involved in a mutual ex
lusive operation
an in
rease the
riti
al path, as the
opies of a dupli
ated node
annot beexe
uted in parallel, leading to more
ontention and more syn
hronization
osts. Indeed, most of the time, dupli
ation only minimizes exe
ution timeif additional (CPU) resour
es are available. Moreover, a task that uses a

100 CHAPTER 3. THEORETICAL APPROACHpreviously non-shared resour
e
annot be safely dupli
ated without mod-i�
ation; dupli
ated operations on the resour
e may lead to a
orre
tnessfault.For general parallel
omputing, espe
ially in massive parallel
omputing orappli
ations with many inter-task dependen
es the total
ost in
rease
aneasily be una�ordable. The appli
ability s
ope of this te
hnique is narrow.Adding dependen
es: The alternative me
hanism to transform an NSP graphto SP form without dupli
ating nodes and without in
reasing the total
omputation
ost is adding new dependen
es. These work-preserving te
h-niques are not dire
tly based on redu
tion sequen
es, and the number oftopology modi�
ations may be not related to �(G). Indeed, graphs withhigher �(G) may need less added dependen
es to be transformed to SP.We study in se
tion 3.6.2 an algorithmi
 metri
 of the impa
t, in a givengraph, of a given te
hnique based on adding dependen
es. The main draw-ba
ks of these te
hniques are that: (1) they serialize previous potentiallyparallel tasks, and (2) the sele
tion of dependen
es to add is guided byheuristi
s whi
h should make assumptions about the task workloads, inorder to minimize the potential impa
t of the task serialization.Mixed te
hniques: Mixed te
hniques that mainly add dependen
es but strate-gi
ally sele
t a small subset of nodes to dupli
ate
ould be interesting.However, no
onvenient one has yet been proposed. A good starting pointto devise su
h te
hniques will be: (1) the methods based on adding depen-den
es studied in this thesis, and (2) the works about redu
ing expensive
ommuni
ation
osts by
omputation redundan
y, or s
heduling with re-dundan
y in UTC (Unit Time Cost) graphs [24, 60, 141℄.In this work we study new methods and heuristi
s to transform NSP to SPgraphs by adding dependen
es, trying to minimize the potential loss of parallelismintrodu
ed by them. We denote su
h transformation methods as SP-izations.De�nition 3.3.1 An SP-ization is a graph transformation te
hnique T whi
htransforms any generi
 STDAG into an SP form, keeping the same nodes anddependen
es as in the original graph, and possibly adding new zero loaded nodes(resyn
hronization points) and edges (dependen
es).T : STDAG �! SP ;T (G) = (V 0; E0);V � V 0; V 0 n V = fw; �(w) = 0g8u; v 2 V; u �G v =) u �G0 v 2

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 1013.3.2 Lo
al resyn
hronizationSeveral SP-ization te
hniques may be proposed. We will fo
us �rst in the ap-proximation of graphs
ontaining in its transitive
losure only one basi
 NSPproblem, or in other words, only one instan
e of the forbidden subgraph pre-sented in theorem 3.2.6. Then, more elaborated te
hniques for
omplex NSPproblems (
ombinations of several instan
es of the forbidden subgraph) will bestudied.In the following examples and �gures we will not present full NSP graphs,but only the indu
ed subgraph whi
h
ontains nodes related to the NSP problemwe want to illustrate. Thus, every edge in the example graphs may represent afull SP-redu
ible subgraph of the original graph, and the propagated dependen
eis not eliminable by a transitive redu
tion. We name these edges as SP bran
hes.De�nition 3.3.2 The SP bran
hes of a graph G are the subgraphs S � G thatare themselves SP graphs, S 2 SP. 2Consider for example the graphs in Fig. 3.5. The graphs on the right siderepresent the forbidden indu
ed subgraphs found in the transitive
losure of theleft side graphs. The light-grey edges represent SP bran
hes of the original graph.Thus, the original left-side graphs are homeomorphi
 to the forbidden subgraph,and the transformation solutions presented below
an be applied to both of them.We present three di�erent methods to resyn
hronize the forbidden subgraph.The �rst two methods
an be applied in two di�erent forms. The �nal �vetransformations are illustrated in Fig. 3.6. Any of them
an be used to eliminatean isolated NSP problem. The four nodes related to the forbidden subgraph arenamed s; v; v0; t, a

ordingly to their role to simplify the referen
es in the text.Up syn
hronization: An SP bran
h is resyn
hronized
hanging the leaf of thebran
h for an an
estor of the original leaf. This transformation
an beapplied to two di�erent SP bran
hes related to the forbidden subgraph(v; t) or (s; v0).� G0, resyn
hronizing (v; t): New dependen
es are
reated from thenodes in the SP bran
h represented by (v; t) to v0 and, thus, to nodesin the SP bran
h represented by (v0; t). New dependen
es added arede�ned by: fw : v � w � tg � fw0 : v0 � w0 � tg� G00, resyn
hronizing (s; v0): New dependen
es are
reated from thenodes in the SP bran
h represented by (s; v0) to v and, thus, to nodes

102 CHAPTER 3. THEORETICAL APPROACH
G W

Figure 3.5: Example graphs homeomorphi
 to the W forbidden subgraphin the SP bran
hes represented by (v; t) and (v; v0). New dependen
esadded are de�ned by:fw : s � w � v0g � � fw0 : v � w0 � v0gfw0 : v � w0 � tgDown syn
hronization: An SP bran
h is resyn
hronized
hanging the rootof the bran
h for a des
endant of the original root. This transformation
an be also applied to two di�erent SP bran
hes related to the forbiddensubgraph (v; t) or (s; v0).� G0, resyn
hronizing (s; v0): New dependen
es are
reated from thenodes in the SP bran
h represented by (s; v) to nodes in the SP bran
hrepresented by (s; v0). New dependen
es added are de�ned by:fw : s � w � vg � fw0 : s � w0 � v0g� G00, resyn
hronizing (v; t): New dependen
es are
reated from thenodes in the SP bran
hes represented by (s; v0) and (v; v0) to nodes

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 103

v’v

s

t

v’

G

v

s

t

v’v

s

t

v’

G’

v

s

t

v’v

s

t

v’v

s

t

v’v

s

t

v’v

s

t

G’’

Up synch

Across synch

Down synch

Figure 3.6: Methods for resyn
hronization of graphs homeomorphi
 to Win the SP bran
h represented by (v; t). New dependen
es added arede�ned by: fw : s � w � v0gfw : v � w � v0g � � fw0 : v � w0 � tgA
ross syn
hronization: In this third more general transformation, the threeSP bran
hes (s; v0); (v; v0); (v; t) are splited in two parts. The �rst part ofthe three bran
hes is resyn
hronized over a new zero loaded node. Edgesfrom this node to the se
ond parts of the three bran
hes are added to
onne
t the graph. Let S1; S2; S3 be the subgraphs
orresponding to thethree SP bran
hes:S1 � G : S1 2 SP ;R(S1) = fsg;L(S1) = fv0gS2 � G : S2 2 SP ;R(S2) = fvg;L(S2) = fv0gS3 � G : S3 2 SP ;R(S3) = fvg;L(S3) = ftg

104 CHAPTER 3. THEORETICAL APPROACHLet A1; A2; A3 be the sets of nodes in the �rst part of the three bran
hes,and B1; B2; B3 be the sets of nodes in the se
ond part of the three bran
hes.The �rst part will
ontain at least the root of the bran
h, and the se
ondpart will
ontain at least the leaf of the bran
h:Ai; Bi � Si : Ai [Bi = Si;Ai \Bi = ;;8w0 2 Bi; w0 6� w 2 AiThe transformation works adding the node and dependen
es de�ned by:V = V [f
gw 2 Ai �
 � w0 2 BiIt is possible to eliminate any NSP problem (or
ombinations of them) byapplying several up/down syn
hronizations in order to eliminate lo
al problems.With no information about the workload of the impli
ated nodes it is not possibleto de
ide when up or down syn
hronization may in
ur in a higher penalty in the
riti
al path. On general graphs, the up/down syn
hronization may serialize bigsubgraphs with high probabilities of many added dependen
es.The a
ross syn
hronization
an be applied in only one way in the
ontext ofthe basi
 NSP problem or forbidden subgraph elimination. However, when theedges represent non-empty SP bran
hes, we must propose a rule or strategy tode
ide whi
h nodes will be in the �rst and se
ond parts of the bran
h. In Fig. 3.7we show an example of two di�erent strategies for
utting subgraphs duringan a
ross syn
hronization (dotted edges represent original graph edges whi
hdegenerate in transitivities, and
an be eliminated). The de
ision relies again inthe information we have about the workload of the nodes in these subgraphs. Ifproperly applied, a
ross syn
hronization may derive in lesser amount of addeddependen
es
ompared with up/down syn
hronization, espe
ially when appliedto
ombined NSP problems, as the ones presented in next se
tion.3.3.3 Combinations of NSP problemsWhen a graph presents several NSP problems, the indu
ed forbidden subgraphsmay be
omposed. (In [14℄ three
omposed forbidden subgraphs are studied tode
ide whi
h nodes must be
hosen to minimize the redu
tion sequen
e. Someof those graphs are somehow related or inspiration for our resyn
hronizationsolutions).We present here di�erent
ompositions of the basi
 NSP problem suitableto be resyn
hronized with the three previous methods. Further
ombinations ofthese
ompositions may reprodu
e any NSP graph topology.To simplify the mathemati
al notation of pre
eden
es, for the following de-s
riptions we assume there exists a sour
e and a target node s; t 2 V that are

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 105
G G’

s

v

v’

t
v’

t

s s

v v

v’

v’

t

t

s

v

Figure 3.7: Example of di�erent strategies for a
ross syn
hronization

106 CHAPTER 3. THEORETICAL APPROACHrespe
tively before and after all nodes related to the NSP problems in the
om-bination (denoted by W � V): s � fw : w 2Wgfw : w 2Wg � tSeries NSP
omposition: There exists two similar problems,
hara
terized bya series
omposition of several v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01 � v02; v �Gnfv01g v02Problem2 : W = fv1; v2; v0g; v1 � v2 � v0; v1 �Gnfv2g v0This
ombination
an be eliminated by several up/down syn
hronizations.Both problems
an also be eliminated by a
ombined a
ross syn
hroniza-tion. See in Fig. 3.8 an example of ea
h type of transformation whereG0 and G00 represent solutions with up/down syn
hronizations respe
tively,and G000 the a
ross syn
hronization solution.

v

s

v’

t

v

v’v

s

v’

t

G

v’v

s

v’

t

v’v

s

v’

t

v

s

v’

t

v

v’v

s

v’

t

v

s

v’

t

v

v

s

v’

t

v

G’’ G’’’G’

Figure 3.8: Resyn
hronization of graphs homeomorphi
 to Series-NSP

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 107Parallel NSP
omposition: There exists two similar problems,
hara
terizedby a parallel
omposition of several non-dependent v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01; v � v02; v01���v02Problem2 : W = fv1; v2; v0g; v1 � v0; v2 � v0; v1���v2The
omposition
an be eliminated by several up/down syn
hronizations.Both problems
an also be eliminated by a
ombined a
ross syn
hroniza-tion. See in Fig. 3.9 an example of ea
h transformation where G0 and G00represent solutions with up/down syn
hronizations respe
tively, and G000the a
ross syn
hronization solution.
s

v’

t

v’

v

v

s

t

v

v’

s

v’

t

v’

v

v

s

t

v

v’

s

v’

t

v’

v

v

s

t

v

v’

s

v’

t

v’

v

v

s

t

v

v’

G’ G’’ G’’’G

Figure 3.9: Resyn
hronization of graphs homeomorphi
 to Parallel-NSPChain NSP
omposition: An NSP problem is
hained with another NSP prob-lem when the v0 node of the �rst of them is inserted between the v and tnodes of the se
ond.W = fv1; v2; v01; v02g; v1 � v01; v2 � v01; v2 � v02; v1���v2; v01���v02Several problems may be
onse
utively
hained. Su
h a
hain of NSP prob-lems
an be eliminated by a full a
ross syn
hronization. See an example

108 CHAPTER 3. THEORETICAL APPROACHof two
hained NSP problems and their resyn
hronization with a
ross syn-
hronization in Fig. 3.10.Up/down syn
hronizations may be also used to eliminate a
hain of NSPproblems. However, it is a
ompli
ate operation that must be done in sev-eral phases, ea
h of them with several
hoi
es for up/down syn
hronization.For example, a
hain of two NSP problems has three NSP problems. Thetwo original ones and the problem originated by the
hain
omposition. Wemust eliminate �rst the lo
al problems (ea
h of them with up or down syn-
hronization), before the problem originated by the
hain is exposed and
an be eliminated itself (with two up or two down syn
hronization possi-bilities). Apart from the amount of
hoi
es, other problem asso
iated withthis up/down syn
hronizations is that the
hained problems, will be
om-pletely serialized, probably loosing a big amount of the original parallelism.
v

s

v’ v’

v v

s

v’ v’

v

G

t t

G’

Figure 3.10: Resyn
hronization of graphs homeomorphi
 to 2 Chained-NSPCrossed NSP
omposition: Two NSP problems are
rossed when both v0nodes are inserted between the v and t nodes of the other problem. Multi-ple NSP problems may be
rossed with one or several of the others to formmultiple
rossing NPS
ompositions.W = fv1; v2; v01; v02g; v1 � v01; v02; v2 � v01; v02; v1���v2; v01���v02A
olle
tion of
rossed NSP problems
an be solve with a
ross syn
hroniza-tion. See an example of this resyn
hronization on a
rossed
omposition oftwo NSP problems in Fig. 3.11.As in the
hain problem, many
hoi
es for up/down syn
hronizations exist,but �nally they serialize all the v nodes, and all the v0 nodes impli
ated in

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 109
v

s

v’v’

vv

s

v’v’

v

t

G’G

tFigure 3.11: Resyn
hronization of graphs homeomorphi
 to 2 Crossed-NSPthe
rossing, leading to a high loss of the original parallelism due to addeddependen
es.For simple
ombinations of NSP problems (series or parallel NSP problems)any te
hnique may be appropriate, and no
lear
lues about whi
h one to
hoose
an be given without workload information or full topology inspe
tion. For
om-plex
ombinations (
hain and
rossed NSP problems) we dete
t that if up/downsyn
hronizations are used, the serialization of nodes in
reases with the numberof lo
al NSP problems impli
ated. For these problems it seems more appropriateto try the a
ross syn
hronization method. However, the
utting strategy mustbe
arefully sele
ted, as it
ould have an important impa
t on the results.3.3.4 Simple SP-ization te
hniquesWe present here two simple graph transformations that
orrespond to SP-izationte
hniques. They introdu
e the idea of SP-ization and motivate the presentationof our
omplex algorithms in the following se
tions.Te
hnique 1: SerializationThis �rst te
hnique is a trivial example of what an SP-ization
an be, but uselessfor pra
ti
al purposes. It
onsists in a full serialization of the graph nodes,transforming the partial order de�ned by the graph in any total order that honorsthe original partial order. The result is a series graph, that is also SP.De�nition 3.3.3 Let �t be any topologi
al order of G = (V;E). Then, an SP-ization Ts
an be de�ned by:

110 CHAPTER 3. THEORETICAL APPROACHTs(G) = (V;E0);E0 = f(v; w) : v �t w;�
; v �t
 �t wg 2An example of the appli
ation of this te
hnique is shown in Fig. 3.12. Withthis transformation most of the information provided by the original dependen
esis lost, and so many new dependen
es are added that all parallelism expressed inthe original graph disappears.
����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

One topological order: 1, 2, 4, 6, 5, 7, 10, 8, 9, 3, 12, 11, 13, 15, 14, 16, 17, 18

10

1

2 3

4 5

6 7 8

9

11

12

18

17

13

14 15

16

1
2

4
6

5
7

10

8
9

3
12

11
13

15
14

16
17

18

Figure 3.12: Te
hnique 1 - Serialization based on topologi
al orderTe
hnique 2: WSSyn
h (Simple layering syn
hronization)The se
ond te
hnique
onsists in a full barrier syn
hronization of node layers.For this te
hnique the information provided by the graph dependen
es is usedonly to determine the layers with a wide or breadth �rst sear
h of the graph.Thus, the name WSSyn
h (Wide �rst Sear
h Syn
hronization). The wide �rstsear
h of a graph visits the nodes in level or depth order. Ea
h layer
ontainsthe nodes with the same depth.De�nition 3.3.4 Let G = (V;E) be a graph, with a maximum depth level k =D(G). The Wide �rst sear
h layering LWS (G) is a partition of the graph nodesa

ording to:LWS (G) = PG = fl1; l2; :::; lkg; li = fv : d(v) = ig; i = 1:::k 2

3.3. TRANSFORMATION PROBLEM (NSP TO SP) 111Based in the previous layering de�nition, we de�ne the WSSyn
h or layeringtransformation as follows. An example of the appli
ation of this te
hnique isshown in Fig. 3.13.De�nition 3.3.5 Let G = (V;E) be a graph, then an SP-ization Tp
an bede�ned by: Tp(G) = (V 0; E0);LWS (G) = fl1; l2; :::lkgV 0 = V [fb1; b2; :::; bk�1gE0 = f(v; bi) : v 2 lig [f(bi; v0) : v0 2 li+1g 2The te
hnique does not exploit the possible short distan
e of the graph to anSP form. The number of dependen
es added
an be really high for graphs withlow redu
tion
omplexity �(G). Spe
i�
ally it destroys the SP subgraphs of Gthat
ould be preserved.The advantage of this te
hnique is that there exist fast algorithms with lowtime
omplexity bounds O(max(n;m)) to
ompute the level of the nodes andthe layering (see e.g. [29℄). Moreover, the result is the only possible SP-izationfor many spe
i�
 regular stru
tures related to
ommon appli
ations (see 4.2). Infa
t this te
hnique has been previously exploited with modeling te
hniques fors
alability and performan
e analysis of
ommon parallel stru
tures [130℄. At thesame time it
an be used to trivially map su
h stru
tures to the BSP model of
omputation.
10

1

2 3

4 5

6 7 8

9

11

12

18

17

13

14 15

16

124 5

6 7 8 11

9 10

17

16

18

1

2 3

13

14 15

Figure 3.13: Te
hnique 2 - Full barrier syn
hronization based on layering

112 CHAPTER 3. THEORETICAL APPROACHOther layering te
hniques not based in wide �rst sear
h (or node level) arepossible, and for some graphs the in
rease of the number of dependen
es
an belesser. However they are spe
i�
 for the graph topology.3.4 Algorithm 1: Lo
al explorationWe present here our �rst full SP-ization algorithm, introdu
ed in [83℄ and fullyexplained in [82℄. It was the result of our introdu
tory exer
ises to the NSPto SP transformations, and it was qui
kly superseded by our se
ond algorithmpresented in se
tion 3.5. Thus, a formal proof of
orre
tness was never devised.Instead, an implementation was heuristi
ally tested with about twenty thousandrandom graphs with up to hundreds of nodes. Its main interest is the lo
alstrategy used. The algorithm sear
hes for the less
omplex or more lo
al NSPproblem
ombinations, to solve them before
ontinue in an inside-outside style.The te
hnique uses a mixed approa
h of up and a
ross syn
hronizations. The
ore of the algorithm is the sear
h te
hnique that identi�es the nodes related to alo
al NSP problem. Depending on the input order (node labeling) the solutions
an be di�erent. In this se
tion we will present some new notations used in thealgorithm, a formal de�nition of the transformation, and a full explanation ofthe algorithm strategy with an example.3.4.1 NotationsDe�nition 3.4.1 We
lassify nodes in three broad
ategories in terms of theirsyn
hronization role in the graph:Fnodes(G) = fv 2 V : jSu

(v)j > 1gJnodes(G) = fv 2 V : jPred (v)j > 1gJFnodes(G) = Fnodes \ Jnodes 2The algorithm gathers information of NSP problems and their
ompositionfrom a minimal SP redu
tion ([G℄) of the original graph. During the
omputa-tion of [G℄, several series or parallel redu
tion operations are applied to redu
eSP bran
hes to a single edge (see se
tion 3.2.1). We use an annotation sys-tem to keep tra
k of the ending edges of an SP bran
h, to modify them in theresyn
hronization phase.De�nition 3.4.2 We asso
iate a Set of edges Z to any edge in the graph:Z : E 7! 2E

3.4. ALGORITHM 1: LOCAL EXPLORATION 113After a series redu
tion operation, let e be the new edge introdu
ed by Gs�v, and(s; v); (v; t) the edges that disappear, thenZ(e) = Z(e0); e0 = (v; t)After a parallel redu
tion operation, let e be the new edge introdu
ed by GpÆ(v; v0)then Z(e) = [fZ(e0) : e0 = (v; v0)g 23.4.2 SP-ization te
hniqueHere, we de�ne formally the transformation applied by the algorithm. It is basedon the appli
ation of a resyn
hronization operation on a
olle
tion of nodes re-lated to a
ombination of NSP problems. The strategy we propose now worksproperly when the input is the transitive redu
tion G� of the graph to be trans-formed. Edges whi
h represent transitive dependen
es
onfuses the algorithmand makes it serialize unne
essary nodes. Thus, a previous phase must
omputethe transitive redu
tion of G.We de�ne the handles (F; J) of an NSP problem, as a pair of node sets withthe properties to be de�ned below. The F and J sets will
ontain the v andv0 nodes related to an NSP problem
ombination, whi
h is suitable to be solveby one a
ross syn
hronization. We present �rst the properties of these sets, andthen the sear
h strategy to �nd them.De�nition 3.4.3 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redu
tion. (F; J) is a pair of node sets (F � VR; J � VR),
alled handleswith the properties: (a) All nodes in F are
onne
ted with at least one node inJ , and all nodes in J are
onne
ted with at least one node in F ; (b) all nodes inF have all their su

essors in J , ex
ept su

essors that are des
endents of othernodes in J , and su

essors that are also in F ; (
) all nodes in J have all theirprede
essors in F , ex
ept prede
essors with an an
estor in J .Let us denote the nodes in (F; J) sets with f 2 F ; j; j0 2 J . Then,J � Jnodes([G℄); F � Fnodes([G℄);8f;9j : (f; j) 2 ER;8j;9f : (f; j) 2 ER;8f;8t 2 Su

(f); t 2 J _ 9j0; j0 � t8j;8s 2 Pred(j); s 2 F _ 9j0; j0 � s 2

114 CHAPTER 3. THEORETICAL APPROACHThe sear
h strategy to �nd a pair of (F; J) sets
an be des
ribe as follows (allthe graph operations are related to the minimal redu
tion graph [G℄):1. Sele
t an initial F node related to an NSP problem. The only
ondition isthat it must have a su

essor that is a J node.f0 2 Fnodes([G℄) : 9j 2 Su

(f); j 2 Jnodes([G℄)2. Create empty set pairs. One for exploration (F 0; J 0) and one for �nal nodes(F; J). Put f0 in the initial F 0 set:F 0 = ff0g; J 0 = fg; F = fg; J = fg3. DO UNTIL F 0 = fg(a) Lo
ate su

essors of F 0 nodes. The new J 0 set has those su

essorswhi
h are not in J , and are not dependent on other J nodes:J 0 = fj0 2 Su

(f 0 2 F 0) :6 9j 2 J; j � j0g(b) Eliminate J and J 0 nodes dependent on other new J 0 nodes:J = J n fj : 9j0 2 J 0; j0 � jgJ 0 = J 0 n fj0 : 9j00 2 J 0; j00 � j0g(
) Move explored F 0 nodes to F :F = F [F 0(d) Eliminate F nodes whi
h has no more su

essors in J and J 0 due toelimination: F = F n ff : (J [J 0) \ Su

(f) = ;g(e) Lo
ate prede
essors of J 0 nodes. The new F 0 set has those prede
essorsthat are not in F and are not dependent on any J node:F 0 = ff 0 2 Pred(j0 2 J 0) : f 0 62 F ; 6 9j 2 J; j � f 0g(f) Move explored J 0 nodes to J :J = J [J 0

3.4. ALGORITHM 1: LOCAL EXPLORATION 115At the end of this pro
edure, the (F; J) sets have the properties de�ned previ-ously. We de�ne now a resyn
hronization operator that modi�es G su
h thatthe
olle
tion of [G℄ edges with its sour
e node in F and its target node in J aresubstituted for: (1) a new syn
hronization node, and (2) a
olle
tion of edgesfrom the nodes in F to the new node, and from the new node to the nodes in J .De�nition 3.4.4 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redu
tion. For a given pair of node sets (F; J), let A = f(f; j) 2 ER :f 2 F; j 2 Jg be the set of edges with the sour
e in F and the target in J . Wede�ne the resyn
hronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [frgE0 = E n fZ(e) : e 2 Ag[f(s; r) : (s; t) 2 Z(e); e 2 Ag[f(r; t) : t 2 Jg 2To improve the SP
ompositional looking of the result, we may syn
hronizethe bran
hes of any node in the F set with its own dummy syn
hronization point,and then, syn
hronize all dummy nodes over the general resyn
hronization point.This similar, although more
omplex, resyn
hronization operator may be de�nedas follows.De�nition 3.4.5 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its min-imal SP redu
tion. For a given pair of node sets (F = ff1; f2; :::; fng; J), letA = f(f; j) 2 ER : f 2 F; j 2 Jg be the set of edges with the sour
e in F and thetarget in J . We de�ne the resyn
hronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [fri : i = 0; :::; ngE0 = E n fZ(e) : e 2 Ag[f(ri; r0) : i = 1; 2; :::; ng[f(s; ri) : (s; t) 2 Z((fi; j) 2 A)g[f(r0; j) : j 2 Jg 2

116 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.4.6 Let G = (V;E) be a graph, then an SP-ization TAlg1
an bede�ned by the re
ursive appli
ation of a resyn
hronization operator . for any(F; J) sets until the result is an SP graph:TAlg1 (G) = ((((G . (F; J)) . (F 0; J 0)) ::: . (F n; Jn)) 2 SP 2This strategy leads to some troubles in spe
ial situations that must be
onsidered.They are dis
ussed in the following se
tions.3.4.3 JF
ombinationsA JF
ombination is a topologi
al feature of a graph
hara
terized for dependen
erelations des
ribed as follows (See an example in Fig. 3.14):JF
ombination = (f; j); f 2 Fnodes(G); j 2 Jnodes(G) :9f 0; j0; f 0 2 Fnodes(G); j0 2 Jnodes(G);f 0 � j � f � j0
j

f

j’

f’

f/j

j’

f’

Figure 3.14: Example of JF
ombinationsIn a JF
ombination, the relation j � f implies that all j0 nodes su
h thatf � j0, will be erased from J set be
ause of transitive relation with other nodesin the J set (j � f � j0). Consequently, f will have no su

essors in the J setand it will be also erased from the F set. The only nodes in handles sets will be�nally f 0 and j0.However, dete
ting a JF
ombination as soon as possible
ould avoid some for j re
ursive exploration from nodes that we know they are going to disappearfrom the set. Or even we
an mix two di�erent NSP problems as we explain inthe following se
tion.

3.4. ALGORITHM 1: LOCAL EXPLORATION 1173.4.4 Mixing problems through JF
ombinationsSometimes, the topology of the graph presents a JF
ombination in whi
h thef node has two j nodes asso
iated to di�erent NSP problems. See Fig. 3.15.Depending on the order in whi
h the nodes are explored and introdu
ed in the
f

Problem B

a

b

c d

e

Problem A

f’

j

1j’ j’2Figure 3.15: Example of mixed problems through a JF
ombinationsets, we
an add J nodes and F nodes from the di�erent problems in the exploringsets, before dete
ting and eliminating the JF
ombination. In the Fig. 3.15example, if node f is added to F set and is explored, j01; j02 are added to J set.In the next phase, new nodes in J set are explored to �nd their F handles. Theexploration of j01 will add nodes
; d to F , and j02 exploration will add f 0 to Fset. In next phase the transitivity relation from f 0 to j; f; j0 will be dis
overedand f; j will be eliminated from their sets. But at this point, we have in Fset the non-dependent nodes
; d; f 0, that are related to two di�erent lo
al NSPproblem
ombinations named problem A, and problem B in the �gure. If theexploration begins with f 0 or
; d instead of f , this situation does not happen. Inthis
ase, the way the resyn
hronization is done is not in
orre
t but non-optimal.In Fig. 3.16(a) is shown what is the result after resyn
hronizing problem A �rst,and then problem B in a natural way. Fig. 3.16(b) shows how the algorithmresyn
hronizes the bran
hes when it mixes the problems.Dete
ting and eliminating JF
ombinations as soon as possible minimizes theprobability of mixing the problems. Ea
h time we add a new f or j node to thesets, we
an
he
k for the transitivity relation from j nodes to f nodes. Thus,the JF
ombinations are dete
ted and the wrong f node eliminated. Althoughthis te
hnique minimizes the probabilities of mixing the problems it may stillhappen. The lo
al sear
h for J,F nodes, in whi
h the algorithm is based,
an notavoid this problem.

118 CHAPTER 3. THEORETICAL APPROACH

(b)(a)

a

b

c d

e

Problem A

Problem B

a

c d

b

e

Problems
Mixed

1
j’1 j’2

j’ j’2

f’ f’

j

j

f

f

Figure 3.16: Solutions of a mixed problem through a JF
ombination3.4.5 ExampleWe demonstrate the way our algorithm works with an example graph shown inFig. 3.17(a). Its minimal SP redu
tion graph, shown in Fig. 3.17(b), has theedge annotations presented in Table 3.1.
10

1

2 3

4 5

6 7 8

9

11

12

18

17

13

14 15

16

1

2 3

4 5

7

9

11

18

17

(a) (b)Figure 3.17: Example NSP graph and its minimal SP redu
tionThe evolution of the J and F sets during the problem handle dete
tion phase
an be seen in Table 3.2. The �rst
olumn of this table (
he
kpoint number N)des
ribes the event sequen
e. The algorithm would then pro
eed as follows:We
an
hoose as initial F node either nodes 3, 4, 5 or 7. All of them have

3.4. ALGORITHM 1: LOCAL EXPLORATION 119e Z(e)(4,9) (6,9)(5,9) (8,9)(7,18) (10,18)(3,17) (12,17) (16,17)Table 3.1: Edge annotations in the minimal SP redu
tion graphSP bran
hes to at least one J node. If we suppose that node 7 is the initialNSP problem, we would add it to the F set and explore it to lo
ate its related Jnodes 9 and 18, whi
h should be in
luded in the J set (
he
kpoints 1 ! 2). In
he
kpoint 3, we explore the J nodes just added in the previous step and theirrelated F nodes 4, 5 and 17 |whi
h is taken as an F handle be
ause it is also theorigin of an SP bran
h. In
he
kpoint 4, we explore the next unexplored nodein the F set, e.g. 4, and a new J node is obtained for the J set, namely node 7.In
he
kpoint 5, we test transitivities in J set, whi
h implies the elimination ofnodes 9 and 18, sin
e node 7 represents their transitive
losure and is the onlyone kept in the J set. In
he
kpoint 6, we dete
t how node 7 is also present inthe F set, whi
h represents a J{F
ombination to be ruled out from the F set.In
he
kpoint 7, the F handle 17 is taken out from the F set be
ause there is noJ node related to it in the J set. In
he
kpoint 8, we explore the next F node(5) and introdu
e a new J node in the J set (11). As a
onsequen
e, a new Fnode has to be added to the F set (3) after the exploration of this last J node;when this new F node (3) is explored, a new J node is added to the J set (17)whi
h is then ruled out be
ause of the transitivity relation with node 11. Whenwe rea
h this point, we are at
he
kpoint 11 and there are no more J or F nodesunexplored, whi
h
on
ludes the sear
h of the handles.N F set J set1 7 -2 7 9,183 7,4,5,17 9,184 7,4,5,17 9,18,75 7,4,5,17 76 4,5,17 77 4,5 78 4,5 7,119 4,5,3 7,1110 4,5,3 7,11,1711 4,5,3 7,11Table 3.2: Dete
ting the problem handles

120 CHAPTER 3. THEORETICAL APPROACHAfter the resyn
hronization phase, both graphs, original and the minimalSP redu
tion with the same transformation, looks like Fig. 3.18(a) and (b) re-spe
tively. Computing the new minimal SP redu
tion graph, we obtain a trivialgraph, be
ause it is already SP. No more algorithm iterations are needed.
13

14 15

16

10

1

2 3

4 5

6

7

8

9

11

17

12

18

(a) (b)

1

2 3

4 5

7

9

18

11

17

Figure 3.18: Solving the NSP problem in the original and SP redu
ed graph3.4.6 ComplexitySpa
e
omplexityWe use no more than two graphs at the same time; the original one and itsminimal SP redu
tion. Any graph needs spa
e for the nodes and for the edges.The nodes spa
e is O(n) and the edges O(m). During the algorithm work weadd a �xed amount of extra information in the nodes O(n), and we also addannotations in the edges whi
h represent SP bran
hes. Annotations are non-overlapping subsets of the edges from the original graph. Thus, the whole amountof edges information is bounded by O(m).On the syn
hronizations we are adding more nodes. For ea
h F node that issyn
hronized we add a new node. And one more node for ea
h resyn
hroniza-tion. The number of F nodes
an be (n � 1). (All the nodes ex
ept the leaf).The number of resyn
hronizations depend on the number of independent NSP

3.4. ALGORITHM 1: LOCAL EXPLORATION 121problems, bounded by the number of F nodes, at most (n � 1). So the numberof solves we need is in the worst
ase (n� 1). (All the nodes ex
ept the leaf).The number of �nal nodes on the SP graph is at most n + 2(n � 1) that isO(n). The �nal graph is SP, and it does not
ontain redundant edges and/ortransitivities. Thus, the number of �nal edges is also O(n) (see lemma 3.2.9).The �nal spa
e
omplexity bound is:O(n+m)Time
omplexityThe
omplexity of the di�erent operations that the algorithm does are:� Computing the transitive redu
tion of the graph: Transitive edgesmislead the algorithm to resyn
hronize non ne
essary parts of the graph.To improve solutions, transitive edges should be eliminated.Transitive
losure and redu
tion is a well studied problem. The typi
alalgorithm to
ompute transitive
losure/redu
tion is Warshall's algorithm,based on Floyd's, with time
omplexity O(n3). However, faster algorithms,based on Strassen's matrix multipli
ation algorithm have been devised toobtain
omplexity O(n2:81). See for example [29℄.� Compute the minimal SP redu
tion graph: A node is series-redu
edonly on
e, eliminating two graph edges and introdu
ing another (redu
tionsfor the whole graph are done in O(n)). When a node is series-redu
ed, itis possible to
he
k if the edge already exists in the graph, avoiding in-
luding redundant edges and also parallel redu
tion operations. When aseries redu
tion is performed, the sour
e and target nodes
an be
he
kedto dete
t if the new
hange makes them available for series redu
tion re
ur-sively. Considering this strategy the total number of
he
ks and redu
tionoperations is done in O(n), but the annotations update may need O(m)time
omplexity.� Choose an NSP Problem: Any F node
an be
he
ked. For any
he
kednode we must traverse through any leaving edge looking for su

essors. Inthe worst
ase, all edges of the graph are evaluated to dete
t an F nodewith only J nodes as su

essors. Thus, the operation
an be done in O(m).� Identify problem handles: This pro
ess is repeated until the problemis fully dete
ted. We do not know how many nodes are related to theproblem as F nodes or as J nodes, and some nodes
an be explored in thetwo ways before the J/F problem is dete
ted.To
ompute the upper bound we
onsider that any node
ould arrive atthe F or J set, or both. Ea
h time a node arrive at a J set we must
he
k

122 CHAPTER 3. THEORETICAL APPROACHdependen
es in both dire
tions. Dependen
ies for all the graph
an bepreviously pre-
omputed, during the transitive redu
tion phase. Thus, thisphase
an be done in O(n).The
he
k for old F nodes implies looking forward the su

essors of all Fnodes in the set. As we
onsider that any number of nodes
ould be in theset, in the worst
ase we must traverse all the edges in the graph. Whenwe look for prede
essors of new J nodes, and su

essors of new F nodes weuse the same
onsiderations, so �nally we
an explore all the edges in thegraph in both dire
tions (O(m)).Identify problem handles
an be done in O(n+m).� Solve problem: The resyn
hronization moves the SP bran
hes involveddeleting their �nal edges (original edges from the graph) and adding onenew edge to the syn
hronization point for every SP bran
h. In the worst
ase all the nodes minus one are in the F set, and all the leaving edges areSP bran
hes, so all the edges in the graph are reallo
ated in O(m).Then, the algorithm adds one edge from the syn
hronization point to any Jnode in the set. As no more than n�1 nodes
an be J nodes, the operation
an be done in O(n).All the operations des
ribed above are done on
e for any NSP problem. Thealgorithm does several operations with a maximum order O(n + m). We donot know how many non-related NSP problems may be in a graph. We mayassume a bad upper bound in whi
h any F node is asso
iated to a di�erent NSPproblem. The �nal number of dete
tion and resyn
hronization iterations wouldbe n � 1. In ea
h resyn
hronization we add one dummy node, so the numberof nodes is growing in ea
h iteration from n to 2n � 1. The number of nodesis always O(n). The number of resyn
hronizations is O(n). The number ofoperations for ea
h resyn
hronization is O(n +m). The time
omplexity of allproblems resyn
hronization operations is: O(n2 + n�m). In a
onne
ted DAG,O(m) � O(n). Hen
e, the time
omplexity is bounded by: (1) the transitiveredu
tion
omputation (optional but strongly re
ommended), and (2) the graphresyn
hronizations O(n�m). Algorithm time
omplexity is:O(n2:81 + n�m)Considering that transitive redu
tion is more ne
essary as the number ofedges grows, and that O(m) � O(n2), when the produ
t n �m is in O(n3) theproblem solving dominates the transitive redu
tion. On the other hand, whenn �m is in O(n2:81), the transitive redu
tion
ould be skipped with minimumpenalty for the algorithm solution. Thus, we
on
lude that the algorithm time
omplexity is dominated by: O(n�m)

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1233.5 Algorithm 2: Lo
al layering te
hniqueIn this se
tion we introdu
e a new SP-ization algorithm with the following inter-esting features [85℄:� A redu
ed time
omplexity: O(m+ n logn).� Lo
al resyn
hronization of minimum number of nodes, guided by globaltopology information.� It does not in
rease the
riti
al path for UTC (Unit Time Cost) graphs,keeping the nodes layering stru
ture of the original graph.� The solution of the algorithm is the same for a given topology independentlyof the input order (node labeling).The algorithm is based on a depth level sear
h, solving lo
al NSP problemswhile it traverses the graph. At any time, the already pro
essed subgraph is SP.A tree representing the minimal series-parallel redu
tion graph of the pro
essedsubgraph is used to help in the sear
h for handles, transitivity
he
ks and op-erations that have lesser
omplexity bounds in a tree than in a generi
 DAG.Evaluation of edges that express dependen
es a
ross several layers is delayeduntil the targeting layer is pro
essed. A full implementation in JAVA language
ould be provided by the author upon request.3.5.1 NotationsLet G = (VG; EG) be the input graph:De�nition 3.5.1 We de�ne d-edges as the subset of edges whi
h sour
e andtarget have non-
onse
utive depth levels:(u; v) 2 EG : d(v) � d(u) > 1 2De�nition 3.5.2 A Layer is the subset of graph nodes with the same depth level:Li � VG;Li = fv 2 VG : d(v) = ig 2

124 CHAPTER 3. THEORETICAL APPROACH3.5.2 Algorithm des
riptionInitialization phase:i. Transform the input DAG into an STDAG using the method presented inde�nition 3.1.17.ii. Layering of the graph. Compute a partition of VG, grouping nodes with thesame depth level.iii. Initialize an an
illary tree T = (VT ; ET) to L0. This tree will represent theminimal series-parallel redu
tion of the step by step pro
essed subgraphs.Graph transformation:For all layers (sorted) i from 0 to D(G)� 1:a. Split layer in
lasses of relatives: Let us
onsider the subgraph S � Gformed by Li [Li+1 and all edges from G in
ident to two nodes in thissubset. We
onstru
t the partition of this nodes into
onne
ted subgraphs.We de�ne relatives
lasses as the subsets of nodes that belong to the same
onne
ted
omponent of S and the same layer, as in Fig. 3.19.
L

L

U U

i

i+1

2 3

31

1

D D

U

D 2Figure 3.19: Example of relatives
lasses indu
ed between two layersPU = fU1; U2; :::; Ung will be the up
lasses (of nodes in Li) and PD =fD1;D2; :::;Dng will be the down
lasses (of nodes in Li+1). Ea
h
lassU 2 PU indu
es a
lass D 2 PD that belongs to the same
onne
ted
omponent (U ! D).b. Tree exploration to dete
t handles for
lasses of relatives: We look inthe tree for handles. For ea
h U
lass, the U-handle (h0(U)) is the nearest
ommon an
estor of all nodes in U :H 0(U) = fv 2 VT : 8w 2 U; v �T wgh0(U) = h 2 H 0(U) : 8h0 2 H 0(U) : d(h) � d(h0)

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 125We de�ne KT (U) as the set of sour
e nodes to the indu
ed
lass D (itin
ludes U and sour
e nodes of d-edges targeting D): Sour
es of edgesshowing transitive dependen
e to D through the U-handle are to be dis-
arded from KT (U):KT (U) = fv 2 VT : (v; w) 2 EG; w 2 D; v 6�T h0(U)g [fh0(U)gThe handle node of
lass U , h(U) is de�ned as:H(U) = fv 2 VT : 8w 2 KT (D); v �T wgh(U) = h 2 H(U) : 8h0 2 H(U) : d(h) � d(h0)We also de�ne the forest of a
lass, as the set of
omplete sub-trees belowh(U) that in
lude nodes in KT (U):SubF (U) = fu 2 VT : v �T u; (h(U); v) 2 ET ; v �T w : w 2 KT (U)gIn Fig. 3.20 we show a diagram of all
on
epts de�ned in this se
tion.
Nodes in K T

d-edges (Not in T)

Normal edges or dependencies

Normal nodes

h(U)

Other branches of h(U)

h’(U)

U

SubF(U)

D

T

Nodes transitive through h’(U)

Figure 3.20: Example of handles and forest for an U
lass

126 CHAPTER 3. THEORETICAL APPROACH
. Merge
lasses with overlapping forests: Classes with overlapping forestsare merged in an unique U and D
lass. They will be syn
hronized withthe same barrier.8U;U 0 2 PU : SubF (U 0) \ SubF (U) 6= ;U = U [U 0;PU = PU n U 0U ! D;U 0 ! D0;D = D [D0;PD = PD nD0d. Capture orphan nodes: We de�ne orphan nodes as the leaves of the treeT that are not in any U
lass (they are nodes in layers previous to i withonly d-edges to layers further than i+ 1). These nodes are in
luded in theU
lass of the forest they belong to.8v 2 SubF (U); v 2 L(T); v 62 U ;U = U [fvge. Class barrier syn
hronization: For ea
h �nal U ! D
lasses:� Create a new syn
hronization node bU in the graph and the tree.VG = VG [fbUgVT = VT [fbUg� In G, eliminate all edges targeting a node in D. Add edges from everynode in U to bU and from bU to every node in D (barrier syn
hroniza-tion). EG = EG n f(v; w) : w 2 DgEG = EG [f(v; bU) : v 2 UgEG = EG [f(bU ; w) : w 2 Dg� Substitute every d-edge (v; w) with sour
e v 2 SubF (U) and targetinga node w 2 Lk : k > i + 1 (a further layer) for an edge (bU ; w). Thisoperation eliminate d-edges from the new syn
hronized SP subgraph,but avoiding the loss of dependen
es in the original graph.dE(U) = f(v; w) 2 G : v 2 SubF (U); w 2 Lk; k > i+ 1gEG = EG [f(bU ; w) : (v; w) 2 dE(U)gEG = EG n dE(U)� Substitute the forest SubF (U) in T for an edge (h(U); bU) represent-ing the minimal series-parallel redu
tion of the new syn
hronized SPsubgraph. T = T n SubF (U)ET = ET [f(h(U); bU)g

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1273.5.3 ExampleAn example of the algorithm applied to a given graph is shown, step by step,in Fig. 3.21,3.22,3.23. For ea
h step, the �rst and se
ond
olumns present thegraph and tree respe
tively, as a result of the previous step. For step 1 we presentthe original graph with a layering diagram and the root initialized tree. The third
olumn is a diagram of the exploration phase on the tree. U and D node
lassesare shown with di�erent grey shades, showing the graph related edges (not inthe tree) by dashed lines.We also mark with names the orphan nodes, d-edges to further layers and thetransitive/non-transitive property over the U-handle, of the d-edges arriving at D
lasses. U-handles are marked with h0(U) and �nal handles with h(U). Forestsunder ea
h handle are surrounded by trapezoids. New added syn
hronizationnodes are represented with smaller
ir
les.We
omment now the remarkable algorithm features in the example. Step1 presents a
ase with only one U
lass with one node in the U
lass (handle)and two nodes in the indu
ed D
lass. A new node 19 is added to the graph tosyn
hronize over the nodes in the D
lass. In step 2, there are two U
lass tosyn
hronize, being the handles the nodes in U
lasses. A d-edge appears from anode in the se
ond
lass, and it sour
e node 3 is
hanged in the original graph tothe new syn
hronization node 21. Exploring phase in step 3, dete
ts node 20 asthe U-handle of the �rst U
lass as the nearest
ommon an
estor of all nodes inU
lass (4,5). However, a d-edge to a node in the indu
ed D
lass (21,11), whi
hsour
e node 21 is not transitive through the U-handle node 20, for
es to explorefurther. The handle for
lass 1 is not equal to the U-handle, but the nearest
ommon an
estor of nodes 20 and 21, namely node 19. Moreover, forests underthe handles of
lasses 1 and 2 overlaps in node 13, and they are merged andsyn
hronized together. Noti
e how the orphan node 12 is in
luded in the mergedU
lass and syn
hronized over the new node 22. Step 4 presents a situationwhere two U
lasses have the same handle node 22, but non-overlapping forests.Thus, they are not merged, but syn
hronized with di�erent nodes 23 and 24. Instep 5 there is only one U
lass, be
ause nodes 9 and 10 have only d-edges tofurther layers. The U-handle is the same node 16 in U
lass. Nevertheless, thereare d-edges from previous layers. Edge (22,17) is dis
arded due to its transitiveproperty through the U-handle 16. However, edge (23,17) is not transitive. Thus,the handle node is the nearest
ommon an
estor of nodes 16 and 23, namely node22. The forest in
lude now orphan nodes 9 and 10. In last step 6, there is onlyone U
lass and two dis
arded transitive edges. The resulting graph is showntogether with the �nal tree, that is always a series graph in whi
h ea
h edgerepresents the minimal series-parallel redu
tion of a full SP subgraph.

128
CHAPTER3.THEORETICALAPPROACH

L6

L5

L4

L3

L2

L1

L0
h’(1)
h(1) PU

PDS
tep

 1

PD

PU

d-edge

h(2)
h’(2)h’(1)

h(1)

S
tep

 2

PU

PD

d-edge

h’(1)
no-tra

ns

orphan

S
tep

 3

h(1)

h’(2)
h(2)

G ExploringT

10

1

2 3

124 5

76 8

9

18

11

13

1514

16

17

1

2 3

1

10

1

2 3

4 5

6 7 8

9

11

12

18

17

13

14 15

16

19

2 3

1 1

13

3

125

2

4

19 19

10

12

6 7 8 11
14 15

1

2 3

4 5

9

18

17

19

20 21 13

16

1

2 3

4 125 13

1

2 3

1514

13

6 7 8 11

54 12

19

20 21

19

20 21

Figure3.21:Exampleofalgorithm2:Steps1,2,3

3.5.ALGORITHM2:LOCALLAYERINGTECHNIQUE
129

G ExploringT

d-edges

tran
s

no-trans

PD

PU

h(1)

h’(1)
orphan

S
tep

 5

d-edges

PD

PU

h’(1)
h(1) h(2)

h’(2)

S
tep

 4

1

9 10

13

1514

12

6 7 8

4 5

16

17

18

11

9 10

1

2 319

20
21

22

24
23

1

9 1610

19

22

2423

17

16

19

22

2423

1

17

16

13

11

1514

6 7 8

9 10

18

1254

1

6 7 8 11 14 15

16

1514

109

6 7 8 11

19

22

1

2 319

20
21

22

19

22

Figure3.22:Exampleofalgorithm2:Steps4,5

130
CHAPTER3.THEORETICALAPPROACH

G ExploringT

PU

PD

tran
s

tran
s

h’(1)
h(1)

S
tep

 6
R

esu
lt

1

13

1514

12

6 7 8

4 5

16

11

9 10

18

17

1

2 319

20
21

22

24
23

25

1

17

19

22

25

18

17

19

22

25

13

1514

12

6 7 8

4 5

16

11

9 10

17

18

1

18

1

2 319

20
21

22

24
23

25

26

19

22

25

26

Figure3.23:Exampleofalgorithm2:Step6&Result

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1313.5.4 Corre
tnessSin
e any tree
an be easily transformed to a trivial SP STDAG, any graphwhi
h minimal series-parallel redu
tion is a tree, will be SP. As
an be easilyshown by indu
tion on the depth of the STDAG, the minimal series-parallelredu
tion graph at ea
h step is always a tree and, thus, has the SP property.We de�ne TDAG as the subset of DAGs that are one-rooted
onne
ted trees.Proposition 3.5.3 A tree is SP:T 2 TDAG) T 2 SPProof: The STDAG of T (
alled
losure of T) is the original T with an addedleaf bU
onne
ted to all the leaves L(T). Applying series redu
tion to all originallyleaves of T and parallel redu
tions where there were several leaves with the sameparent, the result is equal to the
losure STDAG of T 0, being T 0 the tree obtainedeliminating L(T) from T . Pro
eed re
ursively until only the root of T and thenew leaf bU remain and the redu
tion is the trivial graph. 2Proposition 3.5.4 A graph G whi
h series-parallel redu
tion is a tree is SP.Proof: Compute the series-parallel redu
tion of G until it is a tree. As provedpreviously the series-parallel redu
tion of the
losure of a tree is the trivial graph.Thus, the STDAG of the original graph
an be series-parallel redu
ed to the trivialgraph and is also SP. 2Corre
tness proof:1. The result does not loose dependen
es: No node is eliminated from thegraph. During syn
hronization, all times an edge (v; w) is eliminated it issubstituted by two edges (v; bU) and bU ; w). Thus, the original depen-den
e is transitively keep through bU . All times a d-edge (v; w) : v 2SubF (U); v 2 Lj; j � i ^ w 2 Lk; k > i + 1 is moved down to the syn-
hronization node, the original edge disappears and another edge (bU ; w)is added. After adding edges from U to bU , 8u 2 SubF (U); u � bU andv � bU � w.Thus, during the syn
hronization phase neither, the substitution of edgesor moving down d-edges eliminate original dependen
es in G. No otheredge alteration is done in G.2. The result is SP: We
all Si the subgraph of G that in
ludes all nodes inlayers L0; L1; :::; Li and all G edges in
ident to both nodes in Si.

132 CHAPTER 3. THEORETICAL APPROACHWhen the algorithm begins (for i = 0) T is initialized with the root of G.S0 is a one node tree. For i = 1 the
losure of T and S0 is
omputed andnodes in L1 are hanged from the new syn
hronization node. T and S1 aretrees and, thus, they are SP.In ea
h subsequent iteration (for i = i+ 1), we
ompute PU , PD and theirhandles. Then we merge
lasses with overlapping forests. Ea
h forest is
omposed by trees that represent the series-parallel redu
tion of a subgraphof Si. Eliminating in G edges from U to D and d-edges from SubF (U) forall
lasses, Si gets dis
onne
ted from the rest of the graph, being a tree (ora graph that is a tree after series-parallel redu
tions). New syn
hronizationnodes and edges are added to
losure every tree in T and G in
luded in aforest of an U
lass. Thus, after syn
hronization, Si+1 is a tree or a graphthat is a tree after series-parallel redu
tions. Si+1 is SP. T represents theseries-parallel redu
tion of Si+1.Pro
eed by indu
tion until the last iteration. In last iteration (for i =D(G) � 1), Li+1 is formed by the only one leaf of G. There is only one U
lass and one D
lass. All resting sub-trees in T (and G) are
losed togetherwith only one syn
hronization node and only one node (the leaf of G) isadded hanging from that new node. T , that represents the series-parallelredu
tion of G is a series of nodes, its series redu
tion is the trivial graph.Thus, G is SP.3.5.5 Criti
al path property for UTC graphsAn interesting feature of the algorithm is that it does not in
rease the
riti
alpath value if the original graph has unit time
ost per node. Transforming a graphto SP form, this property minimizes the possibilities for
riti
al path in
rementwhen no knowledge of the task load distribution is available.Proposition 3.5.5 For an UTC (Unit Time Cost) input graph G, the result G0is not UTC (nodes added by the algorithm
arry no load), but despite the addeddependen
es, the
riti
al path is not in
reased.Proof: For UTC graphs, the
riti
al path value of G is equal to the maximumnumber of nodes that
an be traversed from a root to a leaf (
pv(G) = 1+D(G)).The algorithm adds zero loaded syn
hronization nodes between layers. Theonly way of in
reasing the
riti
al path is due to added dependen
es that make anode from a layer i dependent on a node from layer j, being j > i. However, thealgorithm keeps the layers stru
ture.Moving d-edges sour
es to a node in a layer previous to the target node layer,does not
hange the depth level of any node. Substituting edges from nodes in U

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 133
lasses to nodes in D
lasses to in
lude bU nodes keeps the depth level of U nodesand adds one to the depth level of every node in D
lasses.In the resulting graph, all even layers are populated by zero loaded nodes andodd layers by nodes in the original layers. The longest path from the root to theleaf alternatively
rosses nodes with unit and zero time
ost. The number of unittime
ost nodes in the longest path is at most 1 +D(G), and, thus, the
riti
alpath value in G0 is the same as in G. 23.5.6 ComplexitySpa
e
omplexityLet n be the number of nodes and m the number of edges in the original graph.The number of nodes in the graph in
reases with one more node for ea
h U
lass.Every node appears just on
e in an U
lass over the full algorithm run. Thus, thetotal number of nodes is upper bounded by 2n. The number of edges is upperbounded be
ause the pro
essed subgraph (after ea
h iteration) is SP, and thenumber of edges in an SP graph is bounded by m � 2(n� 2) (see lemma 3.2.9).Other an
illary stru
tures (as the tree) store graph nodes and/or edges. Thus,spa
e
omplexity is: O(m+ n)Time
omplexitySTDAG
onstru
tion
an be done in O(n) and getting layers information in O(m)with a simple graph sear
h.Classes of relatives for two
onse
utive layers
an be
omputed testing a
onstant number of times ea
h edge. Thus, all the
lasses along the algorithmrun are
omputed in O(m).Exploration of the tree for handles
an be self-destru
tive: Nodes are elimi-nated during the sear
h. While sear
hing for the handle of a
lass, all the forest
an be eliminated and orphan nodes and other
lasses to be merged dete
ted (seese
tion 3.5.7 for a des
ription of su
h an implementation).Che
k and eliminate a transitive edge
an be done in O(1) if appropriate datastru
tures are used for the tree [21℄, but assuming tree modi�
ations are done inO(log n). O(n) nodes and edges are inserted and eliminated in the tree. Thus,all tree manipulation has a time
omplexity O(n logn).The syn
hronization phase adds O(n) nodes, eliminate O(m) edges and adda bounded number of edges (O(n) be
ause it is an SP graph). The movement ofd-edges
an be tra
ed in O(n log n) with a tree-like groups joining stru
ture toavoid real edge manipulation (see 3.5.7 for details).

134 CHAPTER 3. THEORETICAL APPROACHThus, time
omplexity is: O(m+ n logn)3.5.7 ImplementationWe propose an implementation for the tree exploring phase. This implementa-tion is based on a self-destru
tive sear
h of the tree that eliminates the alreadyused forests from the tree and dete
t handles with only one
he
k per node.This implementation is needed to bound the time
omplexity as explained inse
tion 3.5.6.Sear
hing for handles: For any given U
lass, we
reate an exploration stru
-ture
all explorers (E). This stru
ture stores nodes in sets indexed by depth level.E = (m;VE);m 2 N; VE = fV1; V2; :::; VmgWe initialize it with the nodes in any
hosen U
lass.8v 2 U : Vd(v) = Vd(v) [fvgm = max d(v) : v 2 UFor all nodes in E with maximum depth, we eliminate them from the tree,and we add the parent of the eliminated node to the explorers stru
ture (avoidingrepetition by marking the parent node when �rst visited).To eliminate a tree node, we
he
k previously if it is a leaf. If it is not,we pro
eed to eliminate all sub-trees hanging from it. The leaves of these sub-trees will be orphan nodes (that we immediately add to U) or nodes in other U
lasses. In this last
ase, both
lasses are merged, adding the new U nodes tothe explorers stru
ture.When the explorers stru
ture has only one node, this node is the U-handleh0(U). Then we
he
k the transitive
ondition of all d-edges arriving at D in thetree with h0(U) to
ompute K 0T (U). Non-transitive d-edges sour
es are addedto explorers and the sear
h is
ontinued until the stru
ture has again only onenode. This last node is the handle h(U), and is marked in the tree (a node
anbe handle of several
lasses at the same time).During exploration, a node that is pro
essed to be eliminated
an also bemarked as handle of other previously explored
lass or
lasses. In this
ase these
lasses are also merged with the one being explored.When this exploring operation is performed for all U
lasses, all handles havebeen dete
ted and marked, related
lasses already merged, and forests SubF (U)deleted from the tree.

3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 135Tra
king of d-edges: During the elimination of tree nodes we keep tra
k ofd-edges from these nodes to further layers. Ea
h
lass maintains a set of thesesour
e nodes. When
lasses are merged, these sets are also merged. When a
lassis syn
hronized, this set will provide information for d-edges to be moved to thenew syn
hronization node.To keep tra
k of d-edges movements without performing modi�
ations in thegraph, we use a modi�ed version of a disjoint-sets data stru
ture with union byrank and path
ompression (see e.g. [47℄). The stru
ture will map any node labelto the node label of the �nal sour
e of the asso
iated d-edges. A joining operationof a pair of node labels (i; j) will indi
ate that d-edges with sour
e i are to bemapped to sour
e node j. The stru
ture has the property that for any sequen
eof joining operations (i1; j1); (i2; j2); :::; (in; jn) where i1 6= i2 6= ::: 6= in all joiningoperations take O(n logn) to be performed, and any mapping query takes O(1).De�nition 3.5.6 We de�ne the Joining stru
ture J = (~I; ~W; ~S), where ~I; ~Ware arrays of indexes and ~S is an array of sets of node labels (we de�ne N as theset of all possible node labels). Let n = jVGj:N = fi : N; i 2 [1::2n℄g~I; ~W : N2n~S : S2n; Si � fv : NgThe J stru
ture is initialized as follows:Ii = i;Wi = i;Si = figIt supports a joining operation indi
ating that i must be mapped to j de�ned as:J t (i; j) : J ! J 0;J = (~I; ~W; ~S); J 0 = (~I 0; ~W 0; ~S0);I 0(Wi) = I(Wj)big = � Wi if jSWi j � jSWj jWj otherwisesmall = � Wi if jSWi j < jSWj jWj otherwiseW 0i =W 0j = bigS0big = Sbig [Ssmall8k 2 Ssmall : W 0k = bigThe query fun
tion is de�ned as:J : VG ! VT ;J(i) =Wi 2

136 CHAPTER 3. THEORETICAL APPROACH3.5.8 Improvement: Unne
essary syn
hronization nodesSome syn
hronization nodes may be eliminated. In situations where the U
lass,the indu
ed D
lass, or both, have only one node, the new syn
hronization nodeis not ne
essary. The lonely node
an play that role. This redu
es the number ofnodes and edges added, produ
ing a
ompletely equivalent graph result in termsof stru
ture and dependen
es between nodes from the original graph.We modify the algorithm syn
hronization phase along the following lines. Forea
h �nal U ! D
lasses:� Dete
t/
reate syn
hronization node, and eliminate/add edges:1. If U = fug, bU = u:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig2. Else if D = fdg, bU = d:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig3. Else (normal
ase where jU j > 1; jDj > 1): Pro
eed as in the originalalgorithm
reating a new syn
hronization node bU , eliminating in Gall edges targeting a node in D, and adding edges from every node inU to bU and from bU to every node in D (barrier syn
hronization).� Substitution of d-edges with sour
e v 2 SubF (U), as in the original algo-rithm.� Substitute the forest SubF (U) in T for an edge (h(U); bU), as in the originalalgorithm.In Fig. 3.24 we show the solutions obtained with the normal and the improvedalgorithms for the same graph example used previously. The dependen
es stru
-ture
reated on the original graph nodes is the same for both solutions, althoughthe improved algorithm uses less nodes and edges.3.6 Measuring the SP-ization impa
tWe dis
uss now methods to evaluate the SP-ization impa
t in terms of stru
turalmodi�
ation of the original topology and potential loss of performan
e after thetransformation. We study di�erent possible alternatives of the transformationimpa
t. The obje
tive is to propose a measure whi
h allows us: (1) to evalu-ate how di�erent SP-ization te
hniques perform on a given graph, in order to

3.6. MEASURING THE SP-IZATION IMPACT 137

Normal Algorithm AlgorithmImproved

13

1514

12

6 7 8

4 5

11

9 10

17

18

16

1

2 3

19

20

13

1514

12

6 7 8

4 5

16

11

9 10

17

18

1

2 319

20
21

22

24
23

25

26

Figure 3.24: Solutions obtained by the normal and improved algorithms
ompare the te
hniques themselves, and (2) to study, for an ideal transformationalgorithm, whi
h topologi
al or workload parameters of the graph are related tothe potential parallelism or performan
e loss indu
ed by the added dependen
es.After proposing a measure, we try to relate the potential transformation impa
tto simple topologi
al graph parameters as the depth level, the degree of paral-lelism or the syn
hronization density (see formal de�nitions on se
tion 3.1.3).Analyti
al models and experimental measures are dis
ussed.3.6.1 Potential performan
e impa
tIn this se
tion we fo
us into the analysis of the potential impa
t of an SP-izationin the �nal performan
e of the appli
ation through
riti
al path value (
pv) anal-ysis. We say potential be
ause we are applying transformations at the program-ming level of abstra
tion. The program will su�er subsequent transformations inorder to optimize and map it to a spe
i�
 ma
hine. The transformation path willbe quite di�erent in NSP and SP
ases, leading to unexpe
ted bene�ts or lossesin the �nal performan
e. However, we are interested in the potential impa
t ofthe programming high-level transformations, as it will be an important part ofthe �nal performan
e e�e
t.We use the
riti
al path value
pv to measure the performan
e of an ap-pli
ation, modeled as a task graph, for a given workload distribution � (see

138 CHAPTER 3. THEORETICAL APPROACHse
tion 3.1.4). Thus, for the analysis of the performan
e degradation of an ap-pli
ation when programmed in an SP PPM, we
ompare the
pv of the graphsthat model: (1) the original syn
hronization stru
ture of the appli
ation and (2)the stru
ture produ
ed by an SP-ization.De�nition 3.6.1 Given two graphs G;G0 modeling the same appli
ation, and aload distribution � , we de�ne the Relative
riti
al path di�eren
e between the twographs G;G0 or
� (G;G0), as:
� (G;G0) =
pv(G0)
pv(G)The mean of the relative
riti
al path di�eren
e between two given graphs G;G0,for several workload distributions, is de�ned as:
(G;G0) = nXi=1
�i(G;G0)nThe upper bounds of the performan
e loss
orrespond to very unlikely
asesof highly unbalan
ed
omputations, where pathologi
al workload distributionsappear. However, parallel appli
ations are designed with load-balan
e and regu-lar work distribution in mind. Also for dynami

odes, where stru
ture and taskworkloads are generated by pro
esses taking random or data dependent
hoi
es,an average
ost study is more appropriate [122℄.The average
ost will be studied as a fun
tion of the topology
hara
teristi
s,workload model and SP-ization te
hnique used for the transformation.De�nition 3.6.2 Let T be an SP-ization te
hnique, we de�ne:
T� (G) =
� (G;G0) : T (G) = G0
T (G) =
(G;G0) : T (G) = G0From now on, we will use
 as
T when the transformation te
hnique used isobvious from the
ontext. As this measure is dependent on the transformationapplied, it
an be also used to evaluate and
ompare how di�erent transformationte
hniques may a�e
t performan
e (see se
tion 3.6.3).This indi
ator,
, is de�ned for a given graph and transformation te
hnique.Thus, it is an experimental measure. Several
 measures may be distinguisheddepending on the level of detail or abstra
tion level at whi
h the graph model ofa given appli
ation is derived (see Fig. 3.25). A program is an expression of analgorithm to solve a problem in an spe
i�
 PPM. At this �rst level, the graphrepresents the syn
hronization stru
ture that the program
reates; or may
reatefor a given input data in
ase of dynami
 appli
ations (see se
tion 2.6). When a

3.6. MEASURING THE SP-IZATION IMPACT 139
γ

γ

γ

1

2

3

1

1

1

2

2

2

x3
x3

Implementation

Mapping

ProgMod ProgMod

Mapping

Implementation

Execution1 2

Algorithm

Implementation level

Execution level
Γ

Execution

effects
Machine

effects
Machine

Mapping level

Programming level

Figure 3.25: Implementation traje
tory. Abstra
tion levelsprogram is mapped to a given ma
hine, with a �xed number of resour
es (su
has pro
essors), the graph stru
ture may
hange. We say that these modi�edgraphs are modeling the appli
ation at mapping level. Graph models may be
onstru
ted even for lower levels of detail, in
luding even spe
i�

ommuni
ationand syn
hronization tasks. Then, they are modeling appli
ations at implemen-tation or ma
hine level, where the underlying
ommuni
ation system is relevant.Thus, we distinguish several
 levels:
1 for programming level;
2 for mappinglevel; and
3 for implementation level.Our study is mainly fo
used at
1. Transformations made to an appli
ation

140 CHAPTER 3. THEORETICAL APPROACHby
ompilers and implementation systems during the mapping and the implemen-tation phases are diÆ
ult to predi
t and in general are favored by a restri
tedPPM as dis
ussed previously. Thus, our interest is to determined (analyti
allyor experimentally) the potential performan
e degradation at programming level.How, or how mu
h, the underlying te
hnology may improve
1 estimations isnot part of this work. However, for experimental measurement of
 a suÆ
ientlevel of detail should be
onsidered in the graph model to assure enough a

u-ra
y. Thus, sometimes it will be ne
essary to measure
2 or even
3 values withmapping or implementation level graphs. Appli
ation modeling with graphs atdi�erent detail levels is dis
ussed in se
tions 4.2.2 and 4.2.3.To determine the a

ura
y and relevan
e of
 predi
tions, we must
he
kour results against measurements of real performan
e when appli
ations are im-plemented through di�erent PPMs. We de�ne � as a measure of the real per-forman
e degradation when the same algorithm or appli
ation is programmed,implemented and exe
uted through di�erent PPMs.De�nition 3.6.3 Let imp1; imp2 be two di�erent implementations of an appli
a-tion or kernel algorithm for a given ma
hine; and t(imp1); t(imp2) the exe
utiontimes of these implementations as measured in the real ma
hine. We de�ne theRelative real performan
e degradation � as:�(imp1; imp2) = t(imp2)t(imp1)A full experimental framework,
omparing � measurements with more ab-stra
t level
 predi
tions, is presented in
hapter 4.3.6.2 Stru
tural impa
tIn this se
tion we explore measures of the stru
tural impa
t of an SP-izationin the graph topology and we will try to relate them to the
riti
al path valuein
rement represented by
. A �rst approximation to a measure of the impa
tof an SP-ization in a graph may be the distan
e to SP form (as de�ned in se
-tion 3.2.2). Another
ould be the number of lo
al barrier syn
hronizations addedby the transformation. However, these indi
ators are not good measures. Theloss of parallelism is produ
ed by the added dependen
es that serialize poten-tially parallel tasks, and the number of dependen
es added by ea
h te
hniquefor a lo
al resyn
hronization
an be
ompletely di�erent even if the number ofresyn
hronizations is the same. The possible impa
t on the �nal performan
e isrelated to the probability of a
riti
al path in
rease, indu
ed by new dependen
es.Generally, as long as we do not have information about the exa
t workloadof the graph nodes, our �rst proposal for a measure to represent the probabilityof
riti
al path in
rease is the number of added dependen
es itself. The number

3.6. MEASURING THE SP-IZATION IMPACT 141of node dependen
es in a DAG is the number of edges m in the transitive
losureG+. Hen
e, the number of added dependen
es is the di�eren
e in the numberof edges between the transitive
losure of the SP transformed graph and thetransitive
losure of the original NSP graph. The edges from/to new nodeseventually introdu
ed by the transformation does not a

ount for the number ofadded dependen
es.De�nition 3.6.4 The transformation distan
e �(G;T) produ
ed by the SP-izationT in the graph G is the di�eren
e of the number of edges (only related to nodesin V) between the transitive
losure of G0 and G.G = (V;E); G+ = (V;E+);G0 = T (G) = (V 0; E0); G0+ = (V 0; E0+);�(G;T) = jf(v; w) 2 E0+ : v; w 2 V gj � jE+jThis transformation distan
e
an be used to
ompare how di�erent SP-izationte
hniques perform for a given graph topology without knowledge of spe
i�
workloads. The Fig. 3.26 shows an example graph of low syn
hronization densitytransformed with four di�erent te
hniques: Layering; both algorithmi
 te
hniquesproposed in
hapter 3 (Algorithm1,Algorithm2) and a manual solution obtainedby applying down syn
hronizations guided by personal experien
e. The nodelabels show the number of dependen
es from other nodes. Dark nodes are addedfor syn
hronization and they are not
onsidered in the dependen
es
ount. Thetransformation distan
es obtained, point to the manual solution as the transfor-mation with the lower stru
tural impa
t (� = 1:5). However, an important graphparameter, the maximum depth level (D), has been dupli
ated. Our transfor-mation algorithms are the se
ond option (� = 1:64), while layering te
hniquehas a great stru
tural impa
t (� = 1:93). However, our se
ond algorithm doesnot in
rease the maximum depth level of the original graph (always dis
ardingnew syn
hronization nodes), while the �rst algorithm te
hnique does in
rease it.In fa
t, the maximum depth level value is an important parameter for
riti
alpath values in a graph, (see dis
ussion about the transformation algorithms inse
tion 3.6.3).In Fig. 3.27 we show the results obtained in an experiment
ondu
ted torelate the � indi
ator with the mean in
rease of the
riti
al path value (
pv). Wesele
t random workloads with four di�erent Gaussian random distributions (seese
tion 4.1.1): �(v 2 V); N(�; �) : � = 1:0; � 2 f0:1; 0:2; 0:5; 1:0gThe di�erent deviations represent di�erent load balan
ing situations. From verywell balan
ed (� = 0:1) to highly unbalan
ed (� = 1:0). For ea
h example graph,

142 CHAPTER 3. THEORETICAL APPROACH

0 0 0

3 3 3

6 6 6

D(G’) = 3

Layering

θ(G,layering) = 1.93

Dependences = 27

Manual solution

0 0 0

1 4 1

2 5 8

D(G’) = 6

Dependences = 21

θ (G,manual) = 1.5

0 0 0

1 2 1

2 3 5

Original graph

Dependences = 14

G

0 0 0

1 5 1

2 7 7

D(G’) = 5

Algorithm 1

Dependences = 23

θ(G,alg1) = 1.64

0 0 0

2 2 1

6 6 6

D(G’) = 3

Algorithm 2

θ (G,alg2) = 1.64

Dependences = 23Figure 3.26: Measuring transformation distan
e (�)and ea
h Gaussian model, we measure the mean
pv produ
ed when drawing1000 di�erent random workloads. The results indi
ate that for this spe
i�
 lowS (syn
hronization density) topology, the te
hniques that do not in
rease D valuehave lower impa
t in the
riti
al path value in balan
ed situations. In these
asesall nodes have very similar load values, and the number of nodes in the
riti
alpath be
omes a key fa
tor. However, when the loads are highly unbalan
ed andrandom distributed, the te
hniques that minimizes � may obtain better results.All these results, although typi
al, may not be extended to any other topology.Thus, we
on
lude that the stru
tural impa
t of a transformation te
hniquealone, measured as the relative number of added dependen
es �, is not a good

3.6. MEASURING THE SP-IZATION IMPACT 143

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
v

σ

Structural impact on example graph (100 workloads)
Alg1

Manual
Layering

Alg2
Original

Figure 3.27: Experimental
pv measurements for the example graphindi
ator of the potential performan
e impa
t. Other fa
tors, as the maximumdepth level D or the workload deviation are as important as � to determine thepotential in
rement of the
riti
al path value of a transformed graph.For low deviated workloads the D parameter is a key fa
tor of
riti
al pathvalue in
rease. Thus, keeping the original
pv for UTC (Unit Time Cost) graphsis an interesting design prin
iple for SP-ization te
hniques (see 3.5). For moreunbalan
ed workloads, no relation between the in
rement of the
riti
al pathvalue and a
ombination of stru
tural impa
t parameters have been yet foundfor any graph topology or size. It is still an open problem.3.6.3 Algorithms
omparisonIn this se
tion we
ompare the te
hniques and algorithms previously des
ribed.Complexity, suitability for any kind of graphs, and mean in
rement of the
riti
alpath value
 are to be
onsidered to evaluate the appli
ability of these te
hniques.The �rst te
hnique presented in se
tion 3.3.4, whi
h serializes all nodes intopologi
al sear
h order, is not suitable for parallel
omputing purposes, as allthe parallelism is lost after the transformation. For simpli
ity we will refer tothe other three te
hniques as Layering, Algorithm1 and Algorithm2. Results aresummarized in Table 3.3.Experimentally transforming many stru
tures from highly regular appli
a-tions (see se
tion 4.1.3), we have found that, for these highly regular stru
-tures, the three te
hniques obtain similar results. Nevertheless, the SP formsobtained di�er for more irregular stru
tures. While the simple layering te
h-nique (Layering), has the lower time
omplexity bounds it does not o�er good

144 CHAPTER 3. THEORETICAL APPROACH

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random sample: 128 nodes - Workload G(1,1)

|

Layering
Algorithm 2

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random sample: 256 nodes - Workload G(1,1)

|

Layering
Algorithm 2

Figure 3.28: Comparison of algorithms in
rease in
pv for random graphs sampleresults for irregular stru
tures. Algorithm2 minimizes the expe
ted
riti
al pathvalue in
reases as
ompared with the layering te
hnique due to the
apabilityto exploit lo
al resyn
hronizations instead of using only global barriers. Exper-iments with random generated topologies and workloads have been
ondu
tedto
ompare whi
h algorithm produ
e SP approximations with lower expe
ted
riti
al path value in
rement (see se
tion 4.1.2). We study mean values of the
indi
ator (as de�ned in se
tion 3.6.1). All our experiments with di�erent graphsizes and workload models
on�rm the
 trends for ea
h algorithm. For example,Fig. 3.28 illustrates how Algorithm2 typi
ally �nds better solutions for two dif-ferent samples of 128 and 256 nodes graphs respe
tively. The size of ea
h sampleis 1000 graphs. The syntheti
 random workload model used for this example ishighly deviated �(v); N(1; 1). Details about the experiments design and more

3.6. MEASURING THE SP-IZATION IMPACT 145results are shown in se
tion 4.1.Spe
i�
ally, for syn
hronization density S values below 2, the highly unstru
-tured graphs are mu
h better transformed by Algorithm2. For small S values, thedistribution of the loads a
ross the same topology has an important impa
t on
,in
rementing the dispersion of the results for any te
hnique
onsidered (see dis-
ussion about Fig. 4.6 in se
tion 4.1.2). For these random irregular graphs bothfull SP-ization algorithms o�er very similar results (if not the same). Neverthe-less, the Algorithm1 presents higher time
omplexity and
ould generate di�erentresults depending on the input order of the graph nodes. The se
ond SP-izationalgorithm (Algorithm2) presents interesting improvements: Its time
omplexityis tightly bounded, the output is always the same, and it ensures no
riti
al pathvalue in
rease for UTC graphs. Hen
e, we
onsider Algorithm1 superseded byAlgorithm2 for general purposes.We
on
lude that for highly regular appli
ations, the solution obtained witha layering te
hnique (or bulk syn
hronous parallelism) is similar to a nested-parallelism solution, but the layering te
hnique
omputes the solution faster. Formore irregular problems, nested parallelism is more appropriate and Algorithm2may obtain better results than the Layering te
nique at only a logarithmi
 time
omplexity in
rease on the number of graph nodes.Algorithm Spa
e Time UTC-
pv Regular graph Irregular graphLayering O(m+ n) O(m+ n) Yes Good BadAlgorithm1 O(m+ n) O(m� n) No Good GoodAlgorithm2 O(m+ n) O(m+ n logn) Yes Good GoodTable 3.3: Algorithms
omparison3.6.4 Analyti
al modelsDeriving an analyti
al model for the potential performan
e degradation, due tothe loss of parallelism introdu
ed at the high abstra
t level of programming, isnot an easy task. We must derive approximation models for the
riti
al pathvalue of SP and NSP DAGs.For SP graphs, analyti
al upper bounds and mean expe
ted value of
pv maybe derived under
ertain
onditions. In absen
e of any workload information, weassume the simpli�ed
ase where the load in ea
h node is an i.i.d. (independentidenti
ally distributed) random value with a given distribution:�(v 2 V); D(�; �)In this
ase, we may apply order statisti
s results [95℄ to estimate the expe
tedvalue of the parallel
omposition of m tasks. Results for serial
omposition (ad-dition of i.i.d. variables)
an be found in simple statisti
s literature (see e.g. [10℄).

146 CHAPTER 3. THEORETICAL APPROACH
D=3

P=4

43

43

43

1 2 43

1 2 43

1 2 43

P=4

2

2

2

1

1

1

Transformed SP versionOriginal NSP graphFigure 3.29: Neighbor syn
hronization exampleThus, the serial
omposition of n layers, ea
h of them formed bym parallel tasks,is easily derived. Thus, for very simple and regular SP graphs, we
an derive for-mulae for the expe
ted
pv . However, when the parallel se
tions have di�erentnumber of tasks, the formulae may not be so easily derived.Unlike in SP graphs, general
ost estimation is analyti
ally intra
table un-less the workloads have a negative-exponential distribution [164℄. However, astask workloads are
lose-to-normally distributed (partly as result of the CentralLimit Theorem), negative-exponential workload distributions are extremely rare.Thus, a full a

urate analyti

ost model is not possible. We
an try to deriveapproximations to the
pv of NSP DAGs. In [183℄ we presented an study aboutthe approximation of the
pv of two example regular NSP DAGs (pipeline andneighbor syn
hronization stru
tures). These examples represent the basi
 mod-els of regular stru
tures, with D layers of P tasks,
onne
ted with non-transitiveedges in an almost perfe
t distribution of S edges per node (S = 2 for ma
ro-pipeline and S = 3 for neighbor syn
hronization). See se
tion 4.1.3 for a full
hara
terization of this important
lass of graphs and appli
ations. The SP ver-sions of these graphs are easily obtained with the Layering te
hnique, applyingfull barrier syn
hronizations. For these regular stru
tures our resyn
hronizationalgorithms (Algorithm1, Algorithm2) obtain similar solutions. In Fig. 3.29 weshow an example of the original NSP neighbor syn
hronization stru
ture and itsSP approximation. A full dis
ussion of experiments with these regular stru
turesis presented in se
tion 4.1.3.Although other random distributions may be used, in the following dis
ussionwe will assume all nodes exhibit an i.i.d. Gaussian distribution.�(v 2 V); N(�; �)In the SP version, the formulae for the
riti
al path value of a layer (a parallel
omposition of P nodes), and the full graph (series
omposition of D layers) are

3.6. MEASURING THE SP-IZATION IMPACT 147approximated by [95℄:
pvP = �+ �p2 log(0:4)P
pvSP = D(�+ �p2 log(0:4)P)For normal distributions the approximation error is in the per
ent range.To apply the same order statisti
s approa
h to the NSP original graph, weapproximate its
pv with the
pv of a virtual
ore SP DAG. This virtual
ore isrelated with the syn
hronization density and width of the original graph. The
ore is
omposed by the same number of layers as the original graph D, syn
hro-nized by barriers; but the width of the layers di�ers. We
ompute the theoreti
alwidth of the
ore graph P 0 as a fun
tion of the original P and S parameter values.Noti
e that the
ore does not really exist, and the P 0 value may be a non-integernumber: P 0 = S + log(P=2)Again, order statisti
s are used to derive a formulae that approximates the
pvof the original NSP graph from the
ore graph:
pvNSP = D(�+ �p2 log(0:4(S + log(P 0=2))))The approximation error is now higher as a result of the
ore approximation of theNSP graph. Making simple substitutions we obtain a
 approximation that agreeswith our experiments within 10% and 25%, depending on the example graph, andhas similar asymptoti
 behavior. A
oarse, but meaningful simpli�
ation of theformulae for (typi
al) large P values is given by:
 � �+ �plog(P)�+ �plog(S)Indeed, for graphs representing this
lass of regular appli
ations, the asymptoti
alin
uen
e of P is
learly logarithmi
, while the e�e
t of S is inverse, whi
h is inperfe
t agreement with the results presented in se
tion 4.1.3. The e�e
t of theworkload distribution is also in agreement with our measurements (
onsideringthe typi
al
ases where P � S).Unfortunately, these analyti
 approximations may not be safely extended toany other, spe
i�
ally more irregular topology, whi
h limits the generality of theanalyti
al study.3.6.5 Con
lusions about SP-ization impa
tIn this se
tion we have propose a general measure
, based on
riti
al path analy-sis, for the potential performan
e impa
t of an SP-ization on a given graph. TheSP-ization te
hniques studied in previous se
tions have been evaluated in termsof their behavior and impa
t on di�erent graph
lasses. The study shows that

148 CHAPTER 3. THEORETICAL APPROACHour Algorithm2 is a good general-purpose SP-ization te
hnique, only mat
hed bythe simple Layering in spe
i�
 highly regular stru
tures, where both solutions aresimilar, but the time
omplexity bound of the Layering te
hnique is even lower.No stru
tural impa
t measure, obtained only from the topology of the originaland transformed graphs, has been yet found to be dire
tly related to the
pvalteration, representing the modeled appli
ation performan
e. More
omplexmodels, based on other topologi
al parameters (D;P; S), are more promising butstill not a

urate enough. Moreover, even when simple random distributionsare
onsidered for workload distributions, general analyti
al models for the
pvmodi�
ation are not possible; formulae for NSP graphs
pv
annot be derivedfor sto
hasti
 workloads. Approximations for some regular stru
tures have beenpresented, but they
annot be extended for any graph topology. Thus, in many
ases, only experimental work may give us an idea of the impa
t of a transfor-mation for given graph
lasses. Fortunately, experimental measures are simple(measuring
pv of original and transformed graphs). Nevertheless, modeling anappli
ation with a graph may be done at di�erent levels of implementation de-tail with di�erent a

ura
ies. Predi
tions obtained with graph models should be
ompared with measures obtained with real appli
ations to determine if generaltenden
ies are preserved.3.7 SummaryIn this
hapter we have presented a theoreti
al approa
h to the NSP vs. SP
om-parison problem. Appli
ation syn
hronization stru
tures have been representedby graphs. Thus, we have used graph theory to formally de�ne and study the
hara
teristi
s of SP and NSP stru
tures. Simple methods to resyn
hronize lo
alNSP stru
tures have been studied. Furthermore, algorithms to resyn
hronize fullgraphs have been presented. These algorithms try to minimize the potential lossof parallelism
reated by new added dependen
es. Our last algorithm presentsinteresting features (no in
rement of
riti
al path for unit time
ost graphs, andtighter time
omplexity bounds), that make it useful for experimental or produ
-tion work.We have also introdu
ed a study about measures of the NSP to SP transfor-mation impa
t in terms of stru
tural modi�
ation of the graph, and
riti
al pathvalue in
rement. In the absen
e of experimental workload information, a graphshould be provided with sto
hasti
 workloads. Order statisti
s are a useful toolfor deriving the mean
pv of simple SP graphs, due to their
ompositional nature.Although similar
pv analysis is intra
table for NSP graphs, some analyti
 ap-proximations to the
pv modi�
ation are possible for typi
al regular stru
tures.This analyti
 formulae predi
ts the asymptoti
al behavior of the
pv after a sim-ple transformation, as a fun
tion of basi
 graph and workload parameters. The

3.7. SUMMARY 149results, whi
h are in agreement with experimental results presented in the next
hapter, give us an idea of the general tenden
ies of performan
e when regularappli
ations are programmed in an SP PPM. Unfortunately, this kind of analysis
annot be extended to generi
, more irregular NSP graphs. As a
onsequen
e,a further experimental study is ne
essary to state if the predi
ted performan
ebehavior for regular stru
tures
an be extended to other appli
ation
lasses. Thisstudy is presented in the next
hapter.The theoreti
al study of the NSP stru
tures has shown serious limitationsderived from their inherent
omplexity. SP
ompositional nature and limiteddependen
es
omplexity present many advantages for analyti
al study. This isthe origin of the many good properties of the SP PPMs, in terms of formalsoftware development te
hniques, analyzability, and program
ost modeling.Our theoreti
al study of the NSP and SP task graph stru
tures has pro-du
ed interesting results and tools (like the transformation algorithms), as wellas a deeper insight about the problems asso
iated with NSP stru
turing. It hasalso provided
lear dire
tions in whi
h way to
ondu
t the experimental studypresented in
hapter 4.

150 CHAPTER 3. THEORETICAL APPROACH

Chapter 4Experimental study\My attention, for the last three years, hadbeen repeatedly drawn to the subje
t ofMesmerism; and, about nine months ago ito

urred to me, quite suddenly, that in theseries of experiments made hitherto, therehad been a very remarkable and mostuna

ountable omission."The Fa
ts in the Case of M. Valdemar, 1845Edgar Allan PoeIn this
hapter we des
ribe the work we have
arried out to experimentallymeasure the expe
ted performan
e impa
t when appli
ations are programmed inSP restri
ted PPMs,
ompared with more generi
 (NSP) solutions. The spa
e ofNSP graph topologies is immense and impossible to
he
k exhaustively. More-over, most NSP graphs do not represent any useful parallel appli
ation. Thus,we dire
t our sear
h in two dire
tions to
over the most interesting appli
ationsin parallel programming. We propose two experimental frameworks based on:1. Syntheti
 graphs: We
onstru
t sets of graphs representing a random sam-ple of the NSP graph spa
e, and randomly inter
onne
ted regular topolo-gies. We measure the e�e
t of SP-ization for simple graph parameter values.2. Empiri
al graphs: In this framework we fo
us on graphs obtained at di�er-ent abstra
tion levels from real parallel appli
ations,
overing the relevantNSP SA
lasses. We are guided by the examples and
lassi�
ation of ap-pli
ations SA presented in se
tion 2.6.Our main interest is the overall e�e
t of programming appli
ations lo
ated inthe NSP
lasses using SP models. We are �rst trying to establish if the perfor-man
e e�e
ts found in the theoreti
al study are general e�e
ts, and if they
an151

152 CHAPTER 4. EXPERIMENTAL STUDYbe extended to all appli
ation
lasses when an \ideal" transformation algorithmis used. The mean
riti
al path analysis is our basi
 experimental tool to mea-sure the performan
e in our graph models. An extended analysis of performan
ee�e
ts follows. This study
overs several phases. We investigate empiri
al pre-di
tion me
hanisms for the expe
ted performan
e e�e
ts when using SP forms torepresent generi
 NSP syn
hronization stru
tures. For simple graph stru
tureswe
an further study the expe
ted performan
e e�e
ts of simple appli
ation modi-�
ations, as s
aling up, adding more iterations, or
hanging lo
al syn
hronizationpatterns when the appli
ation is in SP form. Thus, in our study we have sele
tedsimple graph parameters (see de�nitions of P;D; S in se
tion 3.1.3) to studythe impa
t of SP-ization te
hniques in graphs whi
h present di�erent topologi
al
hara
teristi
s. We experimentally relate their values with the potential and realperforman
e loss of appli
ations when mapped to an SP form. After study thesyn
hronization stru
tures of simple appli
ations in the more abstra
t level, theproblem of extending the study to real appli
ations is ta
kled. This study in-
ludes an important methodology se
tion about how to model appli
ations withgraphs at di�erent detail levels, and how to transform them to SP form with ourte
hniques, measuring the potential performan
e loss with
riti
al path analysis(see se
tion 3.6). Thus, the exploration of the SP-ization e�e
ts is open to repre-sentative graphs of more irregular appli
ation
lasses. Indeed, we investigate thepropagation of the P;D; S predi
ted e�e
ts on
, to the lower run-time level �,before bene�ts of SP programming are exploited. We also resear
h the e�e
ts ofload balan
ing and other
ommon parallel programming te
hniques for irregularappli
ations when an SP programming framework is used. We
ompare resultsobtained in more abstra
t levels, with performan
e measures of the equivalentreal appli
ations, running in di�erent parallel ar
hite
tures.4.1 Syntheti
 graphsIn this se
tion we present the �rst experimental framework. This part of thestudy is oriented to evaluate the mean performan
e e�e
ts of our \ideal" SP-ization transformation on random, irregular topologies, representing a sampleof the whole graph spa
e. We test if the
 tenden
ies related to the simplegraph parameters P;D; S derived from the theoreti
al study (see se
tion 3.6),are general e�e
ts found in generi
 graphs.The experiments are based on
onstru
ting sets of syntheti
 DAG topologies,generate di�erent syntheti
 workload distributions for the nodes, and
omparethe
pv in the original graph with the
pv of an SP approximation generated witha suitable SP-ization te
hnique. After the experiments we relate
 measurementsto topology and workload
hara
teristi
s.The phases of ea
h experiment may be summarized as:

4.1. SYNTHETIC GRAPHS 1531. Generate a syntheti
 topology G(V;E).2. Transform G to SP form: G0 = T (G). (We apply Algorithm2, whi
h usesno workload but only topologi
al information).3. Repeat:(a) Generate a syntheti
 workload distribution for the nodes in the origi-nal graph: �(v); v 2 V(b) Copy the same workload information to the transformed graph. Nodesintrodu
ed by the transformation have zero load:� 0(v 2 V 0) = � �(v) if v 2 V0 if v 62 V(
) Compute
omparison indi
ator:
 =
pv(G0)
pv(G)In the following se
tions we present te
hniques to generate syntheti
 workloadsand topologies. Di�erent topology sets are presented and analyzed.4.1.1 Workload modelingSyntheti
 workloads must be supplied for the nodes in the generated graphs.No spe
i�
 patterns or regularities between topology and distributions should beused in this part of the experimental framework. Thus, the fairest assumption isto
onsider ea
h node workload �(v) to be an i.i.d. (independent identi
ally dis-tributed) random variable. Considering that we will use graphs with big numberof nodes, we will assume Gaussian distributions for the workloads:�(v 2 V); N(�; �)The relative in
rement of the
riti
al path value is not a�e
ted by propor-tional modi�
ations of the mean and deviation parameters. Consider the examplegraphs in Fig. 4.1. G0 is an SP approximation for G. The number inside ea
hnode represent the workload �(v) of that node. The new grey node in G0 has beenintrodu
ed by the transformation te
hnique. Thus, it is only a syn
hronizationpoint with no load �(v) = 0. For the loads in the example we obtain the fol-lowing mean and deviation values: x = 1:1667; sn�1 = 3:1047. The
riti
al pathvalues are 4 and 5 for G and G0 respe
tively. Thus, the relative in
rease of the
riti
al path is
� =
pv(G0)
pv(G) = 1:25. Consider now the same graphs, but assume

154 CHAPTER 4. EXPERIMENTAL STUDY
G G’

γ = 1.25

(τ) (τ)

cpv(G) = 4 cpv(G’) = 5

0

1 2

2 1

1

0

1 2

2 1

1

t

t t

t t

t

tt

tt

t

t t

0

Figure 4.1: Example of relative
riti
al path value in
reasea workload distribution where � 0(v) = �(v)�2. The mean and deviation are nowdoubled: x = 2:3333; sn�1 = 6:2093. The
riti
al path values will be 8 and 10for G and G0 respe
tively. The relative in
rement is the same:
� 0 = 1:25. Thisexample illustrates that the exa
t values of the workload distribution parameters� and � are not so important on themselves. Their ratio is mu
h more relevant.Thus, we de�ne a unique parameter for task workload variability:De�nition 4.1.1 We de�ne the relative deviation or variability (&) of a randomworkload distribution as the proportion between the deviation and the mean:& = ��For our experiments we de
ide to generate di�erent workload distributionsbased on di�erent & values, representing from well-balan
ed
omputations tohighly irregular workloads: & 2 f0:1; 0:2; 0:5; 1gFor simpli
ity, we always �x the mean to a
onstant and
hange the deviationa

ordingly to sele
ted & values. To make the result analysis more intuitive, we
hoose 1 as the �xed
onstant mean, being the
orresponding �nal deviationsequal to the
hosen variabilities:� = 1;� 2 f0:1; 0:2; 0:5; 1gFor ea
h generated topology and ea
h & value, we draw 25 random workloaddistributions (with 25 di�erent seeds for reprodu
ibility of experiments). The
riti
al path is measured in both topologies, G and G0, with ea
h workload, andmean

omputed.

4.1. SYNTHETIC GRAPHS 1554.1.2 Random sample of the graph spa
eIn the �rst experiment sets we test a sample of random task graphs, with nospe
i�
 topologi
al restri
tions, to obtain an idea of the general trends of SP-ization e�e
t in performan
e.Most DAGs in the graph spa
e do not represent typi
al parallel appli
ations(s
alable
omputations with repli
ated patterns), but irregular stru
tures that
an only be generated by the most unstru
tured, dynami
 and data dependentprograms. Our experiments will show general trends that will be improved whenmore realisti
 topologies are studied (see following se
tions).Random topology generation te
hniqueTo sample the NSP topology spa
e we want to generate graphs with similarprobabilities for any topology to be sele
ted. After
onsidering several methods,we have
hosen a standard task graph generation te
hnique originally devisedfor graphs representing heterogeneous parallel appli
ations [7, 181℄. In this te
h-nique, every possible edge has the same probability to exist in the graph. Toassure that a DAG is generated, the nodes are numbered, and only edges with asour
e node number lower than the target number are
onsidered.Formally, let V = fv1; v2; :::; vng be the set of nodes in G and p the edgeprobability fa
tor. Then, this te
hnique produ
e edges in the graph with thefollowing probabilities P :P [(vi; vj) 2 E℄ = p; if 1 � i < j � nP [(vi; vj) 62 E℄ = (1� p); if 1 � i < j � nP [(vi; vj) 62 E℄ = 1; if i � jThe parameter p will let us dire
t the sear
h of the whole DAG spa
e alongthe edge density axis (measured by the syn
hronization density S). For a givenp, the mean number of prede
essors/su

essors be
omes larger with the numberof nodes in the graph. However, the maximum number of edges for a given nis n(n� 1)=2. Thus, we
an sele
t p as a fun
tion of n to generate graphs withapproximately the same syn
hronization density independently of the size:p = nSn(n� 1)=2The
omplexity bounds of this generation te
hnique is related to the graphsize. This te
hnique traverses all possible edges in the graph,
he
king randomlyif the edge is or is not added to the graph. Thus, the time
omplexity of thete
hnique is �(n(n� 1)=2). It uses only the spa
e needed to store the graph.This te
hnique may generate non-
onne
ted graphs, espe
ially for low p val-ues. Re
all in se
tion 3.3.1 that SP-ization te
hniques work on STDAG graphs.

156 CHAPTER 4. EXPERIMENTAL STUDYWe use the te
hnique presented in de�nition 3.1.17 to build a 2-terminal DAG,possibly adding two new syn
hronization nodes, to
onne
t the generated graph.The original dis
onne
ted subgraphs are then parallel se
tions of the �nal STDAG.Chosen parameter valuesWe generate graphs for a wide range of node numbers. From small ones (32nodes) to big ones (1024 nodes):n 2 f32; 64; 128; 256; 512; 1024gFor ea
h size, we want to test topologies ranging from very low to very highsyn
hronization densities. The maximum syn
hronization density is limited bythe graph size. For small graphs, the highest S values are to be dis
arded.S 2 f0:5; 1; 1:25; 1:5; 1:75; 2; 2:5; 3; 3:5; 5; 7:5; 10; 25; 50; 100gFor a given pair of (n; S) values we
ompute p and generate 100 topologiesbased on a set of 100 seeds in order to guarantee reprodu
ibility of experiments.Thus, more than 1000 topologies are generated for ea
h graph size.ResultsIn this se
tion we present remarks obtained from results observation. Ex
eptwhen it is otherwise stated, the points in the plots represent the
 for all thetopologies whi
h x axis parameter is in a narrow histogram slot. They are drawnas
urves to show tenden
ies, and for
larity when several
urves are drawn inthe same plot.1. General under-logarithmi
 e�e
t related to graph size:In Fig. 4.2 we show the general under-logarithmi

 tenden
y on the numberof nodes. This tenden
y is similar to the one predi
ted with the theoreti
alapproa
h in se
tion 3.6. Nevertheless, ea
h point of these
urves representsthe mean values of
 for hundreds of graphs with very di�erent shapes,leading to high deviations. A more detailed study is needed. We wantto know if, as in regular stru
tures, this tenden
y is spe
i�
ally derivedfrom P and S parameters. And if it is possible for a given graph size, tomore a

urately predi
t the
 values as a fun
tion of P;D; S or relatedparameters.2. Topologi
al parameters dependen
e on S:As we show in Fig. 4.3, in these irregular random topologies, the P andD parameters are highly
orrelated with S. If S is low, many nodes or

4.1. SYNTHETIC GRAPHS 157

1

1.2

1.4

1.6

1.8

2

0 128 256 384 512 640 768 896 1024

γ

nodes

Random samples

G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.2: General
 tenden
y on graph sizesubgraphs are dis
onne
ted after the �rst stage of the generation te
hniqueis applied. Thus, they are parallel se
tions of the
onstru
ted STDAG(high P and low D). As S in
reases, the probability of more nodes andsubgraphs to be serialized is higher (low P and high D). Thus, the resear
his fo
used to the syn
hronization density related parameters.In these examples we measure the parameter S after transforming thegenerated DAGs to
onne
ted STDAGs (the graph that is a
tually trans-formed). Although S is similar to the original edge density, it is slightlymodi�ed due to added edges when
onne
ting the graph in an STDAGform. For very low values of edge density, many edges are added to
on-ne
t the highly sparse generated graphs.3. Correlation with & (workload model):The plots in Fig. 4.4 show
 values obtained for medium (a) to big (b) sizedrandom graphs transformed with Algorithm2. Ea
h
urve on the same plot
orresponds to a di�erent workload model, with & values from unbalan
ed
omputations & = 1 to highly balan
ed
omputations & = 0:1. The work-load balan
e is a basi
 fa
tor for the impa
t of SP-ization. Low values of& minimize the impa
t of SP-izations be
ause a

umulated path values arevery similar along the graph. Thus, new syn
hronizations have few proba-bilities of serialize parts of two highly di�erent loaded paths. For randomworkload models with high &, unbalan
ed task loads are spread randomlya
ross the whole graph. Thus, added dependen
es may serialize highly un-balan
ed a

umulated loads, modifying the
riti
al paths and in
reasing

158 CHAPTER 4. EXPERIMENTAL STUDY

0

50

100

150

200

250

300

350

1 10 100

no

de
s

S

Random sample: 512 nodes
P
D

Figure 4.3: Dependen
e of topologi
al parameters on Stheir values.In the plots, it
an also be appre
iated how the Algorithm2 SP-izationo�ers good solutions for graphs with an S value lesser than 2 (see alsose
tion 3.6.3).4. General dependen
e on Rs:The plots in Fig. 4.4(a) and (b)
ome from graphs with di�erent numberof nodes. The
urves obtained for di�erent sized graphs with the sameworkload model, di�er not in the shape, but in the slope. We use theparameter Rs = jEj=jV j2, that measures the relative number of edges in agraph of jV j nodes, to predi
t the behavior of
 more independently of thegraph size. In Fig. 4.5 we present smoothed
urves for mean
 relative to Rs,for all graph sizes tested and normal workload distribution (& = 1; N(1; 1)).Curves drop to the left due to the improved results obtained with Algorithm2for S values below 2. For bigger graph sizes, the Rs point that
orrespondto S = 2 is lower. Thus, the maximum
 value for a given graph size isfound approximately in a value of Rs = 2=jV j.5. Maximum dispersion of values around S = 2. Less predi
tability:In Fig. 4.6 we show one point for the
 value of ea
h di�erent topology(mean of 25 di�erent workloads). As we may appre
iate, the maximumdispersion of the points is found around an S value of 2, where the
values are also the highest. This indi
ates that our predi
tions based on
values are less a

urate for the topologies with S values near 2. Topologi
alstru
tures with S � 2 present many di�erent ways to be transformed to

4.1. SYNTHETIC GRAPHS 159

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random sample: 128 nodes

(a)
G(1,1)

G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random sample: 512 nodes

(b)
G(1,1)

G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.4: Dependen
e of
 on S and &SP form. Only algorithms that make use of the workload information onthe nodes may �nd the best topologi
al transformation. In the
lass ofalgorithms whi
h work without workload information, our Algorithm2 �ndsa
ompromise solution by preserving the
pv for UTC graphs and lookingfor lo
al syn
hronizations where possible.For low deviations (& = 0:1), the dispersion trend is the same, although lessnoti
eable than for high deviations (& = 1). The reason is the in
reasedprobability of regular workload distribution a
ross the topology. The higherthe relative balan
e of the workload, the lower expe
ted
 values and thehigher a

ura
y of our predi
tions.

160 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

0.001 0.01 0.1 1

γ

Rs

Random samples - Workload G(1,1)
1024 nodes
512 nodes
256 nodes
128 nodes
64 nodes
32 nodes

Figure 4.5: General trend dependen
e on RsWe
on
lude that for random graphs with n nodes, and a
omplete ran-dom workload distribution, the general trends of SP-ization impa
t at program-ming abstra
tion level (
) may be predi
ted depending only in basi
 parameters:Topologi
al (graph sizes jV j and jEj to
ompute Rs) and workload based (&).Predi
tions are more a

urate the further the S parameter is from value 2.4.1.3 MeshesMost random topologies may represent highly dynami
 or even no real parallelappli
ation at all. However, parallel appli
ation design methods and paradigmstend to produ
e topology and workload regularities to exploit program s
alabil-ity. A typi
al parallel program is designed in a way that in
reasing the numberof pro
essors more similar parallel tasks are exe
uted to
ompute a smaller partof the result. Many tasks represent running instan
es of the same
ode pie
es,working on di�erent data. Thus, a high
orrelation between the exe
ution timeof tasks and their topology role is found in most parallel appli
ations. Unfortu-nately, it is not possible to realize su
h a
orrelation only from the task graphtopology. Nevertheless, many appli
ations present, after mapping, high regularstru
tures that repli
ate
omputation layers, as wide in tasks number as pro
es-sors are available.Consequently, we introdu
e a new
olle
tion of experiment sets based in graphmeshes of tasks, organized in equal sized layers,
onne
ted by random and repli-
ated syn
hronization patterns. Motivation for the importan
e of these stru
-tures is found in most appli
ations inside the (NSP,NME,NDS) SA
lass (seese
tion 2.6).

4.1. SYNTHETIC GRAPHS 161

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random sample: 256 nodes
G(1,1)

G(1,0.1)

Figure 4.6: Results dispersion for random graphsMeshes: de�nitions and notationsWe introdu
e here the de�nitions and notations needed to understand how tobuild a syntheti
 graph mesh from simple parameters.De�nition 4.1.2 We de�ne a Mesh to be a DAG built by a
olle
tion of Dordered and numbered subsets of nodes (
all layers) of equal size P , with edgesonly between
onse
utive layers:M = (V;E) : L = PV ; jLj = D; jLij = P;8i = 1; :::;D;8(v; w) 2 E; v 2 Li; w 2 Li+1Mesh sizes are de�ned by P (layer size) and D (number of layers) parametersdire
tly. The edges of a mesh will be de�ned by a fun
tion that maps a node jin a layer i to nodes j1; j2; :::; jn in layer i + 1. Both, random and deterministi
fun
tions are possible.De�nition 4.1.3 Let M = (V;E) be a mesh, L = PV the layers of the mesh,su
h that jLij = P : i = 1; 2; :::;D. Let � : v 2 Li 7! N; �(v) 2 [1; P ℄ be anumbering of the nodes in a layer. We de�ne a Syn
hronization Fun
tion (�) as:� : � ! �a; a 2 [1; P ℄This fun
tion de�nes the set of edges between ea
h
onse
utive pair of layers inthe mesh: E = f(v; w) : v 2 Li; w 2 Li+1; �(w) 2 �(�(v))gIn Fig. 4.7 we show an example of a mesh generated by P = 4;D = 3 and adeterministi
 �, di�erent for ea
h �(v).

162 CHAPTER 4. EXPERIMENTAL STUDY
1 2 43

1 2 43

1 2 43

(4) = { 4 }ρ
(3) = { 1, 3, 4 }

(2) = { 1, 3 }

(1) = { 1, 2 }

ρ
ρ
ρ

D=3

P=4Figure 4.7: Example of a mesh graph de�ned by P;D; �Topologi
al parametersSyntheti
 meshes may be
onstru
ted depending on D;P and �. The �rst twoparameters de�ne the graph sizes and the third the inter
onne
tion pattern.The syn
hronization density S is equal to the mean arity of the syn
hronizationfun
tion. All these three parameters may be modi�ed while the others are �xed.Thus, we
an explore the e�e
t of ea
h one independently of the others.In meshes, the edges have sour
e and target nodes in
onse
utive layers.Thus, a mesh have no transitive edges: (v; w) 2 E) �h 2 V : v � h � w.The
onsequen
e is that graph meshes are equal to their transitive redu
tionsM = M�, and S parameter is a highly reliable indi
ator of the amount ofdependen
es propagated through a node, layer by layer.Random meshesIn our �rst set of experiments with meshes we want to
he
k the e�e
t of P;D; Sparameters on
, for random syn
hronizations between layers. The random meshgeneration te
hnique
hosen is based on
reating the same number of outgoingedges for ea
h node [181℄. The number of edges per node is determined by thevalue of S parameter. The su

essors will be randomly sele
ted among all nodesin next layer, based on an uniform random distribution U [1; P ℄.To assure
onne
tivity in the graph and a
orre
t layer organization (nodes inthe same layer must have the same depth level), the �rst outgoing edge for anynode will be the edge (v; w) : �(v) = �(w). Only S � 1 edges will be randomlysele
ted. When S is not an integer, we
reate edges su
h that all nodes hasbS
 or dSe outgoing edges, and the mean number per node in the layer is asapproximated to S as possible.Formally, the pro
edure to
reate random meshes may be des
ribed as follows:Let A be the set of node numbers in a layer, and B a random subset of A with

4.1. SYNTHETIC GRAPHS 163the
ardinality: A = [1; P ℄ � N;B � A : jBj = bP � (S � bS
)
The syn
hronization fun
tion sele
ted to build random meshes is:�(�(v)) = f�(v)g [f
i ; U [1; P ℄; i = 1; :::; sgs = � bS � 1
 if �(v) 62 BdS � 1e if �(v) 2 BFor example, let us suppose a mesh with P = 10 and S = 2:36. The
ardinal-ity of the B set will be jBj = b10� (2:36� 2)
 = b3:6
 = 3. Let us suppose thatB set is randomly sele
ted to be jBj = f4; 8; 9g. The s value, that represents thenumber of randomly
hosen edges for a node, is
omputed as:s = � 1 if �(v) 2 f1; 2; 3; 5; 6; 7; 10g2 if �(v) 2 f4; 8; 9gThus, all nodes will have one predetermined edge (�(v); �(v)), seven of themwill have one random edge and three of them will have two random edges(�(v); U [1; P ℄). There will be 23 edges between ea
h layer. The �nal syn
hro-nization density for one layer will be S = 23=10 = 2:3 � 2:36Chosen parametersWe experimentally test sets of syntheti
 topologies with up to thousand nodeswith the following parameter values and motivation:1. Square meshes, to dete
t the e�e
t of S alone, for a given graph size:(P;D) 2 f(8; 8); (16; 16); (24; 24); (32; 32)gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 3:5; 5:0; 7:5; 10; 25g2. Fixed P , to dete
t the e�e
t of D:P = 16D 2 f4; 8; 16; 24; 32; 64gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 5:0; 8:0; 12:0g3. Fixed D, to dete
t the e�e
t of P :P 2 f4; 8; 16; 24; 32; 64gD = 16S 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 8:0; 12:0; 16:0; 24:0; 32:0; 48:0g

164 CHAPTER 4. EXPERIMENTAL STUDYThe Layering and the improved Algorithm2 transformation te
hniques obtain sim-ilar results for S > 2. In Fig. 4.8 we show an example of how both transformationte
hniques obtain similar results when the high syn
hronization density preventsour algorithm to
reate small lo
al syn
hronizations, but for
es full barriers be-tween layers. This e�e
t always appears for S values higher than 2. Thus, forthese kind of graphs we
an use the faster Layering te
hnique safely. We ex-tend our study to huge graphs with up to hundred thousand nodes, that
an bemanipulated in reasonable time with the Layering transformation te
hnique:1. Square meshes, to dete
t the e�e
t of S alone:(P;D) 2 f(100; 100)gS 2 f2; 3; 4; 5; 10; 20; 30; :::; 100g2. Fixed P , to dete
t the e�e
t of D:P = 100D 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gS 2 f2; 3g3. Fixed D, to dete
t the e�e
t of P :P 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gD = 100S 2 f2; 3gIn all
ases the workload distributions are
omputed as des
ribed in 4.1.1.ResultsThe experiments show the following results:1. De
reasing impa
t for higher S values:The e�e
t of high syn
hronization density values (S > 2), is similar asdis
ussed for random topologies in se
tion 4.1.2. In Fig. 4.8 we show thise�e
t for di�erent values of S in a 16� 16 random mesh. In
reasing valuesof S indi
ate more dependen
es already in the graph and shorter distan
eto an SP form. Thus, the impa
t of SP-ization is qui
kly diminished whenS in
reases.In
omplete random topologies (see se
tion 4.1.2), P andD presented a
or-relation with S due to the random sampling te
hnique. Spe
i�
ally, valueslower than 2 indi
ated few layers and a
olle
tion of sparse nodes. Thus,the graph distan
e to SP form was short and
 was qui
kly de
reasing with

4.1. SYNTHETIC GRAPHS 165

1

1.2

1.4

1.6

1.8

2

2 4 8 16

γ

S

Random mesh (16 x 16)
BSP Layering - G(1,1)

SP Alg2 - G(1,1)
BSP Layering - G(1,0.2)

SP Alg2 - G(1,0.2)

Figure 4.8: E�e
t of high S values in random meshessmaller values of S. However, in meshes we are �xing P and D parameters,and
hanging S independently. In Fig. 4.8 and Fig. 4.9 we may appre
iatethe di�erent behavior obtained with Layering and Algorithm2 transforma-tion te
hniques for random meshes. When Layering is applied,

ontinuesthe same exponential like in
reasing tenden
y for very small S values. Theappli
ation of our improved Algorithm2 transformation te
hnique
an
elsthe exponential growing tenden
y, and it a
hieves even de
reasing resultsfor low deviated load distributions. However, it does not a
hieve the highdiminishing e�e
ts like in random topologies. In the plots of Fig. 4.9, we ob-serve the
 de
reasing e�e
ts only for very small values of S and espe
iallyfor low P values. The reason is the small distan
e from these graphs to SPforms. Re
all the random meshes generation te
hnique used. It
reates abase SP mesh graph with S = 1 and adds extra randomly
hosen edges.The number of added edges for ea
h layer is an integer number
omputedas: bP � (S � 1)
. For small values of the parameters very few edges oreven no extra edges are added to the base SP graph, leading to
 values
lose to or even 1.2. No appli
ability of Rs parameter alone:A side e�e
t of the previous dis
ussion is that Rs is not a good indi
ator ofthe potential impa
t of an SP-ization in a random mesh. In random graphsP and D were related to S. In random meshes this is not true. Thus,
values are di�erent for the same value of Rs if P and D values di�er. Onlyvery general tenden
ies may be determined using the parameter Rs alone.We must further explore the e�e
ts of D;P parameters independently.

166
CHAPTER4.EXPERIMENTALSTUDY

Random meshes (P = 16)

BSP Layering - G(1,1)

2
4

8
16

S
0

8
16

24
32

40
48

56
64

D

1

1.2

1.4

1.6

1.8

2

γ

Random meshes (P = 16)

SP Alg2 - G(1,1)

2
4

8
16

S
0

8
16

24
32

40
48

56
64

D

1

1.2

1.4

1.6

1.8

2

γ

Random meshes (D = 16)

BSP Layering - G(1,1)

2
4

8
16

S
0

8
16

24
32

40
48

56
64

P

1

1.2

1.4

1.6

1.8

2

γ

Random meshes (D = 16)

SP Alg2 - G(1,1)

2
4

8
16

S
0

8
16

24
32

40
48

56
64

P

1

1.2

1.4

1.6

1.8

2

γ

Figure4.9:
dependen
eonS,PandDinrandommeshes

4.1. SYNTHETIC GRAPHS 1673. Limited e�e
t of D:In Fig. 4.10 we
an see how
 stops to grow at a
ertain value of D. Al-though diÆ
ult to appre
iate for small sized graphs, it
an be also noti
edin Fig. 4.9. Let us
onsider the ith-node in layer j. Dependen
es from this

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

γ

D

Random mesh (S=3, P=100)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.10: Limited e�e
t of D in random meshesnode are propagated to other nodes a
ross layers j + 1; j + 2; :::, until allnodes in a further layer j+
 depends on the original node. At this point, anSP-ization te
hnique is not adding dependen
es from the ith-node of layerj to any other node in further layers j + d; d >
, be
ause all of them werealready dependent on it. The speed by whi
h dependen
es are propagatedto next layers is dependent on S. The number of nodes in a layer is P .The limiting e�e
t should
ompletely appear for D > P=(S � 1). The ob-servations show that in general it appears even before. In the original NSPgraph, the number of dependen
es propagated from the ith-node in layer jto other nodes in layers j+1; j+2; :::, is growing through ea
h layer. Thus,the diminishing e�e
t is beginning to work sin
e layer j + 2, rea
hing themaximum at layer j +
.This limiting e�e
t is
an
eled in spe
ial
ases of unbalan
ed syn
hroniza-tion stru
tures des
ribed and dis
ussed below.4. Logarithmi
 like e�e
t of P :In Fig. 4.11 (and also in Fig. 4.9 in a smaller s
ale) we may appre
iate thatfor �xedD and S values, the SP-ization impa
t in
reases with a logarithmi
like fun
tion of P . This e�e
t presents similar slopes for all mesh topologieswith the same S value, and a D value enough to a
hieve its limiting e�e
t

168 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

γ

P

Random mesh (S=3, D=100)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.11: Exponential like e�e
t of P in random meshes(see previous dis
ussion about D e�e
t). The slopes are lower for exampleswith higher values of S, as expe
ted.5. Workload e�e
t:As it may be appre
iated in Fig. 4.10 and Fig. 4.11, the most relevant fa
-tor for the SP-ization impa
t is the variability of the workload &. Graphsrepresenting balan
ed
omputations (& � 0:2) present almost no relevante�e
t when transformed to SP form. When
omputations are highly un-balan
ed (& = 1), the probability of serializing highly loaded nodes duringthe SP-ization in
reases. The e�e
t is highly predi
table when the loadsare randomly distributed, as the probabilities in
rease with equal
han
esa
ross the same topology.Unbalan
ed syn
hronization meshesMotivated by the study of strange
 e�e
ts in spe
i�
 appli
ation mesh topologies(as e.g. stati
 ma
ro-pipelines, see se
tion 4.2), we have found a new topologi
al
hara
teristi
, with an important impa
t on
. This
hara
teristi
 is not dire
tlyrelated with the parameters we have studied previously. This study reveals moredetails about the deep relation of
 and the way dependen
es are propagateda
ross layers through the edges.The problem appears in meshes were the edges are somehow oriented in thewidth axis, su
h that dependen
es from some nodes are not propagated to anyother part of the graph equally. Let us
onsider the example in Fig. 4.12. Thenodes in the right side of the graph do not propagate dependen
es to the left

4.1. SYNTHETIC GRAPHS 169
1 2 43

1 2 43

1 2 43

(4) = { 4 }ρ
(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

D=3

P=4Figure 4.12: Example of unbalan
ed syn
hronization meshside of the graph, no matter how many layers are
onsidered. This orienta-tion is graphi
ally dependent on the numbering �
hosen. We must introdu
esome more notation and terminology to formally
hara
terize this new problem.Be
ause this orientation e�e
t barely appears along several layers in random gen-erated meshes, we fo
us our study to analyti
al measurements in meshes withdeterministi
 � fun
tions.De�nition 4.1.4 For meshes with a deterministi
 � fun
tion, we de�ne the Syn-
hronization
hara
teristi
 graph of a mesh
(M) as a dire
ted graph (possibly
y
li
), build as:
(M) = (V
; E
) :V
 = LiE
 = f(v; w) : v; w 2 Li; �(w) = �(�(v))gFor deterministi
 � fun
tions, the syn
hronization
hara
teristi
 graph isunique for a given P value, and a
hange on the nodes numbering fun
tion �,will produ
e an equivalent homeomorphi
 graph. An example of the
 graph forthe example in Fig. 4.12 is shown in Fig. 4.13.
1 2 43

(4) = { 4 }ρ
(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

Figure 4.13: Example of syn
hronization
hara
teristi
 graphWhen the syn
hronization
hara
teristi
 graph of a mesh is dis
onne
ted, itindi
ates that two di�erent subgraphs are
omposed in parallel. Ea
h subgraph

170 CHAPTER 4. EXPERIMENTAL STUDYshould be studied separately. The Algorithm2 transformation te
hnique dete
tsthe
onne
ted
omponents as lo
al NSP problem
ombinations and syn
hronizethem separately. However, Layering te
hnique would resyn
hronize both sub-graphs together with full barriers in a non-eÆ
ient way. For
onne
ted
 graphwe study the presen
e of nodes that
annot be rea
hed from other nodes.De�nition 4.1.5 We denote by syn
hronization balan
e, !(M), the proportionof edges found in the transitive
losure of the syn
hronization
hara
teristi
 graphof a mesh M. Let be
(M)+ = (V
; E+
) be the transitive
losure of
(M):!(M) = jE+
 j=jV
j2This value, that will be in the range !(M) 2 [0; 1℄, indi
ates the proportionof nodes that are propagating dependen
es to other nodes independently of thenumber of layers traversed. The value 0 is only possible for
ompletely dis
on-ne
ted layers. The value 1 is found in graphs were all nodes
an be rea
hed fromall other nodes. In Fig. 4.14 we show the transitive
losure and the syn
hro-
1 2 43

E+
V 2 (4) = { 4 }ρ

(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

(M) = 0.625ω
= 10

= 16

Figure 4.14: Example of !(M) measure with the
 graphnization balan
e value for the previous example mesh. A value of !(M) = 0:625indi
ates that many nodes
annot be rea
hed from other nodes independently ofthe number of layers
onsidered.Meshes with
onne
ted
 graphs and ! values of 1, do not present any
 e�e
tdi�erent from the ones previously dis
ussed, based on the topologi
al (P;D,S)and workload (&) parameters. However, meshes with
onne
ted
 graphs andlower than 1 syn
hronization balan
e values, will su�er the following pathologi
ale�e
ts:1. Limited e�e
t of S parameter:If we add edges to a mesh, that do not in
rease the syn
hronization bal-an
e, the syn
hronization density in
reases, also the number of dependen
espropagated, but not the number of nodes that are not rea
hed from other
ertain nodes. Thus, the bene�
ial e�e
t of these added edges is highlylimited.

4.1. SYNTHETIC GRAPHS 171To test this e�e
t, we have designed an experiment in whi
h we produ
emeshes with in
reasing S values, but for
ing the new edges to target neigh-bors already rea
hable in the
 graph through transitive dependen
es. Wede�ne the following syn
hronization fun
tion for a given P and a new pa-rameter s: �(�(v)) = ft : �(v) < t � (�(v) + s) � PgAn example of meshes generated by this te
hnique are shown in Fig. 4.15.
1 2 43

1 2 43

1 2 43

1 2 43

1 2 43

1 2 43

≈S 2 ≈S 3
(M) = 0.625ω (M) = 0.625ω

s = 2 s = 3

D = 3P = 4 P = 4 D = 3

Figure 4.15: Example of meshes with higher S and the same !The s parameter is very similar to the �nal S of the generated mesh, es-pe
ially when s � P . As we are interested in the e�e
ts produ
ed for Sranging from 2 up, for our experiments we will use P = 100,
onsideringS = s.In Fig. 4.16 we show how in
reasing the number of edges (indi
ated by theS parameter) in a
omplete unbalan
ed mesh (plot (a)), does not produ
ethe bene�
ial negative exponential-like de
reasing e�e
t on
, found inrandom and typi
ally balan
ed meshes of the same sizes (plot (b)). Thee�e
t is
an
eled after adding approximately 4 or 5 edges (the dependen
esare qui
kly propagated in the only possible dire
tion).2. Non-limited e�e
t of D parameter:In Fig. 4.17(a,b) we show the e�e
t of D in
rease, for unbalan
ed meshes.We present two examples. Both of them have been
reated with the pre-vious dis
ussed te
hnique. They are stru
tures with unbalan
ed neighboredges with P = 100, and s = 3 and s = 5 respe
tively. Both graphshave the same number of non-rea
hable nodes, ! = 0:505. The plots showhow the limited e�e
t of D, found for other graphs with ! = 1, (
om-pare with Fig. 4.10) does not appear. As ! value is the same, the �naltrend for high D values is the same. What
hanges from S = 3 to S = 5

172 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Unbalanced synchronization mesh (100 x 100 nodes)

(a)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.2

1.4

1.6

1.8

2

1 10 100

γ

S

Random mesh (100 x 100 nodes)

(b)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.16: Limited e�e
t of S in syn
hronization unbalan
ed meshesis how qui
k the dependen
es are propagated in the only available dire
-tion. Thus, S still measures how qui
k the general trend imposed by ! isa
hieved. In both
ases, we observe some irregularities in the slope nearthe point D � P=S. At this point, the propagated dependen
es have beenspread along the full layer width, and the limiting D e�e
t
urve meetsthe general tenden
y
urve imposed by !. From this point on, both
urves(S = 2; S = 3) are similar.With values of S lower than 2, the
 graph is typi
ally dis
onne
ted, andthe subgraphs should be studied separately. For
onne
ted
 graphs, the !lower values
orrespond to graphs with S � 2. We
onje
ture that the extradispersion of
 values related to S near 2, observed previously, is produ
ed by

4.1. SYNTHETIC GRAPHS 173

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 200 400 600 800 1000

γ

D

Unbalanced synchronization mesh (S=3, P=100)

(a)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 200 400 600 800 1000

γ

D

Unbalanced synchronization mesh (S=5, P=100)

(b)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.17: Non-limited e�e
t of D in syn
hronization unbalan
ed meshesthese pathologi
al e�e
ts not previously a

ounted for.The pathologi
al e�e
ts are higher for lower values of !, although no dire
trelation has been yet established, be
ause of the diÆ
ulties found to automati-
ally generate di�erent syn
hronization unbalan
ed topologies with the desired !values. It is an open question if D;P; S; &; ! parameters are enough to a

uratelyestimate
 for graph meshes.Correlated workload meshesIn the previous study, due to the absen
e of real workload information for syn-theti
 graphs, we are assuming an i.i.d. workload for every node. In real appli-
ations with not
ompletely regular tasks loads, it is typi
al to �nd some kind

174 CHAPTER 4. EXPERIMENTAL STUDYof
orrelation between the workload distribution and the topology. Consider, forexample, a mesh representing a ma
ro-pipeline. If one of the pipe stages is moretime
onsuming than others, we will �nd a
olumn of tasks more loaded than theothers. If a
ellular-automata like program needs to
ompute some more
omplexintermediate results after some normal iterations, we will �nd a mesh were somerows or layers of nodes are more loaded than the others.To dete
t if the presen
e of this
orrelation between workload and topologyis bene�
ial or negative for the SP-ization impa
t, we have designed some moreexperiments with random meshes. We will
onsider meshes with �xed P , D andS values, and we will
hange the workloads to
reate su
h verti
al or horizon-tal
orrelations. The modi�ed load parameters �; � will be proportional to theoriginal ones to keep the same variability a
ross the whole graph.Let us
onsider the following workload models:Verti
al
orrelation: The load is modi�ed in a given
olumn
 in a given pro-portion p: �(v) = � x; N(�; �) if �(v) 6=
x; N(p�; p�) if �(v) =
Horizontal
orrelation: The load is modi�ed in a given layer r in a givenproportion p: �(v) = � x; N(�; �) if d(v) 6= rx; N(p�; p�) if d(v) = rMultiple verti
al
orrelation: The load is modi�ed in a given proportion p,in a given number of
olumns n, distributed along the graph with a �xedstride s = P=n:�(v) = � x; N(�; �) if (�(v) mod s) 6= 0x; N(p�; p�) if (�(v) mod s) = 0Multiple horizontal
orrelation: The load is modi�ed in a given proportionp, in a given number of layers n, distributed along the graph with a �xedstride s = D=n:�(v) = � x; N(�; �) if (d(v) mod s) 6= 0x; N(p�; p�) if (d(v) mod s) = 0We are interested in dete
ting how the position of
olumns or rows withmodi�ed load, and the load modi�
ation are a�e
ting
. Thus, we design thefollowing experiments. Let M be a random mesh with P = D = 64 and S = 3.We
arry out the following experiments, were some of the parameters have beenadjusted in view of the results dis
ussed below:

4.1. SYNTHETIC GRAPHS 1751. Verti
al
orrelation of one
olumn,
hanging the
olumn position. As thegraph is symmetri
, and the dependen
es are randomly distributed a
rossthe full graph width, we expe
t symmetri
 results moving the
olumn fromthe
enter of the mesh to ea
h extreme:p = 2;
 2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g2. Verti
al
orrelation of one �xed
olumn,
hanging the workload modi�
a-tion. We test both, lower and higher values of the load in the sele
ted
olumn:
 = 32; p 2 f0:5; 0:8; 0:9; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0g3. Horizontal
orrelation of one layer,
hanging the layer position. As the
pv is a

umulated through the graph up-down, we test modi�ed layers allalong the graph:p = 32; r 2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g4. Horizontal
orrelation of one �xed layer,
hanging the workload modi�-
ation. In view of the results of our �rst experiments in this
ategory,we dete
t that we need to in
rease the load mu
h more than in verti
al
orrelations to get representative results:r = 32; p 2 f0:5; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 128:0g5. Multiple
olumn
orrelation, with di�erent number of
olumns to generateall the possible integer strides for P = 64:p = 2; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64g6. Multiple layer
orrelation, with di�erent number of layers to generate allthe possible integer strides for D = 64:p = 6; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64gAll the experiments will be
arried out with di�erent workload variabilities& 2 f0:1; 0:2; 0:5; 1:0g, and drawing 25 times random workload distributions forea
h topology. The results obtained from these experiments
an be summarizeas follows. For the following dis
ussion, keep in mind that
 is minimum whenthe
riti
al path of the NSP graph has the more loaded nodes of ea
h layer:

176 CHAPTER 4. EXPERIMENTAL STUDY

1

1.1

1.2

1.3

1.4

1.5

1.6

0 8 16 24 32 40 48 56 64

γ

Column position

Loaded column grid (S=3, P=D=64) 200% of normal load
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 8 16 24 32 40 48 56 64

γ

Layer position

Loaded layer grid (S=3, P=D=64) 3200% of normal load
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.18: Independen
e of load
orrelation position1. Independen
e of the
olumn or layer position:As it is shown in Fig. 4.18, the position of the
olumn or layer whi
h load ismodi�ed is not really important. In the
ase of verti
al
orrelation, as alongas the edges in the mesh are
hosen randomly, the dependen
es are prop-agated with equal probabilities, independently of the
olumn position. Inmeshes with deterministi
 syn
hronization fun
tions, it should be possibleto observe little
 di�eren
es when the modi�ed
olumn position
hanges.In the
ase of horizontal
orrelation, all full paths must
ross the layer,independently of the layer position, getting the same probabilities of beinga�e
ted.2. Bene�
ial e�e
t of the verti
al
orrelation:

4.1. SYNTHETIC GRAPHS 177In Fig. 4.19 we may appre
iate the bene�
ial impa
t of in
reasing the work-load in one modi�ed
olumn. A lower load than in other
olumns does notsigni�
antly modify the
 values, be
ause the more loaded nodes in ea
hlayer are the normally loaded nodes. The maximum a

umulated pathvalue through several edges, is always got from one of the normally loadednodes. On the other hand, when the modi�ed load is in
reased above thenormally loaded nodes, the paths that
ross the highly loaded
olumn moretimes, get more and more probabilities to be
ome the
riti
al path. At thesame time, the nodes in the
olumn get more and more probabilities tobe the more loaded nodes in the layer, espe
ially when the variability issmall. Thus, the
riti
al path in the NSP version gets more probabilitiesto have exa
tly the more loaded nodes in ea
h layer, minimizing
. As it

1

1.1

1.2

1.3

1.4

1.5

1.6

50 100 150 200 250 300 350 400

γ

% of normal load in column

Loaded column grid (S=3, P=D=64) Column 32
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 8 16 24 32 40 48 56 64

γ

of loaded columns

Loaded columns grid (S=3, P=D=64) 200% of normal load
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.19: Bene�
ial e�e
t of the verti
al
orrelation

178 CHAPTER 4. EXPERIMENTAL STUDYis also shown in Fig. 4.19, this bene�
ial e�e
t immediately disappears ifthere are several
olumns with the same load modi�
ations in the mesh.The reason is that there are more probabilities for the
riti
al path to
rossa highly loaded node (in one of the modi�ed
olumns) whi
h is not exa
tlythe more loaded node in the layer (being in other of the modi�ed
olumns).Fortunately, in appli
ations with verti
al
orrelation (like some pipelines)is typi
al that most
olumns have di�erent mean load values. The existen
eof this small load di�eren
es between
olumns lead to a middle point onthe bene�
ial e�e
t.3. Bene�
ial e�e
t of the horizontal
orrelation:In Fig. 4.20 we
an see that in the
ase of horizontal
orrelation, smallmodi�
ations of the load does not a�e
t
. Although all paths must
rossthe modi�ed loaded layer, there are not so many probabilities for the
riti
alpath to
ross exa
tly the more loaded node in that layer. However, when theload in the modi�ed layer is highly in
reased, in a mu
h bigger proportionthan the other layer nodes, the paths that
ross exa
tly the more loadednode in that layer have more and more probabilities of being the
riti
alpath themselves, as the other layers loads be
ome less signi�
ant in thetotal path value. In the same �gure we
an also appre
iate that in
reasingthe number of loaded layers is potentially bene�
ial until a given point. Thereason is that the e�e
t previously dis
ussed for one layer is applied moreand more times. However, when the number of layers in
reases too mu
h,the extra loaded nodes be
ome too frequent, and they be
ome the normallyloaded nodes. Then, the full paths get the typi
al variability e�e
ts of thenow more
ommon nodes in the mesh, eliminating the bene�
ial e�e
t ofthe
orrelation. This workload
on�guration with many layers more loadedthan a few ones is not so typi
al in appli
ations.The important
on
lusion about this experiment, is that typi
al
orrelationbetween topology and workload may produ
e bene�
ial e�e
ts on
 in many
ir
umstan
es. Thus, our previous predi
tions with i.i.d. workloads
an be
on-sidered a worst
ase for workload distribution, and previous
 predi
tions
an be
onsidered upper bounds of the expe
ted
 in typi
al appli
ation stru
tures.4.1.4 Con
lusions about syntheti
 graph resultsAlthough not being a topologi
al feature, the workload balan
e is the graph
hara
teristi
 with the higher impa
t in the potential performan
e loss measuredwith
riti
al path analysis (
). Our main study is based on i.i.d. workloads due tothe absen
e of real workload information. Nevertheless, more irregular workloaddistributions with typi
al appli
ation
orrelation in verti
al and horizontal nodeinstan
es may produ
e even lower expe
ted
 results.

4.1. SYNTHETIC GRAPHS 179

1

1.1

1.2

1.3

1.4

1.5

1.6

0 3200 6400 9600 12800

γ

% of normal load in layer

Loaded layer grid (S=3, P=D=64) Layer 32
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 8 16 24 32 40 48 56 64

γ

of loaded layers

Loaded layer grid (S=3, P=D=64) 600% of normal load
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.20: Bene�
ial e�e
t of the horizontal
orrelationFor random or irregular graphs, the P and D parameters are typi
ally
or-related with S. Thus, S and Rs values easily determine the
 values. Thedispersion of
 values is maximum around the
riti
al point of S � 2 where
values also rea
h their maximum.More stru
tured graphs, whi
h nodes are organized in layers
onne
ted byrandom or repli
ative syn
hronization stru
tures, do not present a
orrelationbetween the parameters S and P;D. If the syn
hronization stru
ture a
ross layersis random, or balan
ed (as measured with ! for deterministi
 syn
hronizationstru
tures), the
 values
an be estimated with the workload
hara
teristi
s andthe simple topology parameters P;D; S. The values of
 rea
h their maximumfor S � 2. Further in
rease of S immediately limits the
 in
rease. The numberof layers in the mesh is only important until D � P=S. More layers do not

180 CHAPTER 4. EXPERIMENTAL STUDYfurther a�e
t the potential performan
e loss. Thus,
 is highly predi
table as afun
tion of very simple topologi
al and workload parameters.For unbalan
ed syn
hronization stru
tures (! < 1), pathologi
al e�e
ts areobserved in the S and D e�e
ts. Future work should relate these observations to! values.4.2 Real Appli
ationsIn this se
tion we present an study of the performan
e e�e
t of using di�erentSP and NSP programming te
hniques with real appli
ations. Our purpose is todetermine the potential performan
e loss produ
ed at programming level due torestri
t relevant syn
hronization stru
tures to SP form. We
hoose appli
ationexamples whi
h are representative of important SA
lasses (see 2.6). We usegraphs to model appli
ations at di�erent detail or abstra
tion levels. Modelingte
hniques and their a

ura
y are studied. Transformation te
hniques and
 pre-di
tions previously dis
ussed, are studied in stru
tures from real appli
ations. Wepresent results on how
 is propagated to run-time level in real implementations�. The main trends of this loss are studied before applying any improvementderived from SP programming. Thus, no advantages of SP programming willbe exploited in our experiments during implementation or run-time. Finally, wespe
i�
ally fo
us our study on more irregular appli
ations, showing how typi
alload balan
ing and data-partitioning te
hniques lead to more regular stru
tures,feasible for SP-programming.4.2.1 Experiments designExperiments are
ondu
ted to
ompare information obtained from programminglevel
ost models with real implementations. Results are studied to extra
t pa-rameters non-dependent on the appli
ation whi
h predi
t the mean performan
ee�e
ts of restru
turing programs for SP programming frameworks.We �rst fo
us our study in appli
ations in the NDS
lasses, where the stru
-ture of the appli
ation is �xed for some simple parameters after mapping (mainlythe number of pro
essors).The experiments are designed as follows:1. Sele
t a representative appli
ation of a stati
 NSP SA
lass.2. Implement the program in both NSP and SP versions, for di�erent ma
hinear
hite
tures and/or programming models.3. Run programs obtaining load and performan
e measurements.4. Derive programming level graph
ost models.

4.2. REAL APPLICATIONS 1815. Estimate mean program behavior with syntheti
 workloads and statisti
alload measurements.6. Compare estimations with real performan
e measurements. If a

ura
y isnot enough, re�ne
ost models at a lower implementation level and go ba
kto phase 5.7. Relate appli
ation behavior and SP-ization impa
t to stru
ture parameters.For dynami

lasses, stru
ture is data-dependent and
annot be easily derived.For these
ases an exhaustive study is not always possible. Availability of simple
odes is limited, appli
ations trend to be mu
h more
omplex, they typi
allyin
lude hard-wired optimizations based on the ma
hine ar
hite
ture, and �nally,many alternatives of implementation exists for almost any algorithm. Input datamay have a great impa
t in an spe
i�
 stru
ture, as dynami
 s
heduling andmapping te
hniques are used.Thus, our experiments are oriented to exploit available samples of runningtra
es, obtained by exe
ution monitoring. Task graphs are built from the tra
inginformation. The stages of ea
h experiment are:1. Find examples of stru
tures (task graphs) generated by exe
uting existingimplementations of an appli
ation, with di�erent real input data, on spe
i�
ma
hines. If possible, we will gather detailed real workload information inrun-time.2. Apply the Algorithm2 transformation te
hnique, presented in 3.5, to thesample stru
tures.3. Compute and
ompare performan
e (
pv) in the original and transformedstru
ture and relate it to stru
tural parameters.Appli
ations sele
tedAlong the lines presented in the appli
ations
lassi�
ation in se
tion 2.6, we sele
tthe following representative examples of relevant NSP
lasses:1. Stati
 NSP appli
ations:Stati
 ma
ro-pipeline: It is is a good representation of simple stru
-tures
reated by multiple iterations of a shifting memory a

ess pat-tern. Many parallel non-syn
hronized loops and data mappings
reatestru
tures similar to this one.This appli
ation also presents the minimum syn
hronization densityS parameter value possible for
omplete regular appli
ations in whi
h

182 CHAPTER 4. EXPERIMENTAL STUDYall pro
essors exe
ute the same pie
e of
ode with the same
ommuni-
ation pattern. Nevertheless, ea
h iteration provides a full
hain NSP
omposition (see 3.3.3), that needs full layering syn
hronization to betransformed into SP form.Moreover, the dependen
es between pro
essors are not propagated inan homogeneous way, but in an spe
i�
 dire
tion of pro
essors num-bering after data partition. It leads to the biggest possible number ofdependen
es added for any S = 2 stru
ture after SP-ization, and itpresents the pathologi
al e�e
ts des
ribed in se
tion 4.1.3 for stru
-tures with ! < 1.Thus, it is a extreme
ase for SP-ization impa
t.1D Cellular automata: This appli
ation represents the neighbor syn-
hronization stru
tures. Many regular and s
alable appli
ations aremapped to this stru
tures. Is is spe
i�
ally representative of grid
omputations and PDE solvers. Even more
ompli
ated sten
il basedappli
ations are mapped to this stru
ture if a 1-dimensional data par-tition is used. In fa
t, we have
hosen to implement a typi
al 2D grid
omputation mapped by rows, to produ
e a 1D
ellular automatastru
ture with real and representative
omputation loads (see an ex-ample of modeling this mapping in Fig. 4.23).For this kind of neighbor syn
hronization and grid appli
ations, the1D
ellular automata kernel present the minimum S parameter value(S � 3), being the appli
ation example most potentially a�e
ted whenit is transformed to SP form.FFT: It is an important kernel in many parallel appli
ations and has beenwidely studied. Its butter
y
ommuni
ation stru
ture is the most typ-i
al example of solving networks.After the lo
al
omputation phase, FFT is an intensive
ommuni
ationappli
ation, as all the lo
al data is sent in ea
h
ommuni
ation. Inea
h iteration the
ommuni
ation phase inter
hanges data with furtherremote pro
essors in a linear numbering. However, the binary treepattern may be exploited with spe
ial mappings and implementationsto improve lo
ality in spe
i�
 network models (see e.g. [156℄).LU redu
tion: Most matrix fa
torization algorithms (e.g. QR or Cholesky)presents similar SA. It is a
omplex appli
ation for graph
ost modelderivation as dis
ussed in se
tion 4.2.3. At program level it present atriangular syn
hronization stru
ture that must be mapped at imple-mentation level to another di�erent form for regularity and s
alability.This mapping leads to de
reasing task load values along iterations.2. Dynami
 appli
ation
lasses:

4.2. REAL APPLICATIONS 183Simulations based on graphs: Most physi
al or
hemistry simulationsare based on a PDE iterative sparse-matrix solver. The matrix stru
-ture represents the adja
en
y of the joint points of a 3D mesh whi
hmodels the studied obje
t. For these appli
ations, the syn
hronizationstru
ture generated is
ompletely dependent on the data mapping,typi
ally based on a graph partitioning algorithm.As example of the stru
tures produ
ed by these appli
ations we gen-erate mapping level task graphs of a simple PDE solver style pro-gram running on graphs already partitioned with a free and state-of-the-art multi-level partitioning software for unstru
tured graphs(METIS [117, 167℄). Example input 3D models are
hosen from thestru
tural engineering area, from a
olle
tion of free test data intendedfor use in
omparative studies of algorithms for numeri
al linear alge-bra (Matrix Market [146℄).Sparse-Matrix fa
torization: This appli
ation is a good representativeof stru
tures generated by dire
t solver te
hniques for sparse-matrix
omputations. As an example of the performan
e impa
t of SP-izationin these
lass of appli
ations, we have apply our transformation algo-rithm to some graphs generated by monitoring the exe
ution of adomain de
omposition and unstru
tured sparse-matrix fa
torizationsoftware [55, 123, 124℄ for �nite-element problems. The automati
allyobtained graphs are provided with real workloads.These two problems
overs the typi
al syn
hronization stru
tures generatedby parallel implementations of the main iterative and dire
t solvers forsparse-matrix
omputations.Ma
hine ar
hite
turesAt implementation level a parallel program is
ompiled and optimized for an spe-
i�
 ma
hine. When exe
uted, it uses
ostly me
hanisms to spawn, syn
hronizeand
ommuni
ate tasks. Implementation details and the underlying ar
hite
tureof the ma
hine be
ome important. For simple appli
ations and kernels we wantto study the main performan
e e�e
ts in di�erent programming models, and alsodi�erent ma
hine ar
hite
tures. We have sele
ted available ma
hines to
overdi�erent ar
hite
ture models and typi
al
on�gurations of them:Shared memory ar
hite
tures: The programming te
hniques used in thesema
hines are straightforward, and the programmer is not normally fa
ingthe data distribution or s
heduling details dire
tly.Our study is fo
used on a leading edge te
hnology shared-memory ar
hi-te
ture: CC-NUMA. Our available ma
hine is an Origin2000. CC-NUMA

184 CHAPTER 4. EXPERIMENTAL STUDYma
hines have representative properties for performan
e evaluation of syn-
hronization te
hniques. The use of memory hierar
hy improves perfor-man
e, while
a
he-
oheren
e proto
ols and automati
 pro
ess migrationtry to hide ma
hine level details to the programmer. Nevertheless, theeÆ
ient use of memory lo
ality is not an easy task even with
ompiler as-sistan
e. Delay times for data a

ess and syn
hronizations are less stablethan in other ar
hite
tures, espe
ially for full
olle
tive
ommuni
ations,like barriers issued a
ross the whole system [102℄.Distributed memory ar
hite
tures: The main parallel programming modelused for this kind of ma
hines is message-passing. The programmer fa
esproblems as data distribution or s
heduling details inherently, in
reasingthe developing e�ort.We use two key types of distributed memory ma
hines that have represen-tative properties for performan
e evaluation of syn
hronization te
hniques.CrayT3E is a mesh-based
omputer, with hardware and proto
ol improve-ments to minimize the overhead of distant pro
essors
ommuni
ation. Thespe
ial-purpose hardware is highly eÆ
ient. A Beowulf system (a
lusterof PC
omputers linked by a high speed Ethernet swit
h [176, 177, 151℄)normally presents higher
ommuni
ation
osts. As the underlying message-passing tools are prepared to work in generi
/all-purpose networks, theimplementation details
an
reate irregularities in the network traÆ
 or
ommuni
ation delays. Both ma
hines are at the budget extremes for highperforman
e
omputing. CrayT3E is an expensive spe
i�
ally designed ma-
hine, while a Beowulf is an optimized way to
reate a super
omputer fromgeneri
, all-purpose, and in
omparison
heap,
omputer hardware.Programming models and
ode generationAfter determining the appli
ations and ma
hines, we must sele
t a
onvenientprogramming model to
odify the NSP and SP versions of ea
h program. Theminimum requirement for a programming model to be sele
ted are:1. Codes must be portable with minimum or none modi�
ations to everyar
hite
ture tested.2. A systemati

ode transformation te
hnique must be devised to derive SPversions from NSP versions of the �nal
ode.3. A systemati
 te
hnique to extra
t programming or implementation levelgraph models from the
ode must be devised.4. It must provide similar performan
e as
ompared with other native or morespe
i�
 models.

4.2. REAL APPLICATIONS 185A

ording to the previous requirements, we
onsider the MPI message passinginterfa
e as the best
andidate for our experimental framework for the followingreasons:1. It is a portable API. Programs implemented in MPI
an be
ompiled andexe
uted in almost any parallel ma
hine due to standard MPI implemen-tations.2. As MPI is a full standard interfa
e of the well-known message-passingmodel, many appli
ations are already studied and implemented on thismodel (see e.g. [189℄). Real
odes for some of the sele
ted appli
ations areavailable.3. It is a performan
e eÆ
ient and reliable tool. Most vendors provide theirspe
i�
ally optimized implementations. Generi
 but eÆ
ient implementa-tions (e.g. mpi
h) are also available.4. Message-passing model for
es expli
it
ommuni
ation. S
heduling, data-partition and any other mapping transformations must be hard-wired inthe
ode. Thus, a
omplete monitoring of
ommuni
ation a
tivities at highlevel is possible. In se
tion 4.2.2 and se
tion 4.2.3 we introdu
e systemati
ways to extra
t task graph models from
odes in di�erent programmingparadigms. We espe
ially study the message-passing problems and solu-tions, in
luding an example for MPI. Message-passing interfa
es simplifytask and
ommuni
ation identi�
ation be
ause
ommuni
ation is alwaysexpli
it.5. Transforming NSP MPI
odes to SP form is easy be
ause of the expli
it
ommuni
ation. Communi
ation phases are formed by grouping
onse
u-tive
ommuni
ation primitives, with no
omputation
ode in-between (seese
tion 4.2.2). Syn
hronizing the programs to simulate the added depen-den
es needed for SP-ization may be as simple as adding barrier syn
hro-nizations after
ommuni
ation phases. Probably, there exist other and bet-ter methods to transform the original
ode to SP form, but this approa
his simple, systemati
, and a typi
al worst
ase, where no
ode manipula-tion is done ex
ept to add dependen
es through barriers. The te
hniqueis suitable to exhibit an appli
ation potential degradation of performan
edue to the extra syn
hronizations when programmed in an SP PPM.6. Message-passing libraries as MPI allow very �ne tuning of the
odes forperforman
e. The library implementations, spe
i�
ally for MPI, are fastand eÆ
ient.In shared memory ma
hines, there are other interesting and widely knownprogramming models as OpenMP, dire
ted to portable and eÆ
ient devel-

186 CHAPTER 4. EXPERIMENTAL STUDY

9000

9500

10000

10500

11000

11500

12000

2 3 4 5 6 7 8

m
s.

Proc

Origin2000 - Cellular automata (800 x 100xProc., 800 iter.) -O0

openMP barriers
openMP barrier + parallel

openMP flushed vars
openMP lock vars

MPI p2p
MPI + barrier before

MPI + barrier between
MPI + barrier after

1000

1500

2000

2500

3000

2 3 4 5 6 7 8

m
s.

Proc

Origin2000 - Cellular automata (800 x 100xProc., 800 iter.) -O3

MPI p2p
MPI + barrier before

MPI + barrier between
MPI + barrier after

openMP barriers
openMP barrier + parallel

openMP flushed vars
openMP lock vars

Figure 4.21: OpenMP vs. MPI implementations in Origin2000opment. We have tested di�erent implementations of several appli
ationswith OpenMP and MPI to
ompare their relative eÆ
ien
y or dete
t dif-feren
es in the e�e
t of SP-ization for so di�erent programming models.In Fig. 4.21 we show the performan
e obtained in an Origin2000 ma
hinefor a simple
ellular automata program, implemented in several di�erentways. The plots
orrespond to the same
odes
ompiled with no
om-piler optimization (-O0), and with aggressive
ompiler optimization (-O3)respe
tively.The
odes in
lude: (1) OpenMP SP
ode that exe
utes the iteration loopinside a parallel region, with full syn
hronization barriers before and af-ter
opying of frontier shared data; (2) OpenMP SP
ode whi
h spawns

4.2. REAL APPLICATIONS 187and
ollapses a parallel region inside ea
h iteration, with only one expli
itbarrier needed for syn
hronization; (3) OpenMP NSP
ode based on
on-trol variables
ushed a
ross the memory system, with a
tive waitings; (4)OpenMP NSP
ode syn
hronized through lo
k variables; (5) MPI NSP
ode based on simple point to point
ommuni
ations; (6) MPI SP
odewith a barrier added before
ommuni
ation; (7) MPI SP
ode with a bar-rier added between send and re
eive parts of the
ommuni
ation; (8) MPISP
ode with a barrier added after
ommuni
ation, before
omputationphase. Data sizes are s
aled up with the number of pro
essors to keep thetasks load independent of the number of pro
essors. Task loads are highlyregular for this problem, thus SP-ization impa
t should be negligible. Ourresults indi
ate that OpenMP and MPI implementations are similar in per-forman
e, for both: NSP and SP versions. Results are independently of
ode restru
turing,
hange of primitives or syn
hronization system, or eventhe barrier pla
ement. MPI shows a more stable behavior than OpenMPversions when we do not allow
ompiler optimizations, whi
h is interestingfor our study (as we dis
uss below). Code versions using native OpenMPperform better than MPI when aggressive
ompiler optimization is used.However, the performan
e degradation is a
onstant delay due to extra pro-
ess
reation and manipulation in MPI,
ompared with the eÆ
ient nativethread
reation system used by the OpenMP implementation. MPI resultsare still eÆ
ient and
ompletely similar regarding the performan
e trends,and the NSP to SP
ode restru
turing.On
e the programming model is sele
ted, we dis
uss other implementationdetails. We must be
areful about
ode or
ompiler optimizations. Fine tuningsthat are not portable a
ross ma
hines must be avoided. We are mostly inter-ested in simple dire
t
odes that implement the basi

ommuni
ation s
heme forea
h appli
ation. For eÆ
ient software development we must rely in
ompileroptimizations and eÆ
ient run-time environments tuned to the spe
i�
 targetma
hine. However, we do not yet have a programming framework that reallyexploits all SP properties for optimization. Moreover, our study is fo
used to de-te
t the potential performan
e loss due to transformations at programming level.Advantages obtained during implementation phase are impossible to be fairlyevaluated nowadays, as they
an be produ
ed by SP
ompiler transformations,run-time s
heduling, or even by other non-related
ompiler optimizations, likebetter sequential
ode manipulation,
a
he trashing redu
tion or internal bu�er-ing optimization (partial studies of SP optimization advantages exist, and theypoint to good performan
e advantages obtained due to implementation transfor-mations when restri
ted SAs are used, see e.g. [57℄).Thus, we must avoid aggressive optimizations. Compiler
ode manipulation(loop reordering, unrolls, bu�ering optimizations), may
hange the syn
hroniza-

188 CHAPTER 4. EXPERIMENTAL STUDYtion patterns in su
h a way that: (1) implementation model of the resultingtransformed
ode is impossible to be known or derive even at run-time; (2) thelow level programs resulting from NSP and SP stru
tures are so stru
turallydi�erent that they are not
omparable anymore. For these reasons, for our ex-periments we have sele
ted no
ompiler optimization at all (we in
lude the -O0
ag in all
ompilation jobs).For ea
h appli
ation
onsidered we generate an NSP and a related SP versionbased on the same original
ode:1. MPI, NSP version: Based in point to point or basi

olle
tive
ommuni
a-tions.2. MPI, SP version: The former version with added barriers after
ommuni-
ation phases.First we program a basi
 NSP version of the appli
ation using simple MPI pointto point
ommuni
ations. This referen
e version may be re�ned to a se
ondNSP version using
olle
tive operations1. We
ompare the NSP
ode with anSP version
reated by adding barrier syn
hronizations after the
ommuni
ationphase of ea
h stage or loop iteration.In the experiments with syntheti
 graphs we made the assumption of i.i.d.task loads for any degree of parallelism. To be able to
ompare results andtrends obtained from syntheti
 graphs, with results obtained with these new realappli
ation experiments, we use s
aled up problem sizes in order to keep themean of the task loads as independent as possible of the number of pro
essors.Problem sizes are also loosely adapted to the relative hardware speed a
rossma
hines to obtain performan
e results in the same order of magnitude, andsimilar
ommuni
ation to
omputation ratios.Measures in
lude the total exe
ution time of the parallel se
tion of ea
h
ode,as well as the mean and deviation of task and
ommuni
ation times. We
onsidera task to be a
ontinuous sequential
omputation, from the point after a wait forsyn
hronization has been performed (one or more
ommuni
ations or a barrier)to the next one (see following se
tions for more details). The experiments are
ondu
ted up to all the available pro
essors (2 to 8 in the Origin2000, 16 to 128in the CrayT3E, and 2 to 16 in the Beowulf system).4.2.2 Appli
ation
ost models at programming levelAppli
ations may be modeled with di�erent detail level (re
all dis
ussion aboutimplementation traje
tory represented in Fig. 3.25, se
tion 3.6.1). An appli-
ation syn
hronization stru
ture is transformed from its original programming1MPI standard states that
olle
tive operations may or may not be syn
hronized. It isimplementation dependent [140℄.

4.2. REAL APPLICATIONS 189shape during mapping and implementation phases. At programming level, withno resour
e restri
tion, all possible parallelism
an be exploited. In the mappingto resour
es phase, data partition may a�e
t the task stru
ture of the appli
a-tion. The implementation of the
ommuni
ation/syn
hronization me
hanismsmay also
reate new low level stru
tures. Thus, di�erent task graphs modelswill be used at di�erent implementation levels. From simpler ones at the higherabstra
tion levels, to more
omplex and detailed ones at lower levels.In this se
tion we introdu
e pro
edures to model real appli
ations with taskgraphs at programming or mapping level. These graphs are
ost models whenprovided with syntheti
 or real workloads. Our
ost models will be as simplisti
as possible while they will provide at least asymptoti
ally a

urate performan
epredi
tions.At the programming abstra
tion level, the spe
i�
ation of an algorithm isadapted to the syn
hronization stru
tures available in the programming lan-guage and/or model used. Mapping
onstraints are not
onsidered. Thus, theprogram
ould express all the parallelism available in the appli
ation in a very�ne grain. The syn
hronization stru
ture is derived manually from the algorithmspe
i�
ation or program. A graph representing tasks and dependen
es
an begenerated to represent it. In the
ase of MPI model, some mapping de
isions(like data-partitioning among pro
essors and other
ode adaptations to use a�xed number of pro
essors) are taken by the programmer and hard-wired inthe
ode. The mapping level graphs
an be derived from MPI
odes using theme
hanisms des
ribed in this se
tion.For dynami
 appli
ations where the
ommuni
ation/syn
hronization stru
-ture is data dependent, the exa
t task graph
an only be generated at run-time,and will be di�erent for di�erent exe
utions. Moreover, even the simplest andmost regular
odes are usually parameterized with, at least, the degree of par-allelism or the number of iterations of a parallel repetitive
omputation. Thus,task graphs are representations of a
lass; they represent the overall stru
ture pro-du
ed at programming level for a given appli
ation (for any number of pro
essorsor iterations). Simpler stati
 and high regular appli
ations will be modeled by avery small amount of graphs that will have the same syn
hronization patterns,even if depth level and degree of parallelism
hange. More dynami
 appli
ationsshould be modeled with a higher number of graphs, enough to represent thetypi
al stru
tures that
an be generated for di�erent data.Graph derivation me
hanismsAt programming or mapping level,
osts for
ommuni
ation or syn
hronizationme
hanisms are not an issue to
onsider. Their stru
ture or
ost
annot be eval-uated until lower implementation details are
onsidered. Thus, a very simplisti
task graph model will be perfe
tly a

urate to represent the stru
ture of the

190 CHAPTER 4. EXPERIMENTAL STUDYappli
ation.Nodes (Tasks): Ea
h node of the graph represents a task. We
onsider a taskto be an atomi
 a
tivity whi
h
an be exe
uted independently of the lo
alstate of other a
tivities (tasks).Edges (Dependen
es): Edges will represent only pre
eden
e of tasks imposedby the program semanti
s (data dependen
es or other syn
hronization needs).Mutual ex
lusion: Graph edges represent ordered pre
eden
e
onstraints be-tween tasks. Thus, they are only appropriate for CS. At programming orhigh abstra
t mapping level, there is not a way to translate ME syn
hro-nizations to dire
ted task graph edges. The ME syn
hronization me
ha-nism is solved in s
heduling time, thus, it is an implementation dependentor run-time matter. In these lower levels, when ME is solved, an exe
utionorder will be for
ed between mutual ex
lusive tasks, but we
annot predi
tit at high abstra
tion levels.To represent non-ordered syn
hronization (ME) in our programming levelmodel we propose to use a di�erent label or
olor for mutual ex
lusivenodes. Formally, we use a fun
tion that maps subsets of nodes to mutualex
lusion identi�ers. Nodes asso
iated to the same identi�er must be mu-tual ex
lusive. A node mapped to the empty set represents a node that isnot mutual ex
lusive with any other one. No expli
it ordered dependen
ewill be added with edges between nodes due to mutual ex
lusion.ME = fm1;m2; :::;mng� : V !M � MEIdentifying tasks and dependen
es must be done manually from program spe
-i�
ations, and using the appropriate information asso
iated with the program-ming model. In some models, espe
ially those whi
h use impli
it
ommuni
ationthrough shared-memory, we must have enough information about the low levelsemanti
s and of su
h tools to determine whi
h memory a

esses or primitives ofthe language are lo
al and whi
h others imply a syn
hronization and thereforethe end of a task and the beginning of another one. In expli
it syn
hronizationmodels as message-passing, it is easy to determine the start and end points of atask. The exe
ution of pie
es of
ode between
ommuni
ation dire
tives is a task.In the
ase of MPI, that exhibits expli
it
ommuni
ation and syn
hronizationprimitives, the identi�
ation of tasks and dependen
es is dire
t. We
onsider agroup of
ommuni
ation primitives with no
omputation
ode in-between a
om-muni
ation phase. A task (graph node) is a sequential
omputation, beginningat the end of a
omputation phase, and ending before the next
ommuni
ation

4.2. REAL APPLICATIONS 191phase. Dependen
es (graph edges) may be extra
ted from the parameters of
ommuni
ation primitives that indi
ate the sour
e and target tasks. When data-dependent parameters are used, the appli
ation is dynami
, and several graphsmust be derived for typi
al data values.Workload informationAfter identifying the tasks, we must
lassify them regarding their exe
ution time
hara
teristi
s. The graph
an in
lude as many types of task nodes as ne
es-sary (Vt1; Vt2; :::; Vtn). Nodes with the same type will share the same statisti
alworkload model. However, for simpli
ity it is interesting to redu
e the number ofdi�erent task types. Most of the times, espe
ially for highly parallel and s
alableappli
ations, the kernel of the appli
ation
an be modeled with only one type oftasks whi
h exe
utes similar
odes.Formally, we split the tasks set V into di�erent subsets. Nodes in ea
h sub-set will be of a di�erent type. Random workload distributions with di�erentparameters are asso
iated to the load of ea
h node type.T = PV = fT1; T2; :::; Tng;Ti = fv 2 V : �(v); D(�i; �i)gIn
omplete absen
e of workload information we will assume all tasks to be i.i.d.(independent identi
ally distributed). Thus, if no information about workloaddistribution is available, only one node type will be used.Stati
 regular appli
ations modelingWe des
ribe here examples and notations for modeling stati
 regular stru
tures.We introdu
ed in [183℄ a simple language and an asso
iated tool that allowseasy syntheti
 graph re
onstru
tion, based on the expression of regularities byparameterizable syn
hronization fun
tions. This language may be used to easily
onstru
t the graphs asso
iated with regular appli
ation stru
tures dis
ussed inthis se
tion.Many typi
al s
alable appli
ation stru
tures are
reated by repli
ating thesame lo
al syn
hronization pattern for every task in ea
h iteration. This appli
a-tions may be modeled by meshes with a spe
ial syn
hronization fun
tion appliedto ea
h node in a layer (see mesh de�nitions and notations in se
tion 4.1.3). Forthese repli
ative interlayer
onne
tion systems, the syn
hronization fun
tion maybe de�ned as a sten
il or lo
al pattern of
ommuni
ation (see e.g. [162℄).De�nition 4.2.1 Let M = (V;E) be a mesh. Let � be a syn
hronization fun
-tion. � is a Sten
il i� exists R(�) � Z,
alled Signature of the Sten
il, su
hthat: R(�) = fri; i = 1; :::; a � Pg :

192 CHAPTER 4. EXPERIMENTAL STUDYE = f(v; w) : v 2 Li; w 2 Li+1; �(w) = �(v) + r 2 R(�)gIn other words, the
ardinality of layers P , and the sten
il signature R(�), de�nea
olle
tion of number pairs A, in the range [1; P ℄, that de�ne the numbers ofsour
e and target nodes of edges between two
onse
utive layers:A = f(a; b) : a; b 2 [1; P ℄; b = a+ r 2 R(�)gE = f(v; w) : v 2 Li; w 2 Li+1; (�(v); �(w)) 2 AgDe�nition 4.2.2 A Sten
il Mesh is a triplet M 0 = (P;D;R(�)), that de�nes amesh graph M = (V;E) with jLj = D; jLij = P and E de�ned by the sten
ilsignature R(�).Sten
ils de�ne syn
hronization fun
tions based on lo
al syn
hronization pat-terns. For example, the signature R(�) = f�1; 0;�1g de�nes the syn
hronizationpattern of meshes representing 1D
ellular automates or neighbor syn
hroniza-tion stru
tures. Fig. 4.22 shows the sten
il mesh M = (4; 3; f�1; 0; 1g). Theedges between layers are de�ned by the following A set, where the number pairsare de�ned by P = 4 and R(�):A = f(1; 1); (1; 2); (2; 1); (2; 2); (2; 3); (3; 2); (3; 3); (3; 4); (4; 3); (4; 4)g
1 2 43

1 2 43

1 2 43

D=3

P=4
R() = { -1, 0, 1 }ρFigure 4.22: 1D Cellular Automata mesh de�ned by a sten
ilThe numbering of meshes nodes may be extended to Nn , to more
onve-niently represent syn
hronization stru
tures
ommonly found in appli
ationsbased on 2D,3D
ellular automates, quad- and o
t-trees, et
. In those
ases,the parameter P is represented by an n-tuple of natural numbers (P 2 Nn) andthe signature of the sten
il will be a
olle
tion of Zn tuples. The A set will

4.2. REAL APPLICATIONS 193be formed by pairs of n-tuples. For example,
onsider the following 2D mesh:M = ((4; 4); 3; f(�1; 0); (0; 1); (0;�1); (0; 1); (0; 0)g). This mesh represents 3 it-erations of a 5-star sten
il 2D
ellular automata with 4� 4 nodes in ea
h layer.The nodes and the syn
hronization pattern are shown in Fig. 4.23.
1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

5-star stencilLayer Numbering

Layer interconectionFigure 4.23: 2D Cellular Automata mesh de�ned by a sten
ilFor sten
il fun
tions, S is related to the number of elements in the sten
ilsignature: S � jR(�)j. Boundary nodes may have less leaving edges than sig-nature elements be
ause the target numbers may be outside of the numberingrange: (�(v)+ r 2 R(�)) 62 [1; P ℄. However, for large sizes of P , S be
omes
loserto the signature
ardinality: limP!1 S = jR(�)j. Thus, we
onsider S � jR(�)jas a good approximation.We present now the sten
il mesh models for the two highly regular stati
appli
ations sele
ted for our experimental framework in se
tion 4.2.1:Stati
 ma
ro-pipeline: This simple stru
ture is
reated by a 2 elements sten
ilsignature (S � 2): M = (P;D;R(�)) : R(�) = f0; 1g1D Cellular automata: This appli
ation has been used as example previously.The signature has 3 elements (S � 3):M = (P;D;R(�)) : R(�) = f�1; 0; 1gIn both
ases, the
omputation to exe
ute in ea
h task is the same. Thus, allnodes will be of the same type for workload modeling. At programming level,

194 CHAPTER 4. EXPERIMENTAL STUDYea
h task
omputes one data element with the lo
al data and the remote datare
eived (one or two elements depending on the appli
ation). At mapping level,a big amount of data is partitioned among P pro
essors. If the input data size isn, let k = n=P be the number of data elements to be pro
essed lo
ally for ea
hpro
essor. Let
 be the
omputation time needed to pro
ess one data element:8v 2 V : �(v) � k �
Other typi
al appli
ation stru
tures are represented by graphs de�ned bysyn
hronization fun
tions that are
hanging with the number of layer i or node�(v), or where the P parameter is also variable along the layers. We des
ribehere the graph models of other stati
 appli
ations sele
ted for our experimentsin se
tion 4.2.1. They present regularities that allows to express them withparameterizable and more
omplex syn
hronization fun
tions:Butter
y networks (FFT): For this kind of stru
tures, D parameter is de-pendent on P , be
ause the number of iterations needed to
omplete anFFT algorithm depend on the data size: D = 1+ log2 P . The syn
hroniza-tion fun
tion for this stru
ture is dependent on the number of the layer.Let Li; Li+1; i = 1; :::;D � 1 be two
onse
utive layers of the mesh. Wede�ne the butter
y fun
tion fi : [1; P ℄! f�1;+1g as:fi(a) = 1� 2� b(((a� 1) mod 2i)=2i+1)
The syn
hronization fun
tion may be de�ned as:�i(�(v)) = f�(v); �(v) + fi(�(v)) � 2i�1gAn example of this stru
ture for P = 4 is shown in Fig. 4.24. The lo
al FFTfun
tion always uses one element of lo
al data and one element of remotedata. For this stru
ture the syn
hronization density value is exa
tly S = 2.At programming level, ea
h node represents the exe
ution of the FFT fun
-tion for two data elements, and all nodes are of the same type for workloadmodeling. However, at mapping level, when data is partitioned among a�xed number of pro
essors, the nodes in the �rst layer exe
ute the full FFTalgorithm for the lo
al pie
e of data. If data pie
es have k elements, thelo
al
omputation
omplexity is k � log2 k. The nodes in following layersexe
ute only one FFT iteration, with lo
al and re
eived data as input. The
omputation
omplexity is only k. Thus, at mapping level, in this kind ofappli
ation we must distinguish two types of nodes for workload modeling.For n data elements, let k = n=P and let
 be the
omputation time topro
ess one data element:8v 2 L1 : �(v) = k � log2 k �
8v 62 L1 : �(v) = k �

4.2. REAL APPLICATIONS 195
1 2 43

1 2 43

1 2 43

(a) = { a, f(a) x 2 }i-1ρ

L1

L2

L3

D=3

P=4Figure 4.24: FFT butter
y networkMatrix fa
torization (LU redu
tion): We study the stru
ture of a LU for-ward redu
tion algorithm without pivoting (see e.g. [79℄). The stru
tureof this appli
ation represents most fa
torization methods for dense matri-
es, like Cholesky or QR fa
torizations. A triangular shaped syn
hroniza-tion stru
ture is generated. The
ode, parallelized by rows, is presentedin Fig. 4.25. Given the sizes of the input matrix (n� n), at programming(1) // LU ALGORITHM(2) DO k=1,n-1(3) PARALLEL DO i=k+1,n(4) li;k = ai;k=ak;k(5) DO j=k+1,n(6) ai;j = ai;j � li;kak;j(7) END-DO(8) END-DO(9) END-DOFigure 4.25: LU forward redu
tion algorithmlevel P = n�1 and D = n. The stru
ture presents layers with a de
reasingnumber of nodes (
olumn elements to be updated) along iterations (rowupdatings). In ea
h iteration, a node
omputes the row that is needed forall the nodes in next iteration to update their rows. Syn
hronization pat-terns are: one to all from �rst node in a layer to all nodes in the next layer;and one to one for the rest of nodes. Thus, the syn
hronization fun
tion isdi�erent for di�erent nodes in a layer.The graph model of matrix fa
torizations is de�ned by the following de
-

196 CHAPTER 4. EXPERIMENTAL STUDYlarations (let n be the dimensions of the input matrix Mn�n):D = n;P = n� 1Pi = � 1 if i = 1n� i+ 1 if i 6= 1�(�(v)) = � fa : a 2 [1; Pi+1℄g if �(v) = 1f�(v) � 1g if �(v) 6= 1

...

...

...

...

...

...

...

...

...

(b)

Programming level

(a)

Mapping level (P=4)

Figure 4.26: LU redu
tion: Programming level and mapping level graphsAn example of the stru
ture generated is shown in Fig. 4.26(a). The greynodes represent the tasks that
ompute the row that must be made a

es-sible to all other nodes in next iteration. For this appli
ations S parametermay be analyti
ally determined from the syn
hronization des
riptions. The

4.2. REAL APPLICATIONS 197S value is dependent on the P value:jV j = (n2 � n)=2jEj = n2 � 2n+ 1S = 2n2�2n+1n2�nS < 2; limn!1 S = 2Matrix fa
torizations present syn
hronization stru
tures with a very low Sparameter values.Although this stru
ture is similar to other fa
torization algorithms (as e.g.Cholesky fa
torization), the workload distribution will be di�erent for ea
hfa
torization algorithm. In fa
t, grey nodes in Cholesky fa
torization domore
omputation operations than the rest in the same layer. For our LUforward redu
tion algorithm ea
h node in the same layer does the samenumber of element updates, but the number of updates is de
reasing alongiterations. Let be
 the
omputation
ost of one data element update:�(v 2 Li) = � 0 if i = 1
� (n� i+ 2) if i 6= 1LU redu
tion is a problem with many di�erent possible mappings and im-plementations that heavily
hange the syn
hronization pattern of the orig-inal program model shown in Fig. 4.26(a). For example, a typi
al imple-mentation a
hieves load and
ommuni
ation balan
ing by distributing rowsof the matrix to pro
essors, with a stride equal to the number of pro
essors.Thus, for P pro
essors, pro
essor i will store the following set of matrixrows: Ri = fri; r(P+i); r(2P+i); r(3P+i); :::gCommuni
ation balan
ing is
reated be
ause in ea
h iteration a di�erentpro
essor
omputes and sends the row that all of them need to updatethe rest of their data in the following iteration. Cy
ling the pro
essorsthat send one row to the others,
hanges the graph topology. Now, it isdetermined by n and P parameters:D = n;Pi = 8<: 1 if i = 1P if 1 < i � n� P + 1n� i+ 1 if i > n� P + 1

198 CHAPTER 4. EXPERIMENTAL STUDY�(�(v)) = 8<: fa : a 2 [1; P ℄g if �(v)� 1 = (i� 1) mod Pf�(v)g if �(v)� 1 6= (i� 1) mod P ; i < n� P + 1f�(v) � 1g if �(v)� 1 6= (i� 1) mod P ; i � n� P + 1An example of the resulting mapping level graph for P = 4 is shownin Fig. 4.26(b). For these mapping level graphs, the load is not so regularfor nodes in the same layer, due to the di�erent number of rows that ea
hnode may be pro
essing. Thus, the workload model is more
ompli
ate.Let us assume (n mod P) = 0 for simpli
ity:�(v 2 Li) = 8<: 0 if i = 1b(n� i+ 1)=P
 � row if i 6= 1; �(v) � 1 < (i� 1) mod Pd(n� i+ 1)=P e � row if i 6= 1; �(v) � 1 � (i� 1) mod Prow =
� (n� i+ 2)We
on
lude that extra
ting graph models from programming level spe
i�-
ations is a simple task for typi
al stati
 programs, where the syn
hronizationpatterns are regularly repeated for s
alability. Mapping level graphs may memore
ompli
ate and highly di�erent from the
orresponding programming levelgraphs. As the data is spread a
ross pro
essors in di�erent patterns, the syn
hro-nization stru
tures are adapted to these new patterns. Nevertheless, it is stillan a�ordable task. The graph models obtained
learly represent the task andsyn
hronization stru
tures of the appli
ations, and may be used with automati
SP-ization te
hniques to obtain equivalent SP versions of the original appli
ation.4.2.3 Appli
ation
ost models at implementation levelWhen implementing an appli
ation for an spe
i�
 ma
hine model, new
on-straints appear. The
ommuni
ation/syn
hronization stru
tures must be adaptedto the low level me
hanisms of the sele
ted target ma
hine model. ME may betransformed to stati
 dependen
es through s
heduling in some models, while oth-ers will relay this task to run-time
ontention in
ommuni
ation systems. Thus,the implementation of
ommuni
ation/syn
hronization me
hanisms may trans-form the task graph, adding new details. Communi
ation stru
ture and
om-muni
ation delays are now an important issue. They are introdu
ed as nodes oftheir own spe
i�
 type. We will distinguish as many node types as needed (tasks,point to point
ommuni
ations, barriers,...). Nodes of the same type will sharea
ommon workload distribution.The
ommuni
ation graph stru
ture is dependent on the implementation ofthe underlying
ommuni
ation layer and parallelization tools sele
ted. For ex-ample, di�erent implementations of a message passing library (as MPI) mayimplement the
ommuni
ation stru
ture of a broad
ast
olle
tive operation in

4.2. REAL APPLICATIONS 199di�erent ways (syn
hronized vs. non-syn
hronized, one to all point to point
om-muni
ations vs. a tree). Programming tools may also in
lude spe
i�
 s
hedulingalgorithms that produ
e di�erent transformations to the graph stru
ture. Thus,knowledge of all the low level details of the programming model
hosen for im-plementation is needed to derive a

urate graph
ost models.Deriving implementation level graphsWe des
ribe a general approa
h to derive task graphs from a program des
riptionin a given ma
hine and implementation model. This approa
h may be done au-tomati
ally for some models and programs. We spe
i�
ally
omment foundationfor automati

onstru
tion of task graphs in message passing systems.Tasks identi�
ation: Tasks are identi�ed in the same way as it was done atprogramming level (see se
tion 4.2.2). The exe
ution of sequential
odebetween two
ommuni
ation or syn
hronization operation (or
olle
tion ofoperations without
omputation in-between) is
onsidered a task.Communi
ation model: For our graph models we must use a very simplisti

ommuni
ation representation. Otherwise, the graph will be too
omplexto derive or handle. The details of
ommuni
ation
an be di�erent inany parallel programming tool and even in ea
h implementations of it. Ingeneral we must simplify as mu
h as possible but with enough detail to geta trustful approximation.We present here a simple modelization of
ommon operations in the
om-muni
ation layer of the MPI interfa
e. We
onsider two di�erent imple-mentations. One for CrayT3E and other for a Beowulf system (mpi
h).Both implementations share
ommon
hara
teristi
s that let us model oursimple
ommuni
ation s
hemes in the same way. A graphi
 representationof ea
h
ommuni
ation form dis
ussed is shown in Fig. 4.27.� Four types of
ommuni
ation nodes will be used (V
1; V
2; V
3; Vb)� When a point to point
ommuni
ation appears alone, it
an be
on-sidered as a whole in only one node (V
1).� In the situation where a program is issuing several point to point
ommuni
ations one after the other, all of them should be divided intwo nodes:1. The �rst phase node (V
2) will
orrespond to bu�ering the messageand initiating the real
ommuni
ation. This phase will also delaythe beginning of the next
ommuni
ation.2. The se
ond phase node (V
3) will
orrespond to real
ommuni
a-tion and re
eption for the message, and it will delay only the startof the re
eiving task.

200 CHAPTER 4. EXPERIMENTAL STUDY
point2point comm.

Isolated

synchronization
Barrier

Broadcast

Detailed point2point comm.
(a)

(b) (a) Initiating comm.
(b) Real comm.

Figure 4.27: Communi
ation models for MPI� A broad
ast
ommuni
ation will be represented by p (the number ofpro
essors) simultaneous point to point
ommuni
ations (V
1). Thiswill
omply with the MPI interfa
e that states that the implemen-tation of a broad
ast operation
an or
annot be syn
hronized. Im-plementations of the broad
ast operations
an distribute the messagespawning it through pro
essors in di�erent ways, being typi
al a vir-tual tree stru
ture. Nevertheless, for simpli
ity we will
onsider allthe nodes to have the same workload distribution. Measures in realma
hines support the a

ura
y of this simpli�
ation. A
ommuni
a-tion node will also
onne
t the
ommuni
ation initiating task with thenext task in the same pro
essor, to represent the
ost of issuing thebroad
ast.� Barrier syn
hronizations will be modeled with a new type of nodes(Vb). In message-passing interfa
es the barriers are typi
ally imple-mented with a tree like
ommuni
ation stru
ture. The
ost is variablewith the number of nodes involved in the barrier. Thus, a di�erenttype of node should be use for barriers with di�erent number of pro-
essors. However, the tree-like stru
tures have a logarithmi
 e�e
ton the
ost when the number of pro
essors is in
reased. For simpli-�
ation, only one type of node will be introdu
ed for ea
h range ofpro
essors number between powers of 2 (Vb2; Vb4; Vb8; Vb16; :::). Bar-rier times are easily predi
ted by dire
t measurement for any givennumber of pro
essors.Our model is simple enough to easily derive the implementation level task graphs,and a

urate enough to get asymptoti
 predi
tions of the appli
ation behavior ifproper workload models are provided for both, tasks and
ommuni
ations.

4.2. REAL APPLICATIONS 201ExampleIn this se
tion we show an example of how to use these simpli�ed
ost models topredi
t important information about the e�e
ts of SP-ization te
hniques whendi�erent MPI implementations of an algorithm are
onsidered.We have
hosen the LU redu
tion appli
ation be
ause it shows di�erent per-forman
e e�e
ts when SP-ization is applied to di�erent implementations of thesame algorithm. These e�e
ts are not dete
ted when using a programming levelmodel, but they are predi
ted and explained with our simple implementationlevel graph
ost models.We dis
uss implementations of the forward redu
tion algorithm, mapped byrows interleaving as presented in se
tion 4.2.2. Two implementations for the
ommuni
ation stage have been
onsidered (See algorithms in Fig. 4.28):IMP-1: A simple loop of point to point
ommuni
ations.IMP-2: A broad
ast operation.SP versions of both implementations are easily
onstru
ted adding a full barriersyn
hronization after the
ommuni
ation stage of ea
h iteration.(1) // LU IMP-1(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) DO pro
=1,p(6) IF p 6= myself THEN(7) Send(pro
,row)(8) END-IF(9) END-DO(10) ELSE(11) Re
eive(row)(12) END-IF(13)(14) Barrier (ONLY SP VERSION)(15)(16) // COMPUTING: UPDATE ROWS(17) ...(18) END-DO

(1) // LU IMP-2(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) Copy row in sending position(6) END-IF(7) Broad
ast(row,mod(iteration,p))(8)(9) Barrier (ONLY SP VERSION)(10)(11) // COMPUTING: UPDATE ROWS(12) ...(13) END-DO
Figure 4.28: LU redu
tion message-passing algorithmsThe
orresponding graph models for a mapping in 4 pro
essors are shownin Fig. 4.29 The key to distinguish the types of nodes follows:

202 CHAPTER 4. EXPERIMENTAL STUDYTasks Vt White nodesFull
ommuni
ation V
1 Bla
k nodesFirst phase
ommuni
ation V
2 Big dark grey nodesSe
ond phase
ommuni
ation V
3 Small dark grey nodesBarriers Vbp Light grey nodes with dashed lineTasks are exe
uting updates on less data as iterations pass by. The meanload time of tasks is de
reasing with the layer depth. In the mapping modelwe presented a workload model that was quite
ompli
ate; dependent on thenumber of layer (iteration) and number of node inside the layer (pro
essor). Wehave tested other simpli�ed workload models. For our example we have
hosento derive a very simplisti
 task graph with only one type of node for all tasks.We will use the same Gaussian random distribution to
al
ulate the load in ea
hnode. Modeling any task load with the same random distribution is a very roughapproximation. However, we �nd that using statisti
al information from sampleexe
utions, for mean and deviation parameters, the a

ura
y is enough for ourpurposes. It is the
ommuni
ation pattern the one whi
h plays the importantrole in the results.The statisti
al workload information
an be obtained from sample exe
utionsor by any known predi
tion method. The results obtained will be highly sensibleto the workload information a

ura
y, espe
ially be
ause we are using su
h arough approximation of the real workload model. The mean and deviations usedfor task and
ommuni
ation nodes have been statisti
ally obtained, from dire
tmeasures when exe
uting
odes of the MPI implementations dis
ussed here. Fortasks we use the overall mean and deviation when all tasks are
onsidered to-gether. Two ma
hines with di�erent
ommuni
ation times and
hara
teristi
sare
onsidered; a CrayT3E and a Beowulf system.The graph models obtained are used to simulate performan
e behavior of theSP and NSP versions of ea
h implementation. The results obtained from themodels
an be used to determine whi
h implementation may be safely translatedto SP (asymptoti
 behavior is not modi�ed).We present �rst an a

ura
y study,
omparing predi
tions obtained from thegraph models with exe
ution times of real implementations in a CrayT3E and aBeowulf system. To supply graph models with workloads, we gather statisti
alinformation about mean and deviation values for the load on di�erent types ofnodes, from experiments with real
odes. The size of the problem is s
aled upwith the number of pro
essors, using matri
es of double data size when doublingthe number of pro
essors. The initial matrix size has been empiri
ally
al
ulatedfor ea
h ma
hine to obtain similar task times. Table 4.1 shows the estimated pa-rameters in the two ma
hines
onsidered, for the number of pro
essors available.The load values have been rounded up before using them for graph simulations.CrayT3E has faster mean
ommuni
ation times with lower deviations, even

4.2. REAL APPLICATIONS 203
IMP-2 SP versionIMP-2 NSP versionIMP-1 NSP version IMP-1 SP version

Figure 4.29: Implementation models of LU redu
tion with distributed rows

204 CHAPTER 4. EXPERIMENTAL STUDYCrayT3EVt V
1 V
2 V
3 VbpPro
. � �2 � �2 � �2 � �2 � �216 19 0.28 0.66 0.00001 0.22 0.00001 0.44 0.00001 0.104 0.00000132 19 0.28 0.88 0.00001 0.22 0.00001 0.66 0.00001 0.143 0.00000164 19 0.28 1.32 0.00001 0.22 0.00001 1.10 0.00001 0.175 0.000001128 19 0.28 2.22 0.00001 0.22 0.00001 1.98 0.00001 0.224 0.000001BeowulfVt V
1 V
2 V
3 VbpPro
. � �2 � �2 � �2 � �2 � �22 19 0.31 1.00 0.0001 1.00 0.0001 0.00 0.0001 0.50 0.000014 19 0.31 2.00 0.0005 1.00 0.0001 1.00 0.0001 1.00 0.000108 19 0.31 6.00 0.0007 1.00 0.0001 5.00 0.0001 3.00 0.0010016 19 0.31 9.00 0.0010 1.00 0.0001 8.00 0.0001 6.0 / 2.0� 0.00100Table 4.1: Load estimated times (millise
onds)for a large number of pro
essors. Thus, the results of the simulations will be morereliable. The barrier syn
hronization system is also more eÆ
ient when s
alingup. It is noteworthy the strange e�e
t of barrier times for 16 pro
essors in theBeowulf system. After a group of point to point
ommuni
ations, full barriertime still grows up (6.00ms). However, after a broad
ast operation, the time iseven smaller than with less pro
essors (2.00ms). It seems that an optimizationof either the MPI implementation or the hardware is
arried out when a barrieris issued after a broad
ast with all the pro
essors in the system. Communi
ationmean times in the Beowulf are in general not so mu
h reliable, as unexpe
tedpeaks are
ommonly found.Comparative results from real exe
ution times and predi
tions with the graphsare shown in Fig. 4.30. In all
ases the performan
e predi
ted times are similarto the real measures, and they show the same slope tenden
ies.The �rst e�e
t observed is that IMP-2 s
ales better than IMP-1. The graphmodel
an be used to explain the e�e
t. IMP-1
reates a strange
ommuni
ationpattern, that is not well balan
ed. The loop is always sending messages topro
essors in stri
t numbering order while the origin of
ommuni
ations is
y
ling.In Fig. 4.28 (NSP IMP-1), we
an see that the �rst phase of ea
h point to point
ommuni
ation, a

umulated for all send primitives, is not evenly distributed toother pro
essors. Depending on how signi�
ant is the mean load of the V
2 nodes
ompared to V
3, the overall performan
e
an be badly a�e
ted. Moreover, asmore pro
essors get involved, the delay grows higher. The relative importan
e ofV
2 vs. V
3 loads is higher in the Beowulf system than in the CrayT3E, as shownin Table 4.1. However, we use many more pro
essors in the CrayT3E. Thus,the �nal e�e
t is even more noti
eable in CrayT3E. The broad
ast primitive ofIMP-2 s
ales
learly better than the IMP-1 for both NSP and SP version.Changing the loop indexes to
y
le with the pro
essor initiating the
om-

4.2.REALAPPLICATIONS
205

50

100

150

200

250

16 32 48 64 80 96 112 128

E
xe

cu
tio

n
T

im
e

(s
ec

.)

CPUs

CrayT3E - LU IMP-2 (1600x1600 16 Proc., scaled up)

Model NSP
Model SP
Real NSP

Real SP

20

40

60

80

100

120

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(s
ec

.)

CPUs

Beowulf cluster - LU IMP-2 (600x600 1 Proc., scaled up)

Model NSP
Model SP
Real NSP

Real SP

50

100

150

200

250

16 32 48 64 80 96 112 128
E

xe
cu

tio
n

T
im

e
(s

ec
.)

CPUs

CrayT3E - LU IMP-1 (1600x1600 16 Proc., scaled up)

Model NSP
Model SP
Real NSP

Real SP

20

40

60

80

100

120

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(s
ec

.)

CPUs

Beowulf cluster - LU IMP-1 (600x600 1 Proc., scaled up)

Model NSP
Model SP
Real NSP

Real SP

Figure4.30:Performan
e
omparison:Realtimesvs.predi
tedtimes

206 CHAPTER 4. EXPERIMENTAL STUDY

0.9

1

1.1

1.2

1.3

1.4

1.5

16 32 48 64 80 96 112 128

ga
m

m
a

CPUs

CrayT3E - LU (1600x1600 16 Proc., scaled up)

Model IMP-1
Real IMP-1

Model IMP-2
Real IMP-2

0.9

1

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12 14 16

ga
m

m
a

CPUs

Beowulf cluster - LU (600x600 1 Proc., scaled up)

Model IMP-1
Real IMP-1

Model IMP-2
Real IMP-2

Figure 4.31:

omparison: Real times
 vs. predi
ted times
muni
ations will alleviate part of the problem. However, the SP version thatadds a barrier after the
ommuni
ation stage is always delaying all pro
essesup to the a

umulation of all
ommuni
ations �rst phase. When the number ofpro
essors grows, the problem gets linearly worse. Fig. 4.31 shows the valuesof
 (performan
e loss due to SP-ization) for real and predi
ted results. It
anbe seen that IMP-2 is perfe
tly suitable for SP programming, as the
 valueskeep almost
onstant when the appli
ation is s
aled up. The loss of performan
ein SP version of IMP-2,
learly seen in the Beowulf
ase, is generated by thetimes needed for barrier syn
hronizations when the number of pro
essors growup. Better barrier syn
hronization me
hanisms will diminish this loss. The peeksin
ommuni
ation/syn
hronization times in the Beowulf also helps this grow.We must also point out the
urve slope di�eren
es between measured and

4.2. REAL APPLICATIONS 207predi
ted
 values. Sin
e we used simpli�ed graph models in our simulations,some irregularities appear, espe
ially in the
entral part of the number of pro-
essors axis. In general, predi
ted results are higher than real measures, whi
h isa
onsequen
e of the rounded up approximations we have used. As the numberof pro
essors (and thus the exe
ution time) grows, the relative importan
e of a
-
umulated rounding errors is smaller. All this
ould perfe
tly explain the shapedi�eren
es of the
 predi
tion
urves.With the predi
tions obtained with our simpli�ed graph models we
an re
-ognize that IMP-2 is in general better than IMP-1 due to the implementation onthe underlying message-passing library. IMP-1 is espe
ially not well suited forSP-ization with full barrier syn
hronization. On the other hand, IMP-2 behaves
orre
tly in SP version, providing a very small loss of performan
e.Con
lusionThe previous study shows how very simple graph models
an be used to asymp-toti
ally predi
t performan
e e�e
ts produ
ed by syn
hronization stru
ture mod-i�
ations. For simpler appli
ations, graph
ost models derived at programminglevel will be a

urate enough. When more
omplex mappings are used, moredetailed models must be derived, at mapping or even implementation abstra
-tion levels. However, very simple graph modelation te
hniques, that
an be evenautomated to extra
t stru
ture from
odes, turn up to be a

urate enough.4.2.4 Stati
 appli
ations resultsIn this se
tion we dis
uss the results of our study of
 and � for stati
 appli
a-tions. The experimental framework design was dis
ussed in se
tion 4.2.1. First,we obtain experimental measures of � from the exe
ution times obtained withreal MPI implementations of the NSP and SP versions of the sele
ted appli
a-tions for di�erent ma
hines. We extra
t workload information by monitoring theappli
ations exe
ution. Using statisti
al information about the real workload, weexperimentally estimate
 with the
ost models dis
ussed in previous se
tions,to validate the simple graph modeling te
hniques for ea
h appli
ation sub
lass.We
ompare our � results with
 predi
tions and general trends obtained forsyntheti
 graphs, presented in se
tion 4.1.We more pre
isely de�ne here the relative performan
e indi
ator we use for�. Our referen
e programming model will be the MPI with point to point (orbasi

olle
tive)
ommuni
ations implementation.De�nition 4.2.3 Let TMPI be the exe
ution time of the NSP version with pointto point (or basi

olle
tive)
ommuni
ations. Let TMPI+Barriers be the exe
u-tion time of the SP version generated adding barrier syn
hronizations after ea
h

208 CHAPTER 4. EXPERIMENTAL STUDY
ommuni
ation phase. Then: � = TMPI+BarriersTMPIThe following results are exposed:1. Performan
e e�e
ts predi
ted with the graph models are similar to thoseobtained with syntheti
 graphs:In the
ase of Ma
ro-Pipeline and 1D Cellular automata, the graph modelsare inside the syntheti
 meshes graph
lasses studied in se
tion 4.1.3. Infa
t, Ma
ro-Pipeline was used as foundation for the unbalan
ed syn
hro-nization meshes experiments. The 1D Cellular automata is also similarto the random graph meshes generated with S = 3. However, in ran-dom meshes, the edges were not propagating dependen
es only to neighbornodes, but to further nodes with the same probability. In neighbor sten-
il based graphs, the dependen
es are spread a
ross layers slower than forrandom syn
hronization fun
tions, and the SP-ization should produ
e alittle higher impa
t. In Fig. 4.32 we show that using random distributedworkloads with the 1D Cellular automata graph model, we obtain verysimilar predi
tions as for S = 3 syntheti
 meshes. However, the
 resultsare slightly higher (
ompare with plot slopes in Fig. 4.10 and Fig. 4.11).The FFT appli
ation graph model present a low syn
hronization densityparameter S = 2, and a number of layers dependent on the degree ofparallelism D = log2 P . Thus, the number of layers is always low, and the
riti
al parameter is the layers size P . In Fig. 4.33 we show the resultsof experiments with FFT graph models supplied with random workloads.The results
on�rm the same logarithmi
 like e�e
t of parameter P on
,for butter
y network stru
tures.The LU redu
tion graph model derived at programming level, present inter-esting features. The S; P;D parameter values are dependent on the inputmatrix size n. Thus, the topology has always a similar triangular shape,more di�erent from the syntheti
 meshes than the previous appli
ationsstudied. Moreover, the workload model is dependent on the number oflayer. For experiments with random workloads we propose a random work-load model where �i is determined as a fun
tion of the layer index by theworkload model proposed in se
tion 4.2.2 for LU, and � is
omputed as afun
tion of �i and a
hosen variability:�i = �i � & : & 2 f0:1; 0:2; 0:5; 1gIn Fig. 4.34 we show the e�e
t produ
ed on
 when we s
ale up the pro-gramming level stru
ture. For this graph model, P;D parameters are equal

4.2. REAL APPLICATIONS 209

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

γ

P

1D Cellular Automata (S=3, D=100)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

γ

D

1D Cellular Automata (S=3, P=100)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.32:
 results for random workloads in 1D Cellular automata modeland determined by the input matrix size n. The S parameter is very low(below 2) and the full barrier syn
hronization
annot be avoided by theSP-ization te
hniques. Thus, as expe
ted, worse results than for other ap-pli
ations are obtained. Although the plot slopes are higher than for otherappli
ations, the same logarithmi
 tenden
ies are observed.The mapping level graph model has been also supplied with random work-loads. In this
ase, n determines D but P is only restri
tion by P � D.Thus, we have
ondu
ted experiments to test the e�e
t of both parametersseparately with huge graphs (up to half million nodes). In Fig. 4.35 weshow the
 plots for both experiments. As the minimum value of D is thesame as P , the limited e�e
t of this parameter, found in syntheti
 meshes,

210 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18

γ

D (P = 2^D)

FFT (S=3)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.33:
 results for random workloads in FFT graph modelappears immediately, even in the lower possible values. However, we ob-serve some irregularities and a very small in
reasing of
 when the inputmatrix size in
rease. The reason is the presen
e of a very small pathologi
albehavior due to some unbalan
ing in the syn
hronization patterns, as dis-
ussed in se
tion 4.1.3. The e�e
t of P parameter is following the generallogarithmi
 tenden
y, ex
ept for the irregularities produ
ed by both: thesmall unbalan
ing in the syn
hronization patterns (as found in syntheti
meshes) and the
hange of shape experimented by the graph with the Pvalues. The pathologi
al e�e
t due to unbalan
ed syn
hronization patternis produ
ing the slope irregularity around D=4, but the triangular part ofthe graph dominates the behavior after P = D=2, produ
ing another slope
hange.It is interesting to noti
e that,
onsidering the full range of results, theworkload balan
e is mu
h more important than the type of appli
ationor S parameter value. The big di�eren
es on
 among all the appli
ationsstudied, are produ
ed for big values of &. For & = 0:1 the
 values are small,and the slopes are very similar (with less than 20% of di�eren
e among allappli
ations and syntheti
 meshes), even for the biggest P values tested.2. Task workload balan
e in stati
 appli
ations:A prin
iple design of parallel appli
ations is to distribute load a
ross pro-
essors. For all stati
 appli
ations tested, the workloads are very well bal-an
ed. All task in these examples are exe
uting the same pie
e of
odefor the same amount of data. As dis
ussed in se
tion 4.2.2, FFT or LU

4.2. REAL APPLICATIONS 211

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500 600 700 800 900 1000

γ

n (P,D)

LU reduction (S<2) Programming level
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.34:
 results for random workloads in LU programming level modelappli
ations present this
hara
teristi
 only layer by layer, that is perfe
tlyenough to talk about a well-balan
ed
omputation.Thus, as predi
ted at programming level when modeling the workloads (seese
tion 4.2.2), the task loads are highly regular, showing in most
ases a neg-ligible deviation (see Table 4.2). In the table we
an appre
iate performan
ee�e
ts introdu
ed in a very low level by the ma
hine ar
hite
ture. The ex-e
ution times of tasks (sequential
odes) be
ome unstable only when theuser task is sharing the pro
essor time with operative system tasks. Thise�e
t never happens in the CrayT3E, as the operative system laun
hes theuser jobs in other free pro
essors. In the Origin2000 (a

-NUMA ma
hine)it is noti
ed only when the number of pro
essors used is equal to the max-imum installed in the ma
hine. The operative system is typi
ally runningin only one pro
essor. Hen
e, only when this last pro
essor must be sharedwith user pro
esses, awful e�e
ts that degrades the user tasks performan
eappear (
a
he trashing, pro
esses migration a
ross pro
essors, et
.). TheBeowulf, representative of NOWs and low
oupled systems, is the worst
ase. In these ma
hines, most of the operative system tasks, and the MPIdaemon operations, are exe
uted lo
ally in ea
h node. Thus, the user tasksmust share time with them. As the amount of pro
essors in
reases, more
ommuni
ation and syn
hronization operations share the limited networkbandwidth. Thus, their times in
rease. Moreover, the
omplexity of lowlevel
ommuni
ation tasks also in
reases (
olle
tive operations, as barriersare a good example). Thus, the time of exe
uting the same pie
e of
odewith the same data in
reases and be
omes less predi
table. This e�e
t, typ-

212 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500 600 700 800 900 1000

γ

D

LU reduction - Mapping level (P=100, S<2)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500 600 700 800 900 1000

γ

P

LU reduction - Mapping level (D=1000, S<2)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.35:
 results for random workloads in LU programming level modeli
al in low
oupled systems (for whi
h Grid
omputing is the extreme
ase),enfor
es an idea related to SP SA: potential bene�
ial e�e
ts
an be ob-tained using hierar
hi
al division of
omputations, in lo
ally syn
hronizedsubparts (see e.g. [119, 118℄).However, the real workload variability, statisti
ally measured, is really smalleven for the worst
ases (saturated Beowulf):& < 0:024; & � 0:005This leads to extremely low performan
e losses for the SP versions.

4.2. REAL APPLICATIONS 213

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 4 6 8

Γ

Procs.

Origin - Gamma
Macro-Pipeline

Cellular Automata
FFT

LU reduction

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

16 32 48 64 80 96 112 128

Γ

Procs.

CrayT3E - Gamma
Macro-Pipeline

Cellular Automata
FFT

LU reduction

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 4 6 8 10 12 14 16

Γ

Procs.

Beowulf - Gamma
Macro-Pipeline

Cellular Automata
LU reduction

Figure 4.36: � results

214 CHAPTER 4. EXPERIMENTAL STUDYOrigin2000Ma
ro-Pipeline Cellular automataPro
. � �2 � �22 23 <0.001 28 <0.0014 23 <0.001 28 <0.0016 23 <0.001 28 0.0018 23 0.002 29 0.003CrayT3EMa
ro-Pipeline Cellular automataPro
. � �2 � �216 52 <0.001 27 <0.00132 52 <0.001 27 <0.00164 52 <0.001 27 <0.001128 52 <0.001 27 <0.001BeowulfMa
ro-Pipeline Cellular automataPro
. � �2 � �22 21 0.003 27 <0.0014 22 0.105 27 <0.0018 23 0.136 28 0.00216 23 0.288 28 0.002Table 4.2: Statisti
al workload information for highly regular appli
ations (ms.)3. Very low performan
e degradation:In Fig. 4.36 we show the � plots that summarize the results obtained withreal appli
ation
odes in di�erent ma
hine ar
hite
tures. We observe thegeneral logarithmi
 tenden
ies when the appli
ations s
ale up, predi
tedwith the programming level models. However, with extremely low slopesdue to the small relative deviation of the task loads. Irregularities in theplots are produ
ed by di�erent low level ma
hine e�e
ts des
ribed below.4. Ma
hine ar
hite
ture independen
e, and side e�e
ts:Di�erent irregularities and strange e�e
ts in � plots are observed a
rossma
hines (see e.g. the performan
e upgrading of LU redu
tion appli
ationsin CrayT3E and Origin2000 for some spe
i�
 number of pro
essors). All ofthem are easily explained by the di�erent nature of ma
hine ar
hite
tureand operating system a
tivities, that a�e
t every appli
ation run.We observe that the most regular results are obtained in the CrayT3E,where the task loads are more stable and the
ommuni
ation
osts arelower. The performan
e loss is less than 2% in the worst
ase for 128pro
essors. In the Origin2000, the barrier
osts are
omparatively higher,and it a�e
ts the performan
e. We also see the high impa
t of runningthe appli
ations with the maximum number of pro
essors available in thema
hine (8 pro
essors in this
ase), when the user tasks share resour
es

4.2. REAL APPLICATIONS 215(as CPU) with the operative system tasks, that are typi
ally running inonly one pro
essor. In the Beowulf system we appre
iate the in
reasing
osts that appear due to irregularities produ
ed by task, operative system,and
ommuni
ation overlapping in every node. However, the performan
edegradation is still very low (less than 5% for the worst
ases).A remarkable
ase previously dis
ussed is the LU redu
tion appli
ation.Re
all the implementation
onsiderations exposed in se
tion 4.2.3. Even ifno
ompiler optimization is used, the
ommuni
ation layer performs run-time optimizations when a
olle
tive
ommuni
ation primitive is followedby a barrier. This e�e
t is observed for spe
i�
 numbers of pro
essors in theCrayT3E and Origin2000. In these ma
hines, the MPI implementations areoptimized by the vendor for the ar
hite
ture and low-level hardware details.An improvement of performan
e, around 2%, is obtained in some
ases.Apart from this predi
table irregularities, the performan
e degradation dueto added dependen
es is proportional to hardware speed a
ross ma
hines.Spe
i�
 ma
hine e�e
ts with high impa
t in performan
e, a�e
t in the sameway to the NSP and the SP versions. For example, in the Beowulf system,we observe
ompletely di�erent
ommuni
ation time response when appli-
ations s
ale up from 6 to 8 pro
essors (see Fig. 4.37). Nevertheless, theydo not modify, or even improve, � results (the relative performan
e impa
tis de
reased when a
onstant is added to both: NPS and SP exe
utiontimes).Thus, di�erent ar
hite
ture models do not
reate unexpe
ted di�eren
es inthe � tenden
ies. The general
on
lusions obtained from the results arethe same in all
ases. The real performan
e e�e
ts produ
ed by
hangingthe programming style or model to a restri
ted PPM, is independent of thema
hine ar
hite
ture.We
on
lude that: (1) General tenden
ies (e.g. logarithmi
 e�e
t when s
alingup) observed with syntheti
 graphs are found in real appli
ations; (2) stati
, s
al-able appli
ations are, in general, well balan
ed appli
ations. Thus, as predi
tedwith syntheti
 graphs, and the appli
ation spe
i�
 graph models, the potentialperforman
e e�e
t when programming these appli
ations in SP programmingmodels is extremely low; even when no SP spe
i�
 optimization or run-time en-vironment is exploited. For some appli
ations (as LU redu
tion implementedwith broad
ast), highly stru
tured syn
hronization is exploited by implementa-tions at run-time level, even by non-spe
i�
 NSP programming models as MPI.4.2.5 Dynami
 appli
ations resultsIn this se
tion we dis
uss the results of our study of
 and � for dynami
 ap-pli
ations. Re
all the experimental framework design dis
ussed in se
tion 4.2.1.

216 CHAPTER 4. EXPERIMENTAL STUDY

16

18

20

22

24

26

28

30

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(s

ec
.)

CPUs

Beowulf - Macro-Pipeline (500xProc., 800 iterations)
MPI (NSP)

MPI-Barriers (NSP)

20

22

24

26

28

30

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(s

ec
.)

CPUs

Beowulf - Cellular automata (800 x 100xProc., 800 iterations)
MPI (NSP)

MPI-Barriers (NSP)

Figure 4.37: Exe
ution times of some appli
ations in the Beowulf systemDue to the data-dependent nature of these appli
ations, we
an only explore
as a fun
tion of stru
tures generated by spe
i�
 appli
ations for a given inputdata. Hen
e, we use example stru
tures, representative of the typi
al stru
turesgenerated by a given appli
ation. These example stru
tures
an be obtained atrun-time by monitoring existing appli
ations, or
an be derived manually fromthe data stru
ture and the
ode. The se
ond method is
lumsy, una�ordablefor
omplex appli
ations, and impossible when run-time de
isions (as some MEor s
heduling solutions) are inherent to the original
ode. For our experimentswe have sele
ted several available examples of task graphs generated manuallyor during run-time for two typi
al appli
ations, representative of important andlarge appli
ation
lasses dete
ted in the
lassi�
ation presented in se
tion 2.6.Both are based on �nite element solvers, and they represent the stru
tures gen-

4.2. REAL APPLICATIONS 217erated by typi
al iterative and dire
t solvers for sparse-matrix
omputations.Iterative solvers and graph partitioningMany �nite element and PDE problems are solved by iterative methods appliedto the sparse adja
en
y matrix that represents the problem graph. Stru
turalengineering,
hemi
al and physi
al phenomena simulations, and many other prob-lems use these methods. The problem graph is distributed among the availablepro
essors by a partitioning algorithm that try to balan
e the load and minimizethe
ommuni
ation due to links between graph nodes allo
ated in di�erent pro-
essors. The solver algorithms apply the same
omputation for ea
h iterationon the lo
al nodes, and
ommuni
ate the
omputed values that other pro
essorsneed before the next iteration. Hen
e, for these problems, the
omputational loadof a task is proportional to the number of nodes allo
ated in a given pro
essor.Given example input graphs and a partitioning algorithm, we
an
omputethe data distribution for any number of pro
essors. Thus, we
an re
onstru
t themapping level graph asso
iated with the
omputation, in
luding load estimations.The graphs
an be used to estimate
 values for this
lass of appli
ations.We have sele
ted six example graphs from the stru
tural engineering �eldas study
ases. The graphs are obtained from the Everstine's
olle
tion2, to befound inside the Harwell-Boeing
olle
tion of sparse-matri
es [58℄. This publi

olle
tion is available on the Matrix Market home page [146℄. We have sele
tedsix graphs that present di�erent stru
ture patterns, and
over a wide range ofnodes number, from the available in the full set (87,209,607,1005,1242,2680).From now on, we add the number of nodes after the name of ea
h example for
larity. In Fig. 4.38 we show 3D models of the obje
ts from whi
h the matri
esare obtained, and in Fig. 4.39 we show the sparse-matri
es stru
tures.The graph partitioning algorithm sele
ted is METIS (see e.g. [167℄), that is afree and state-of-the-art multi-level partitioning software for unstru
tured graphs,that
an be found in the METIS/ParMETIS home page [117℄. We have used thissoftware to partition the input graphs for 4,8,16,32,64 number of pro
essors. Theobtained data is pro
essed to re
onstru
t the mapping level graphs, and to obtainthe statisti
al information needed.From the
olle
ted data we observe the following results:1. Good load-balan
e:As the
omputational load is typi
ally proportional to the number of nodesallo
ated in the lo
al pro
essor we
an estimate the mean load and deviationwith the number of nodes in ea
h part. In Table 1 we show the workload2These patterns were
olle
ted from various US military and NASA users of NASA's stru
-tural engineering pa
kage NASTRAN for use as a ben
hmark
olle
tion for variable bandwidthreordering heuristi
s. They have been widely used in ben
hmarks.

218 CHAPTER 4. EXPERIMENTAL STUDY

Console-209

Wankel rotor-607 Baseplate-1005

Destroyer-2680Sea chest-1242

Tower-87

M
a

tr
ix

 M
a

rk
e

t
-

H
a

rw
e

ll
B

o
e

in
g

 C
o

lle
c

ti
o

n
 -

 E
v
e

rs
ti
n

e
’s

 c
o

lle
c

ti
o

n

Figure 4.38: 3D models of the stru
tural engineering examples

4.2. REAL APPLICATIONS 219

Console-209

Wankel rotor-607 Baseplate-1005

Destroyer-2680Sea chest-1242

Tower-87

M
a

tr
ix

 M
a

rk
e

t
-

H
a

rw
e

ll
B

o
e

in
g

 C
o

lle
c

ti
o

n
 -

 E
v
e

rs
ti
n

e
’s

 c
o

lle
c

ti
o

n

Figure 4.39: Sparse-matri
es stru
ture of the stru
tural engineering examples

220 CHAPTER 4. EXPERIMENTAL STUDYvariability obtained for ea
h example with a given number of pro
essors.The graph partitioning methods are designed to
reate a well-balan
ed dataExample # Pro
s.4 8 16 32 64Tower - 87 .0199 .1747 .2053 .1658 .5723Console - 209 .0249 .0127 .1469 .1875 .1457Wankel rotor - 607 .0505 .0267 .0422 .0466 .3334Baseplate - 1005 .0183 .0199 .0212 .0442 .0663Sea
hest - 1242 .0204 .0190 .0176 .0176 .0680Destroyer - 2680 .0155 .0172 .0241 .0243 .0306Table 4.3: Estimated & for partitioned iterative solver task graphspartition. We observe very low variabilities, as the partitioning method isperforming quite well. The only
ases where the values are higher thana very small bound & > 0:1, are found when the number of nodes perpro
essor is very low, and the parallelism exploitable is very poor (see e.g.the smaller example, Tower-87). For normal real
omputational problems,the load will be well distributed, leading to minimum performan
e e�e
twhen SP-ization is applied.2. Regular stru
tures:In Fig. 4.40 we present an example of a small mapping level graph gen-erated for some iterations with the Sea
hest-1242 example, mapped for 8pro
essors. Re
all that redu
ing the number and load of
ommuni
ationsamong pro
essors, and promoting some neighborhood, is an obje
tive of thepartitioning algorithms. Hen
e, we �nd that the stru
tures obtained arevery similar to the syntheti
 meshes studied in se
tion 4.1.3. The shape ofthese mapping level task graphs is highly regular. They have a �xed num-ber of nodes per layer (the number of pro
essors for whi
h the partition is
omputed) and ea
h layer represents an iteration of the solver. The numberof edges per node is determined by the partition
omputed. In Fig. 4.41we show the S parameter measured for the generated graphs. Its valuesare found in a narrow range, and the general trend is that S in
reases log-arithmi
ally with the number of pro
essors. When the number of nodesper pro
essor is very low, we �nd again a
ase where there is not enoughparallelism available and the number of
ommuni
ations de
rease (see e.g.the Tower-87 example plot). Thus, the in
rease of P values is somehow
ompensated by the in
rease of S. This e�e
t together with the small loadvariability observed, predi
t very low
 values for this appli
ations type.3. Load distribution
orrelation:There exists an important
orrelation in how the loads are distributed

4.2. REAL APPLICATIONS 221
0

159 157 157 150 157 153157 152

159 157 157

150

157 150 157 157 152

150 157 157

157

153

152

157

153

152

159 157 157

153

150 157 157 152 153

159

0

157

159 157 157 150 157 157 152 153

159 157 157 150 157 157 152 153

159 157 157 150 157 157 152 153

159 157 157

Figure 4.40: Example task graph: Sea Chest-1242, 8 pro
essors, 8 iterationsa
ross the graph. Di�erent layers represent di�erent iterations of the same
omputations. Thus, when the partition assigns di�erent number of modelnodes to di�erent pro
essors, the load distribution has a verti
al
orrelationwith the topology. If an implementation level graph is
onsidered, where
ommuni
ation
osts are a

ounted, the
orrelation
an be even more no-ti
eable. This
orrelation may produ
e a bene�
ial
 redu
tion, espe
iallyin these
ases of low workload variability along several iterations (see se
-tion 4.1.3).4. Negligible performan
e degradation:In our set of experiments with these graphs, using the loads estimated withthe number of nodes allo
ated to ea
h task in the partition, with havefound no
riti
al path value in
rease due to SP-ization ex
ept in
ases ofassuming high load variabilities for nodes. This will not be the
ase forthis kind of appli
ations, where a pro
essor is repli
ating exa
tly the sametask in ea
h iteration. The real loads have extremely low variabilities indi�erent instan
es of the same node. In this
ase, the SP-ization e�e
t istypi
ally negle
ted.The
on
lusion is that if the partitioning algorithm is produ
ing a good par-tition and no other run-time or ma
hine details severely a�e
t the load balan
e,

222 CHAPTER 4. EXPERIMENTAL STUDY

0

2

4

6

8

10

12

0 8 16 24 32 40 48 56 64

S

Proc.

Iterative solver - Graph partitioning examples
Destroyer-2680
Sea chest-1242
Baseplate-1005

Wankel rotor-607
Console-209

Tower-87

Figure 4.41: S parameter for partitioned iterative solver task graphsiterative solvers for this kind of sparse-matri
es
an be programmed in nestedparallelism programming models with negligible loss of performan
e. The ex-tra syn
hronizations and barrier
osts are not a

ounted, but SP programmingadvantages are also not
onsidered. For example, the knowledge of the global
ommuni
ation stru
ture may still be exploited to improve
ommuni
ation per-forman
e (see e.g. [57℄).Domain de
omposition and sparse-matrix fa
torizationThe DIANA software [55℄ is oriented to the stru
tural engineering �eld. It in-
ludes several methods, based on dire
t solvers for sparse-matri
es, to
omputesolutions to �nite-element problems. The software in
lude domain de
ompositionand sparse-matrix fa
torization modules [123℄. Our example task graphs were ob-tained during the resear
h
ondu
ted to parallelize the DIANA software pa
kage.They represent examples of domain de
omposition and sparse-matrix fa
toriza-tions of real data with di�erent input sizes. The fa
torizations were implementedusing a tool for parallel exe
ution of unstru
tured problems (Tgex [124℄).For ea
h of these graphs we apply the Algorithm2 SP-ization te
hnique, andwe measure

omparing the
pv of both graphs. First, we apply di�erent syn-theti
 random workloads to the nodes. Then, we
ompare the results, with �estimations obtained when real workloads (measured at run-time) are
onsideredin the nodes.The number of nodes in our example graphs are: 59, 113, 212, 528, 773and 2015. In Fig. 4.42 we showed the 113 nodes graph before and after thetransformation. The �rst part of the graph, before it a
hieves its maximum

4.2. REAL APPLICATIONS 223width, is the domain de
omposition phase. The rest of the graph represents thesparse-matrix fa
torization. An indi
ation of the real workload distribution isshown; darker and bigger nodes represent more loaded nodes.After experiments with these graphs the following results are exposed:1. Topology regularities:Due to the nature of the appli
ation, the topologies present some regu-larities. Fig. 4.43(a) shows
 measures for the six example graphs whenusing modeled workloads with Gaussian distributions, as a fun
tion of therelative syn
hronization density (Rs) parameter. They approximately fol-low the expe
ted tenden
y dete
ted with syntheti
 random topologies inse
tion 4.1.2;
 de
reases with Rs. However, if we
ompare these plotswith the equivalent plots for syntheti
 random topologies (see Fig. 4.5), wefound that the points are below the expe
ted mean values for
ompletelyrandom samples. The topologies of these sparse-matrix
omputations arenot
ompletely irregular, and they are not in the worst
ase topologies.2. Workload distribution regularities:In Table 4.4 we show statisti
al information about the real task loads. We�nd that the workload is highly deviated. Few nodes
on
entrates thebiggest part of the overall load. Nevertheless, we
an see in the graphi
al# nodes &59 2.1113 3.0213 1.4528 2.0773 7.12015 2.6Table 4.4: Statisti
al information of real workloads for sparse dire
t solver.representation of the graphs that the highly loaded nodes are not randomlydistributed (see e.g. the position of darker nodes in the example graph pre-sented in Fig. 4.42). We �nd some of them distributed among the beginningnodes of the domain de
omposition phase, and some other ones at the �rstlayers of the fa
torization phase. In Fig. 4.43(b) we show � estimationsfor the graphs
onsidered with real workloads measured during exe
ution.Information about the number of nodes n and the relative deviation (&) isadded to ea
h point.Measured real workloads showed higher deviations than any of the Gaus-sian models used for ea
h topology. However, � values are very low, andmu
h better than expe
ted. The reason for this is that real workloadsare not
ompletely distributed at random a
ross the task nodes. They are

224 CHAPTER 4. EXPERIMENTAL STUDY
330

2400

2000 14001600 600400 400400

6

6384

13230

4536 4455 12151080 810

881

1124

3760

2896 9841488 1468474

784 294196 196196

363

9

4

4984

36 3636

4

4408

297

2

13

1616

293

2

7

8533

7475 174845541104276

16

1

4540535014001674 852

1125

8550 45003150900 900

0

970

330

0

1400 1600 600400 400400

254

2

30

13

2280

866472205054 5776 21661444 14441444

0

5662

5453 2584266

848

576

47

1202

7778

28802016 2304 864576 576576

1016

168

19

384256 256256

9

13572

5684 66126496 5684928 1160580

0

4155

3025

1720

7

5

5

5

14 53

33

1 1

1

1

1

1

71 372677

17 20

75

55 574733 38 149 99

30

21

24 9

6

66

47524300 3608612

60151740 4260 1620 1080300

7244 8756 3312 22082734

145486622 16272 45182756 39723108

11504 51455160 34304284

3524

36284472

39323590

3668

46903283938

14482 13752 37204840 33484360

13230

4536 4455 1215 1080 810

36

0

0

3628

4472 297

36 36

16

0

3668

293

16

8533

7475 1748 4554 1104 276

0

8550

0

4500 3150 900 900

5662

5453 2584 266

1400

0

11504 5145

5160 3430 4284 881

1600 600

13572

5684 6612 64965684 928 1160 580

400 400400

8664

0

7220 5054 5776

4155

6015 1740 42601620 1080 300

2166

0

1444 1444 1444

2880

0

14482 13752 3720

48403348 4360 970

20162304

4752

4300 28963608 984 1488 1468 612 474

864 576 576

7778 4540 53501400 1674

852

576

384

0

3524 3932

3590 363

256 256256

7244

8756

3312

2208

0

30

2400

2000

1400

1600

600

400

400

400

25 17 20 7 5 5

5

14

0

5

784 294196 196 196

3

3

3

1

0

1

1

1

1

0

1

71

16

37

254

26

0

7 7

17

20

7

0

5

5

5

57

47

33

38 14

4690 3283

938 2734 1202

0

9

9

9

30

21

24

9

6

14548

0

6

6622

6

16272

6

0

4518

4

2756

4

3972

4

3108

13

6384

0

7

1

3760

0

4984

0

4408

30

330

13

112

0

47

9

19

2

9

0

2

1125

330

2

2280

848

576

1016

168

Figure 4.42: Example of a dynami
 appli
ation graph and its SP version.

4.2. REAL APPLICATIONS 225

1

1.1

1.2

1.3

1.4

1.5

0.001 0.01 0.1 1

γ

Rs

Sparse matrix direct solver (6 example graphs)

(a)
G(1,1)

G(1,0.5)
G(1,0.2)
G(1,0.1)

1

1.1

1.2

1.3

1.4

1.5

0.001 0.01 0.1 1

Γ

Rs

Sparse matrix direct solver (6 example graphs)

(2015, 2.6)

(528, 2.0)

(773, 7.1) (113, 3.0)

(213, 1.4)

(59, 2.1)

ζ

(b)
Real workloads (n,)

Figure 4.43: Results for sparse dire
t solver example graphs.highly unbalan
ed, but there still exists a high
orrelation between topologystru
ture (layers and lo
al syn
hronization patterns) and workloads. This
orrelation produ
es a bene�
ial impa
t on
, similar to the one presentedfor
orrelated workload meshes in se
tion 4.1.2.Workload parameters �; � are not enough to get an a

urate estimationof the impa
t of SP-ization on a given unstru
tured topology. In general,the
orrelation between highly loaded nodes and layers will produ
e an im-provement in performan
e when mapping to nested parallelism stru
tures.For this set of experiments we �nd that sparse-matrix solvers generate taskgraphs with enough topology and workload regularities to minimize the perfor-man
e impa
t of SP-ization. However, workload parameters are not enough to

226 CHAPTER 4. EXPERIMENTAL STUDYget an a

urate estimation of the impa
t of SP-ization on a given unstru
turedtopology. In general, the
orrelation between highly loaded nodes and layers willprodu
e an improvement in performan
e when mapping to nested parallelismstru
tures.4.2.6 Con
lusions about real appli
ation resultsIn this se
tion we have tested several types of real appli
ations,
omparing thereal performan
e � in di�erent ma
hine ar
hite
tures with tenden
ies observedduring the
 study of their stru
tures. A �rst
on
lusion is that the main
 ef-fe
ts dete
ted with syntheti
 graphs (e.g. logarithmi
 e�e
t when s
aling up) arepresent in real appli
ations. At the same time we �nd that they are propagatedto the run-time level. However, the real appli
ations present high regularitiesthat minimize the performan
e impa
t of programming them in an SP parallelprogramming model. Even typi
al irregular appli
ations use load-balan
ing ormapping te
hniques that
reate important topologi
al and workload regularities.The small performan
e e�e
ts introdu
ed at the programming level are indepen-dent of the underlying ar
hite
ture. In many
ases, implementation details andlow-level ma
hine e�e
ts appear to have more impa
t on the �nal performan
ethan the
hoi
e of a restri
ted SP parallel programming model.4.3 SummaryIn this
hapter we have presented an experimental framework to determine em-piri
ally the potential and real impa
t of using a nested-parallel SP program-ming model. First, we have dis
ussed how to build syntheti
 workload distri-butions, based on i.i.d. random workloads, that
an be used with any syntheti
or real topology generated along the experimental study. We have introdu
edthe methodology to
onstru
t random graphs in order to test a sample of thegraph spa
e, and syntheti
 meshes of nodes that represent regular appli
ations.The graph meshes are used to systemati
ally test the
 e�e
ts related to sim-ple graph parameters that represent
hara
teristi
s inherent to the appli
ation(syn
hronization density) or typi
al mapping variables (degree of parallelism ornumber of iterations). The study of the graph meshes in
ludes the identi�
ationand analysis of other impa
t fa
tors (as syn
hronization unbalan
e or workloadto topology
orrelation).For real appli
ations, we have presented a
riteria to sele
t representativestudy
ases, and to sele
t ma
hine models for a real performan
e study; alongwith the implementation te
hniques and tools to allow the NSP to SP stru
ture
omparisons. We have dis
ussed the modeling te
hniques to: (1) extra
t taskgraphs from real appli
ations at di�erent levels of detail, and (2)
onstru
t graphsrepresenting irregular or dynami
 appli
ations from the input-data stru
tures.

4.3. SUMMARY 227Finally, we have introdu
ed the framework to
arry out a
pv study on all thegenerated or extra
ted graphs to obtain
 results and
ompare them with real �measures.The results obtained in this study point out that the expe
ted values of
, usedas an indi
ator of the potential performan
e impa
t of using an SP PPM, followpredi
table tenden
ies. Indeed, these tenden
ies are determined by simple andeasily measurable graph parameters. The in
rease of the degree of parallelism,measured with P , produ
es a general under-logarithmi
 in
rease on
. The graphdepth level, measured with D, has a
ompletely limited e�e
t on
, ex
ept inpathologi
al stru
tures, for whi
h we present a formal des
ription and a possibleindi
ator of the potential pathology fa
tor (!). The syn
hronization densityrepresented by S (or Rs) is the topologi
al parameter with the higher impa
t on
. For the very small values found in sparse random or highly irregular graphs(S < 2), SP-ization te
hniques that exploit lo
al syn
hronization te
hniques, asAlgorithm2, may produ
e SP-forms with small
pv in
rement. Values of S > 2have a qui
k negative exponential limiting e�e
t on
. However, around valuesof S = 2, the SP-ization te
hniques studied present the worst results, and thelower predi
tability for random topologies. As dis
ussed in se
tion 3.3.1, these
ould be the stru
tures more suitable for other mixed transformation te
hniquesbased on both, added dependen
es and dupli
ation of nodes. Nevertheless, theworkload distribution is the
riti
al fa
tor for SP-ization performan
e impa
t.Its variability and possible
orrelation with topology highly determine the main
 tenden
ies. A well-balan
ed workload distribution immediately redu
es oreven negle
ts the potential in
rease of the
pv after an SP-ization. Moreover,most of the tenden
ies previously dis
ussed are only fully appre
iated for highlydeviated workloads. Fortunately, real appli
ations present very good workload
onditions for SP-ization. In other
ase, the s
alability and
exibility of theparallel appli
ation would be
ompromised. The experimentation shows that realworkloads are usually well balan
ed and
orrelated with the graph topology. Thevalues found present better
hara
teristi
s than the syntheti
 workload modelsused during the �rst phase of our study, leading to negligible performan
e impa
twhen using SP form syn
hronization stru
tures to program real appli
ations.All these tenden
ies are propagated to the run-time low level. Even some
lasses of important irregular appli
ations use data-partition and load-balan
ingte
hniques to produ
e s
alable
odes. These te
hniques
reate enough topologyor workload regularities to negle
t the potential performan
e degradation whenprogrammed with a nested-parallel, SP, programming model. Indeed, some ma-
hine e�e
ts derivated from di�erent hardware or parallel tools implementationsappear to have more impa
t on the performan
e than using SP-restri
ted syn-
hronization stru
tures. We
on
lude that our experimental study
learly pointsout that using an SP parallel programming framework is a safe
hoi
e for mostparallel appli
ations, and potentially bad study-
ases
an be easily predi
ted.

228 CHAPTER 4. EXPERIMENTAL STUDY

Chapter 5Con
lusion The line it is drawnThe
urse it is
astThe slow one nowWill later be fastAs the present nowWill later be pastThe order isRapidly fadin'.And the �rst one nowWill later be lastFor the times they are a-
hangin'.The Times They Are a-Changin', 1963Bob DylanThe �eld of parallel programming appears to be not yet mature enough toprodu
e a
onsistent and established software development methodology. Par-allel ar
hite
tures and programming models still la
k a
ommon developmentdire
tion based on a standard ma
hine and programming model (like Von Neu-mann's in sequential programming). While ma
hines and low level programminginterfa
es are oriented to exploit the maximum parallelism and performan
e inan appli
ation, more abstra
t programming models a

ept restri
tions of expres-sive power, in terms of their SA, to obtain those analyzability
hara
teristi
sthat help in the design, programming, mapping, implementation and debuggingtasks. This expressiveness vs. analizability trade-o� needs to be
arefully ana-lyzed in order to establish whi
h
hara
teristi
s of a model are responsible for itsgood and bad properties of it, in terms of software development, implementationportability, and performan
e.Being the determining fa
tor of a programming model that
hara
terizes theabove trade-o�, in this dissertation we have studied the SA
on
ept and its rela-tion to the properties of PCMs at di�erent abstra
tion levels. We have
lassi�ed229

230 CHAPTER 5. CONCLUSIONthe SA of well-known models and appli
ations, and we have proposed and studiedan important
lass: the SP, also known as Series-Parallel, or Nested-ParallelismSA. We have found that in the design of a PCM, the de
ision to restri
t or notto restri
t SA to SP
lass, is a
riti
al one. SP vs. Non-SP is the SA barrierwhere important analyzability properties appear or disappear. Consequently, wehave presented an in-depth study on the impa
t of the expressive restri
tionsasso
iated to SP programming models to support our thesis that SP restri
tedmodels are the best
hoi
e to obtain both: highly bene�
ial software development
hara
teristi
s, and a good level of expressive power for general-purpose parallelprogramming.We have used a three-way approa
h to study the relevan
y of the SA
on
eptand the SP restri
tion for parallel programming models: (1) A
on
eptual studyof SA, where existing programming models and appli
ations are studied; (2) atheoreti
al approa
h, where the SP vs. NSP stru
tures are deeply studied with theaid of graph theory; and (3) an experimental study, where empiri
al results arepresented to validate our hypothesis about the potentially negative performan
eimpa
t of using restri
ted SP models. In our study of SAs from these three pointsof view, we have made several
ontributions and we have produ
ed signi�
antresults, obtaining relevant
on
lusions in support our thesis.5.1 ContributionsIn parti
ular, the following
ontributions are made in this dissertation:� SA des
ription and
lassi�
ation.We have introdu
ed the SA
on
ept, and we have shown how it is relatedwith the expressive power (EP), software engineering (SEC) and analyzabil-ity (AC)
hara
teristi
s of a PCM/PPM, through a
on
eptual review and
lassi�
ation of well-known existing models at di�erent abstra
tion levels.� Appli
ations
lassi�
ation in terms of SA.We have
lassi�ed parallel appli
ations in terms of the SA they naturallymap to. The
lassi�
ation is useful for dete
ting appli
ation types thatdo not map dire
tly to restri
ted syn
hronization PPMs, and to
hooseexample appli
ations, representing their SA
lasses, for further study ofthe appli
ation to PPM mapping te
hniques. Some mapping strategies arealso dis
ussed for the relevant
lasses.� NSP vs. SP graph theoreti
al study.In order to assess the performan
e loss asso
iated with the
hoi
e of anSP-restri
ted PPM for an inherently NSP problem, we have performed agraph theoreti
al study of the SP and NSP stru
tures. We have presented

5.2. CONCLUSIONS 231a number of te
hniques to transform NSP stru
tures to SP approximationsthat introdu
e minimum
hanges in topology or performan
e, in
ludingnew full graph algorithms. Methods and metri
s to measure the impa
t ofsu
h transformations in topology and potential in
rease of the
riti
al pathhave been proposed.� Analysis framework for performan
e impa
t of SA transformations.We have introdu
ed an analysis framework to predi
t the performan
e lossat the programming abstra
t level as a fun
tion of SA. Given the rela-tive importan
e of
ondition syn
hronization, we have spe
i�
ally appliedthe approa
h to predi
t the performan
e di�eren
es of using NSP vs. SP-restri
ted programming models. The framework is based on the use ofgraph theory, topology
lasses, and task workload metri
s. We have mea-sured performan
e di�eren
es (
) in terms of
riti
al path.� Simple graph modeling te
hniques for appli
ations.We have introdu
ed methods to model appli
ations and workload withgraphs, at di�erent detail levels. The signi�
an
e of the
ontribution is toshow that very simple graphs, easily derived from spe
i�
ations or evenfrom real
ode, are a

urate enough to predi
t tenden
ies and behavior ofappli
ations when syn
hronization stru
tures are transformed to map themto di�erent SA
lasses.� Full experimental study using real appli
ations.The study
onsists on a
omparison of using programming models or lan-guages in di�erent SA
lasses to implement real appli
ations, in
luding thee�e
ts of typi
al implementation traje
tories. Here we do not restri
t our-selves to the highest abstra
tion levels (
), but we use the above frameworkto dis
uss the performan
e e�e
ts of various mappings and implementationissues at lower level (�).5.2 Con
lusionsThe
ontributions presented strongly suggest the SP SA as the most promisingdesign
on
ept for new portable, eÆ
ient and easy-to-use parallel programmingmodels. PPMs in the SP SA
lass o�er important advantages in terms of soft-ware engineering and analyzability
hara
teristi
s, not available for less restri
tedmodels in the NSP
lass, with a modest trade-o� regarding expressive power. The
on
lusions of this thesis are:� SP SA leads to formal methods of software development and veri�
ation.SP restri
ted models and stru
tures are asso
iated with SP algebras and

232 CHAPTER 5. CONCLUSIONan extended automata theory. At the same time, more eÆ
ient s
heduling,
ompiling and mapping te
hniques exist for SP restri
ted stru
tures thanfor NSP stru
tures.� From the study of SA of existing parallel programming models we havefound that only PPMs/PCMs that restri
t CS stru
tures in
lude an easy-to-use and a

urate
ost model that may help in automati
 mapping de
isions.This is
riti
al for portability of programs to di�erent ar
hite
ture models.� Many appli
ation
lasses and parallel programming paradigms dire
tly mapto SP stru
tures. For those appli
ation
lasses that do not dire
tly mapto SP models, systemati
 transformation te
hniques that minimize the po-tential performan
e impa
t have been proposed. Many examples of how touse them have been presented for syntheti
 and real appli
ation stru
tures.� Simple appli
ation parameters, like the maximum degree of parallelism, aswell as workload
hara
teristi
s may be used to predi
t the impa
t of anNSP to SP transformation, at di�erent levels of detail with very simple
ost models. Su
h predi
tions are a

urate enough to predi
t the perfor-man
e asymptoti
al behavior of di�erent mappings of an appli
ation to SPprogramming stru
tures.� The performan
e degradation asso
iated with SP programming is mainlyrelated to poorly balan
ed and unstru
tured
omputations, that are dif-�
ult to program, verify and debug. In our appli
ation
lassi�
ation andexperiments we �nd that these stru
tures are far from typi
al or even in-appropriate for parallel programming in general. High performan
e un-stru
tured
omputations are programmed with hard-wired s
heduling andload-balan
ing te
hniques that transform them in more stru
tured and well-balan
ed
omputations, more suitable for SP programming.The Syn
hronization ar
hite
ture
on
ept, and this study, validate some re-sear
h dire
tions previously introdu
ed in restri
ted SA models (as e.g. BSP).Many previously intuitive ideas about the impa
t of SP programming have beenformally or empiri
ally veri�ed in this study. This may help to fo
us the atten-tion of parallel programming languages and models designers to the SP
on
ept.SP, or nested-parallelism may lead to a more fo
used resear
h dire
tion to �llthe gap between the two extreme points of the parallel programming world: ma-
hine ar
hite
ture vs. high-level programming. The development of new and moreabstra
t languages for SP restri
ted models may in
lude new
ompiling and map-ping te
hniques that exploit many bene�
ial features nowadays s
attered amongdi�erent programming models and their implementations.

Bibliography[1℄ V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koebel,U. Kremer, J. Mellor-Crummey, S. Warren, and C.W. Tseng. Requirementsfor data-parallel programming environments. IEEE Parallel & DistributedTe
hnology, pages 48{58, Fall 1994.[2℄ A. Aggarwal, A.K. Chandra, and M. Snir. On
ommuni
ation laten
y inPRAM
omputations. In Pro
. 1st ACM Symposium on Parallel Algorithmsand Ar
hite
tures, pages 11{21. ACM, 1989.[3℄ A. Aggarwal, A.K. Chandra, and M. Snir. Communi
ation
omplexity ofPRAMs. Theoreti
al Computer S
ien
e, 71(1):3{28, 1990.[4℄ J.K. Aggarwal and P. Chillakanti. Software for parallel
omputating - aperspe
tive. In A.Y. Zomaya, editor, Parallel Computing: Paradigms andAppli
ations,
hapter 12, pages 357{375. International Thomson ComputerPress, 1996.[5℄ K. Al-Tawil and C.A. Moritz. LogGP quanti�ed: The
ase for MPI. In Pro
.7th IEEE International Symp. on High Performan
e Distributed Comput-ing (HPDC-7), Chi
ago, IL USA, Aug 1998.[6℄ A. Alexandrov, M.F. Iones
u, K.E. S
hauser, and C. S
heiman. LogGP:In
orporating long messages into the LogP model. In Pro
. SPAA'95, pages95{105, Santa Barbara, CA USA, 1995. ACM.[7℄ V.A.F. Almeida, I.M.M. Vas
on
elos, J.N.C. �Arabe, and D.A. Menas
�e.Using random task graphs to investigate the potential bene�ts of hetero-geneity in parallel systems. In Pro
. of Super
omputing'92, pages 683{691,Minn., MN, Nov 1992. IEEE.[8℄ R. Alpert and J. Philbin.
BSP: Zero-
ost syn
hronization in a modi�edBSP model. Te
hni
al Report Te
hni
al Report 97-054, NEC Resear
hInstitute, Feb 1997. 233

234 BIBLIOGRAPHY[9℄ G.R. Andrews and F.B. S
hneider. Con
epts and notations for
on
urrentprogramming. Computing Surveys, 15(1):3{43, Mar 1983.[10℄ C. Ash. The probability tutoring book: an intuitive
ourse for engineersand s
ientists (and everyone else!). IEEE Press, 1993.[11℄ H. Bal and M. Haines. Approa
hes for integrating task and data parallelism.IEEE Con
urren
y, pages 74{84, Jul-Sep 1998.[12℄ R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory. Uni-versitext. Springer, 2000.[13℄ J.L. Bal
azar, J. D��az, and J. Gabarr�o. Stru
tural Complexity I. Texts inTheoreti
al Computer S
ien
e. An EATCS Series. Springer, 2nd edition,1995.[14℄ W. Bein, J. Kamburowski, and F.M. Stallman. Optimal redu
tions of two-terminal dire
ted a
y
li
 graphs. SIAM Journal of Computing, 6:1112{1129, 1992.[15℄ S. Ben Hassen and H. Bal. Integrating task and data parallelism usingshared obje
ts. In ACM ICS'96 Philadelphia, pages 317{324, 1996.[16℄ G. Bilardi, K.T. Herley, and A. Pietra
aprina. BSP vs. LogP. In Pro
.8th ACM symposium on Parallel algorithms and ar
hite
tures (SPAA'96),pages 25{32, Padua, Italy, Jun 1996. ACM.[17℄ J. Bir
sak, P. Craig, R.L. Crowell, Z. Cvetanovi
, J. Harris, C.A. Nelson,and C.D. O�ner. Extending OpenMP for NUMA ma
hines. In Pro
. Su-per
omputing 2000, page 48. ACM, 2000.[18℄ G.E. Blello
h, S. Chatterjee, J.C. Hardwi
k, J. Sipelstein, and M. Zagha.Implementation of a portable nested data-parallel language. Journal ofParallel and Distributed Computing, 21(1):4{14, 1994.[19℄ R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall,and Y. Zhou. Cilk: An eÆ
ient multithreaded runtime system. In Pro
. of5th PPoPP, pages 207{216. ACM, 1995.[20℄ R.D. Blumofe and C.E. Leiserson. S
heduling multithreaded
omputationsby work stealing. In Pro
. Annual Symposium on FoCS, pages 356{368,Nov 1994.[21℄ H. Bodlaender. Dynami
 algorithms for graphs with treewidth 2. In Pro
.Workshop on Graph-Theoreti
 Con
epts in Computer S
ien
e, 1994.

BIBLIOGRAPHY 235[22℄ H.L. Bodlaender and B. de Fluiter. Parallel algorithms for series parallelgraphs. In Pro
. 4th Annual European Symposium on Algorithms. ESA'96,volume 1136 of LNCS, pages 277{289. Springer, 1996.[23℄ H.L. Bodlaender and B. van Antwerpen-de Fluiter. Parallel algorithmsfor series parallel graphs and graphs with treewidth two. Algorithmi
a,29:534{559, 2001.[24℄ C. Boeres, V.E.F. Rebello, and D.B. Skilli
orn. Stati
 s
heduling usingtask repli
ation for LogP and BSP models. In EuroPar'98, volume 1480 ofLNCS, pages 337{346. Springer, 1998.[25℄ O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The PaderbornUniversity BSP (PUB) library - design, implementation, and performan
e.In Pro
. IPPS/SPDP'99, San Juan, Puerto Ri
o, Apr 1999. ComputerSo
iety, IEEE.[26℄ G.H. Botorog and H. Ku
hen. Skil: An imperative language with algorith-mi
 skeletons for eÆ
ient distributed programming. In Pro
. HPDC'96,pages 243{252. IEEE, 1995.[27℄ Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran90D/HPF
ompiler for distributed memory MIMD
omputers: design, im-plementation, and performan
e results. In Pro
. of the
onferen
e on Su-per
omputing '93, pages 351{360, Portland, OR USA, Nov 1993. ACM.[28℄ A. Brandst�adt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAMMonographs on Dis
rete Mathemati
s and Appli
ations. SIAM, 1999.[29℄ G. Brassard and P. Bratley. Algorithmi
s: Theory and Pra
ti
e. Prenti
e-Hall, 1988.[30℄ T. Br�aunl. Parallaxis-III: ar
hite
ture-independent data parallel pro
ess-ing. Trans. on Soft. Eng., 26(3):227{243, Mar 2000.[31℄ P. Brin
h Hansen. Studies in Computational S
ien
e: Parallel Program-ming Paradigms. Prenti
e Hall, 1995.[32℄ P. Brin
h Hansen. An evaluation of high performan
e Fortran. ACMSigPlan, 33(3):57{64, Mar 1998.[33℄ P. Brin
h Hansen. An evaluation of the message-passing interfa
e. ACMSigPlan, 33(3):65{72, Mar 1998.[34℄ S.D. Brookes, C.A.R. Hoare, and A.W. Ros
oe. A theory of
ommuni
atingsequential pro
esses. Journal of the ACM, 31(3):560 { 599, Jul 1984.

236 BIBLIOGRAPHY[35℄ D.K.G. Campbell. A survey of models of parallel
omputation. Te
hni
alReport YCS-97-278, Department of Computer S
ien
e, University of York,Mar 1997.[36℄ F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP forthe NAS ben
hmarks. In Pro
. Super
omputing 2000, page 5. ACM, 2000.[37℄ N. Carriero and D. Gelernter. LINDA in
ontext. Communi
ations of theACM, 32(4):444{458, Apr 1989.[38℄ N. Carriero and D. Gelernter. A
omputational model of everything. Com-muni
ations of the ACM, 44(11):77{81, Nov 2001.[39℄ H. Cha and D. Lee. A hierar
hi
al BSP model supporting pro
essor lo
ality.In Pro
. ICPADS'97, pages 20{27. IEEE, 1997.[40℄ B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.S
ienti�
 Programming, 1(1):31{50, Fall 1992.[41℄ B. Chapman and H. Zima. Extending HPF for advan
ed data-parallelismappli
ations. IEEE Parallel & Distributed Te
hnology, pages 59{70, Fall1994.[42℄ The Cilk Proje
t.WWW. On http://superte
h.l
s.mit.edu/
ilk/.[43℄ M. Cole. Algorithmi
 Skeletons: Stru
tured Management of Parallel Com-putation. Resear
h Monographs in Parallel and Distributed Computing.The MIT Press, 1989.[44℄ M. Cole. Frame: an imperative
oordination language for parallel pro-gramming. Te
hni
al Report EDI-INF-RR-0026, Division of Informati
s,University of Edinburgh, Sep 2000.[45℄ M. Cole. Skeletal parallelism homepage. WWW, 2001. Onhttp://www.d
s.ed.a
.uk/home/mi
/skeletons.html.[46℄ R. Cole and O. Zaji
ek. The APRAM: In
orporating asyn
hrony into thePRAM model. In Pro
. 1st ACM Symposium on Parallel Algorithms andAr
hite
tures, pages 169{178. ACM, 1989.[47℄ T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introdu
tion toAlgorithms. The MIT Press, M
Graw-Hill, 2nd edition, 2001.[48℄ CORPORATE The MPI Forum. MPI: a message passing interfa
e. InPro
. of the
onferen
e on Super
omputing'93, pages 878{883. ACM, 1993.

BIBLIOGRAPHY 237[49℄ D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. S
hauser, E. Santos,R. Subramonian, and T. von Ei
ken. LogP: towards a realisti
 model ofparallel
omputation. In Pro
. 4th ACM PPoPP, pages 1{12, San Diego,CA, USA, May 1993.[50℄ D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E.S
hauser, R. Subramonian, and T. von Ei
ken. LogP: a pra
ti
al modelof parallel
omputation. Communi
ations of the ACM, 39(11):78{85, Nov1996.[51℄ D.E. Culler, J.P. Singh, and A. Gupta. Parallel Computer Ar
hite
ture: AHardware/Software Approa
h. Morgan Kau�man Publishers, In
., 1999.[52℄ M. Danelutto. HPC the easy way: new te
hnologies for high performan
eappli
ation deployment (extended abstra
t). In Pro
. Euro-PDP'03. Com-puter So
iety, IEEE, 2003.[53℄ J. Darlington, Y. Guo, H.W. To, and J. Yang. Fun
tional skeletons forparallel
oordination. In Europar'95, LNCS, pages 55{69, 1995.[54℄ K.M. De
ker and M.J. Johnson. Appli
ation spe
i�
ation and softwarereuse in parallel s
ienti�

omputing. IEEE Con
urren
y, pages 71{77,Apr-Jun 1998.[55℄ DIANA FE Program. WWW, Jan 2000. On http://www.diana.tno.nl/.[56℄ C. �O D�unlaing. Some parallel geometri
 algorithms. In A. Gibbons andP. Spirakis, editors, Le
tures on Parallel Computation, volume 4 of Serieson Parallel Computation,
hapter 5. Cambridge University Press, 1993.[57℄ S.R. Donaldson, J.M.D. Hill, and D.B. Skilli
orn. Exploiting global stru
-ture for performan
e on
lusters. In Pro
. IPPS/SPDP'99, San Juan,Puerto Ri
o, Apr 1999. Computer So
iety, IEEE.[58℄ I. Du�, R.G. Grimes, and J.G. Lewis. Users' guide for the Harwell-Boeingsparse matrix
olle
tion (release i). Te
hni
al Report TR/PA/92/86, CER-FACS, O
t 1992.[59℄ R. DuÆn. Topology of series-parallel networks. Journal of Mathemati
alAnalysis and Appli
ations, 10, 303{318 1965.[60℄ J. Eisenbiegler, W. Lwe, and A. Wehrenpfennig. On the optimization byredundan
y using an extended LogP model. In Pro
. Advan
es in Paralleland Distributed Computing Conferen
e (APDC'97). IEEE, 1997.[61℄ D. Epsstein. Parallel re
ognition of series-parallel graphs. Information andComputation, 98:41{55, 1992.

238 BIBLIOGRAPHY[62℄ A. Fahmy and A. Heddaya. Communi
able memory and lazy barriers forbulk syn
hronous parallelism in BSPk. Te
hni
al Report BU-CS-96-012,Boston University, Sep 1996.[63℄ L. Finta, Z. Liu, I. Milis, and E. Bampis. S
heduling UET{UCT series{parallel graphs on two pro
essors. Theoreti
al Computer S
ien
e, 162:323{340, Aug 1996.[64℄ M.J. FLynn. Some
omputer organization and their e�e
tiveness. IEEETransa
tions on Computers, Sep 1972.[65℄ S. Fortune and J. Willie. Parallelism in random a

ess ma
hines. In Pro
.10th Annual Symposium on Theory of Computing, pages 114{118. ACM,1978.[66℄ I. Foster. Task parallelism and high-performan
e languages. IEEE Parallel& Distributed Te
hnology, pages 27{36, Fall 1994.[67℄ I.T. Foster and K. Mani Chandy. Fortran M: a language for modularparallel programming. Journal of Parallel and Distributed Computing, 26,24{35 1995.[68℄ D. Gelernter and N. Carriero. Coordination languages and their signi�-
an
e. Communi
ations of the ACM, 35(2):97{107, Feb 1992.[69℄ A.J.C. van Gemund. Compiling performan
e models from parallel pro-grams. In Pro
. 8th ACM Int'l Conf. on Super
omputing, pages 303{312,Man
hester, Jul 1994.[70℄ A.J.C. van Gemund. Performan
e Modeling of Parallel Systems. PhDthesis, TU Delft, 1996.[71℄ A.J.C. van Gemund. The importan
e of syn
hronization stru
ture in paral-lel program optimization. In Pro
. 11th ACM ICS, pages 164{171, Vienna,Jul 1997.[72℄ A.V. Gerbessiotis and L.G. Valiant. Dire
t bulk-syn
hronous parallel al-gorithms. Te
hni
al Report TR-10-92, Center for Resear
h in ComputingTe
hnology, Harvard University, Cambridge, Massa
hussets, 1992.[73℄ A. Gibbons and W. Rytter. EÆ
ient Parallel Algorithms. Cambrige Uni-versity Press, 1988.[74℄ P.B. Gibbons. A more pra
ti
al PRAM model. In Pro
. 1st ACM Sym-posium on Parallel Algorithms and Ar
hite
tures, pages 158{168. ACM,1989.

BIBLIOGRAPHY 239[75℄ P.B. Gibbons, Y. Matias, and V. Rama
handran. The QRQW PRAM:A

ounting for
ontention in parallel algorithms. In Pro
. 5th ACMSIAMSODA, pages 638{648, 1994.[76℄ P.B. Gibbons, Y. Matias, and V. Rama
handran. Can a shared-memorymodel serve as a bridging model for parallel
omputation? In Pro
. 9th an-nual ACM symposium on Parallel algorithms and ar
hite
tures (SPAA'97),pages 72{83, Newport, RI USA, Jun 1997. ACM.[77℄ P.B. Gibbons, Y. Matias, and V. Rama
handran. The Queue-Read Queue-Write asyn
hronous PRAM model. Theoreti
al Computer S
ien
e, 196:3{29, 1998.[78℄ G.H. Golub and C.F. van Loan. Matrix Computations. The John HopkinsUniversity Press, 3rd edition, 1996.[79℄ G.H. Golub and J.M. Ortega. S
ienti�
 Computing: An Introdu
tion withParallel Computing. A
ademi
 Press, 1993.[80℄ J.A. Gonzalez, C. Leon, F. Pi

oli, M. Printista, J.L. Roda, C. Rodriguez,and F. Sande. Groups in bulk syn
hronous parallel
omputing. In Pro
.8th Euromi
ro Workshop on PDP'2000, pages 244{251. IEEE, 2000.[81℄ J.A. Gonzalez, C. Leon, F. Pi

oli, M. Printista, J.L. Roda, C. Rodriguez,and F. Sande. Predi
ting the time of oblivious programs. In Pro
. NinthEuromi
ro Workshop on Par. and Dist. Pro
essing (PDP'01), pages 363{368. IEEE, Feb 2001.[82℄ A. Gonz�alez-Es
ribano, V. Carde~noso, and A.J.C. van Gemund. Conversionfrom NSP to SP graphs. Te
hni
al Report TR-DINFO-01-97, Universidadde Valladolid, Valladolid (Spain), Jan 1997.[83℄ A. Gonz�alez-Es
ribano, V. Carde~noso, and A.J.C. van Gemund. On theloss of parallelism by imposing syn
hronization stru
ture. In Pro
. 1stEuro-PDS Int'l Conf. on Parallel and Distributed Systems, pages 251{256,Bar
elona, Jul 1997.[84℄ A. Gonz�alez-Es
ribano, A.J.C. van Gemund, and V. Carde~noso. A newalgorithm for mapping DAGs to series-parallel form. Te
hni
al ReportIT-DI-2002-2, Dpto. Inform�ati
a, Univ. Valladolid, Apr 2002.[85℄ A. Gonz�alez-Es
ribano, A.J.C. van Gemund, and V. Carde~noso-Payo. Map-ping unstru
tured appli
ations into nested parallelism. In J.M.L.M. Palma,J. Dongarra, V. Hern�andez, and A.A. Sousa, editors, High Performan
eComputing for Computational S
ien
e - VECPAR 2002, number 2565 inLNCS, Porto (Portugal), 2003. Springer.

240 BIBLIOGRAPHY[86℄ A. Gonz�alez-Es
ribano, A.J.C. van Gemund, V. Carde~noso-Payo, J.Alonso-L�opez, D. Mart��n-Gar
��a, and A. Pedrosa-Calvo. Measuring theperforman
e impa
t of SP-restri
ted programming in shared-memory ma-
hines. In J.M.L.M. Palma, J. Dongarra, and V. Hern�andez, editors, Ve
-tor and Parallel Pro
essing - VECPAR 2000, number 1981 in LNCS, pages128{728, Porto (Portugal), 2001. Springer.[87℄ J.A. Gonz�alez, C. Le�on, F. Pi

oli, M. Printista, J.L. Roda, C. Rodriguez,and F. Sande. Towards standard nested parallelism. In J. Dongarra et al.,editor, Re
ent Advan
es in PVM and MPI (EurPVM/MPI 2000), volume1908 of LNCS, pages 96{103, Balatonf�ured, Hungary, Sep 2000. Springer.[88℄ S. Gorlat
h. Toward formally-based design of message passing programs.IEEE Transa
tions on Software Engineering, 26(3):276{288, Mar 2000.[89℄ S. Gorlat
h. Send-Re
v
onsidered harmful? myths and truths about par-allel programming. In V. Malyshkin, editor, PaCT'2001, volume 2127 ofLNCS, pages 243{257. Springer-Verlag, 2001.[90℄ S. Gorlat
h, C. Wedler, and C. Lengauer. Optimization rules for program-ming with
olle
tive operations. In Pro
. IPPS/SPDP'99, San Juan, PuertoRi
o, Apr 1999. Computer So
iety, IEEE.[91℄ M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, and T. Tsantilas. Portableand eÆ
ient parallel
omputing using the BSP model. IEEE Tansa
tionson Computers, 48(7):670{689, Jul 1999.[92℄ M.W. Goudreau, K. Lang, S.B. Rao, and T. Tsantilas. The green BSPlibrary. Te
hni
al Report TR-95-11, University of Central Florida, Orlando,1995.[93℄ J. Gross and J. Yellen. Graph Theory and its Appli
ations. The CRC PressSeries on Dis
rete Mathemati
s and its Appli
ations. CRC Press, 1999.[94℄ T. Gross, D.R. O'Hallaron, and J. Subhlok. Task parallelism in a high-performan
e Fortan framework. IEEE Parallel & Distributed Te
hnology,pages 16{26, Fall 1994.[95℄ E.J. Gumbel. Statisti
al Theory of Extreme Values (Main Results),
hap-ter 6, pages 56{93. Wiley Publi
ations in Statisti
s. John Wiley & Sons,1962.[96℄ A. Gupta. Re
ent advan
es in dire
t methods for solving unsymmetri
sparse systems of linear equations. ACM Trans. on Mathemati
al Software,28(3):301{324, Sep 2002.

BIBLIOGRAPHY 241[97℄ T.J. Harris. A survey of PRAM simulation te
hniques. ACM ComputingSurveys, 26(2):187{206, Jun 1994.[98℄ X. He and Y. Yesha. Parallel re
ognition and de
omposition of two terminalseries parallel graphs. Information and Computation, 75:15{38, 1987.[99℄ M.T. Heath. Parallel dire
t methods for sparse linear systems. InD.E. Keyes et al., editor, Parallel Numeri
al Algorithms, pages 55{90.Kluwer A
ademi
 Publishers, 1997.[100℄ J.M.D. Hill, S.R. Donaldson, and D.B. Skilli
orn. Portability of perfor-man
e with the BSPlib
ommuni
ations library. In Programming Modelsfor Massively Parallel Computers, (MPPM'97), London (UK), Nov 1997.IEEE Computer So
iety Press.[101℄ J.M.D. Hill, W. M
Coll, D.C. Stefanes
u, M.W. Goudreau, K. Lang, S.B.Rao, T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP program-ming library. Parallel Computing, 24(14):1947{1980, Nov 1998.[102℄ J.M.D. Hill and D.B. Skilli
orn. Pra
ti
al barrier syn
hronisation. Te
h.Rep. PRG-TR-16-96, Oxford Univ. Computing Laboratory, 1996.[103℄ W.D. Hillis and L.W. Tu
ker. The
m-5
onne
tion ma
hine: a s
alablesuper
omputer. Communi
ations of the ACM, 36(11):31{40, 1993.[104℄ S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran Dfor MIMD ditributed-memory ma
hines. Communi
ations of the ACM,35(8):66{80, Aug 1992.[105℄ C-W. Ho, S-Y. Hsieh, and G-H. Chen. Parallel de
omposition of generalizedseries-parallel graphs. Journal of Information S
ien
e and Engineering,15:407{417, 1999.[106℄ C.A.R. Hoare. Monitors: An operating system stru
turing
on
ept. Com-muni
ations of the ACM, 17(10):549{557, O
t 1974.[107℄ C.A.R. Hoare. Communi
ating sequential pro
esses. Communi
ations ofthe ACM, 28(1):666{677, Aug 1978.[108℄ HPF: The High Performan
e Fortran Home Page. WWW. Onhttp://www.
rp
.ri
e.edu/HPFF/.[109℄ F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A parallel
omputationalmodel for syn
hronization analysis. In Pro
. PPOPP'01, pages 133{142,Snowbird, Utah USA, Jun 2001. ACM.

242 BIBLIOGRAPHY[110℄ P.G. Joisha and P. Banerjee. PARADIGM(version 2.0): A new HPF
om-pilation system. In Pro
. IPPS/SPDP'99, San Juan, Puerto Ri
o, Apr1999. Computer So
iety, IEEE.[111℄ J.E. Jones. Parallel multigrid methods. In D.E. ~Keyes et al., editor, ParallelNumeri
al Algorithms, pages 203{224. Kluwer A
ademi
 Publishers, 1997.[112℄ B. Juurlink and I. Rieping. Performan
e relevant issues for parallel
om-putation models. In Pro
. PDPTA'2001, 2001.[113℄ B.H.H. Juurlink and A.G. Wijsho�. The E-BSP model: In
orporatinggeneral lo
ality and unbalan
ed
ommuni
ation into the BSP model. InPro
. Euro-Par'96, volume 1124 of LNCS. Springer, 1996.[114℄ B.H.H. Juurlink and H.A.G. Wijsho�. A quantitative
omparison ofparallel
omputation models. ACM Transa
tions on Computer Systems,16(3):271{318, Aug 1998.[115℄ V. Karam
heti and A.A. Chien. A hierar
hi
al load-balan
ing frameworkfor dynami
 multithreaded
omputations. In Pro
. SC'98, Orlando, FL,1998. ACM.[116℄ R.M. Karp, A. Sahay, E.E. Santos, and K.E. S
hauser. Optimal broad
astand summation in the LogP model. In Pro
. ACM-SPAA'93, pages 142{153, Velen, Germany, 1993. ACM.[117℄ G. Karypis. METIS: family of multilevel partitioning algorithms. WWW,2002. On http://www-users.
s.umn.edu/~karypis/metis/.[118℄ K. Kennedy. Teles
oping languages: A
ompiler strategy for implemen-tation of high-level domain-spe
i�
 programming systems. In Pro
. 14thInt. Parallel and Distributed Pro
essing Symposium (IPDPS'00), Can
un,Mexi
o, 2000. Computer So
iety, IEEE.[119℄ C.W. Kessler. NestStep: nested parallelism and virtual shared memoryfor the BSP model. In Int. Conf. on Parallel and Distributed Pro
essingTe
hniques and Appli
ations (PDPTA'99), Las Vegas (USA), Jun-Jul 1999.[120℄ D. Kim and I. Yoon. Performan
e analysis and experiments of sorts on aparallel
omputer with parallel
omputation methods. In Pro
. 1997 Int.Conf. on Parallel and Distributed Systems (ICPADS'97). IEEE, 1997.[121℄ J-S. Kim, S. Ha, and C.S. Jhon. EÆ
ient barrier syn
hronization me
h-anism for the BSP model on message-passing ar
hite
tures. In Pro
. ofIPPS/SPDP'98. Computer So
iety, IEEE, 1998.

BIBLIOGRAPHY 243[122℄ L. Lamport and N. Lyn
h. Handbook of Theoreti
al Computer S
ien
e,
hapter 18: Distributed Computing: Models and Methods. Elsevier S
ien
ePublishers, 1990.[123℄ H.X. Lin. A general approa
h for parallelizing the FEM software pa
k-age DIANA. In Pro
. High Performan
e Computing Conferen
e'94, pages229{236. National Super
omputing Resear
h Center. National Universityof Singapur, 1994.[124℄ H.X. Lin, A.J.C. van Gemund, J. Meijdam, and P. Nauta. Tgex: a toolfor portable parallel and distributed exe
ution of unstru
tured problems.In H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High-Performan
e Computing and Networking, volume 1067 of LNCS, pages467{474, Berlin, 1996. Springer.[125℄ K. Lodaya and P. Weil. A kleene iteration for parallelism. In V. Arvindand R. Ramanujam, editors, Pro
. FST & TCS'98, volume 1530 of LNCS,pages 355{366. Springer, 1998.[126℄ K. Lodaya and P. Weil. Series-parallel posets: Algebra, automata, andlanguages. In Pro
. STACS'98, volume 1373 of LNCS, pages 555{565,Paris, Fran
e, 1998. Springer.[127℄ K. Lodaya and P. Weil. Series-parallel languages and the bounded-widthproperty. Theoreti
al Comp. S
ien
e, 237:347{380, 2000.[128℄ W. L�owe and W. Zimmermann. Upper time bounds for exe
uting PRAM-Programs on the LogP-Ma
hine. In Pro
. ICS'95, pages 41{50, Bar
elona,Spain, 1995. ACM.[129℄ B.M. Maggs, L.R. Matheson, and R.E. Tarjan. Models of parallel
ompu-tation: A survey and synthesis. In Pro
. 28th Hawaii Int'l Conf. SystemS
ien
es, volume 2, pages 61{70, 1995.[130℄ A.D. Malony, V. Mertsiotakis, and A. Qui
k. Automati
 s
alability anal-ysis of parallel programs based on modeling te
hniques. In G. Haringand G. Kotsis, editors, Comp. Perf. Eval.: Modeling Te
hniques and Tools(LNCS 794), pages 139{158, Berlin, May 1994. Springer-Verlag.[131℄ X. Martorell, E. Ayguad�e, N. Navarro, J. Corbal�an, M. Gonz�alez, and J.Labarta. Thread fork/join te
hniques for multi-level parallelism exploita-tion in NUMA multipro
essors. In ICS'99, pages 294{301, Rhodes, Gree
e,1999.

244 BIBLIOGRAPHY[132℄ B.L. Massingill and K.M. Chandy. Parallel program ar
hetypes. In Pro
.IPPS/SPDP'99, San Juan, Puerto Ri
o, Apr 1999. Computer So
iety,IEEE.[133℄ W.F. M
Coll. General purpose parallel
omputing. In A. Gibbons andP. Spirakis, editors, Le
tures on Parallel Computation, volume 4 of Serieson Parallel Computation,
hapter 13. Cambridge University Press, 1993.[134℄ W.F. M
Coll. S
alable
omputing. In J. van Leeuwen, editor, ComputerS
ien
e Today: Re
ent Trends and Developments, volume 1000 of LNCS,pages 46{61. Springer-Verlag, 1995.[135℄ W.F. M
Coll. Universal
omputing. In L. Bouge, P. Fraigniaud,A. Mignotte, and Y. Robert, editors, Pro
. Euro-Par'96 Parallel Pro
ess-ing, volume 1123 of LNCS, pages 25{26. Springer-Verlag, 1996.[136℄ C. M
Curdy and J. Mellor-Crummey. An evaluation of
omputingparadigms for N-body simulations on distributed memory ar
hite
tures.In Pro
. PPoPP'99. ACM, 1999.[137℄ O. Melnikov, V. Sarvanov, R. Tyshkevi
h, V. Yemeli
hev, and I. Zverovi
h.Exer
ises in Graph Theory, volume 19 of Kluwer Texts in the Mathemati
alS
ien
es. Kluwer A
ademi
 Publishers, 1998.[138℄ R. Miller. A library for bulk syn
hronous parallel programming. In Pro
. ofthe BCS Parallel Pro
essing Spe
ialist Group workshop on General PurposeParallel Computing, pages 100{108, 1993.[139℄ C.A. Moritz and M.I. Frank. LoGPC: Modeling network
ontention inmessage-passing programs. IEEE Transa
tions on Parallel and DistributedSystems, 12(4):404{415, Apr 2001.[140℄ Message Passing Interfa
e Forum. WWW. On http://www.mpi-forum.org/.[141℄ A. Munier and C. Hanen. Using dupli
ation for s
heduling unitary taskson m pro
essors with unit
ommuni
ation delays. Te
hni
al Report LITP95/47, Laboratoire Informatique Th�eorique et Programmation, InstitutBlaise Pas
al, Universit�e Pierre et Marie Curie, 4, pla
e jussieu, 75252Paris
edex 05, 1995.[142℄ G.J. Narlikar and G.E. Blello
h. Spa
e-eÆ
ient s
heduling of nested paral-lelism. ACM Trans. on Programming Languages and Systems, 21(1):138{173, Jan 1999.

BIBLIOGRAPHY 245[143℄ V. Naumann. Measuring the distan
e to series-parallelity by path ex-pressions. In E.W. Mayr, G. S
hmidt, and G. Tinhofer, editors, Graph-Theoreti
 Con
epts in Computer S
ien
e (LNCS), pages 269{281, Berlin,Jun 1994. Springer-Verlag.[144℄ D.S. Nikopoulos, T.S. Papatheodorou, C.D. Poly
hronopoulos, J. Labarta,and E. Ayguad�e. Is data distribution ne
essary in OpenMP? In Pro
.Super
omputing 2000, page 47. ACM, 2000.[145℄ L.S. Nyland, J.F. Prins, A. Goldberg, and P.H. Mills. A design method-ology for data-parallel appli
ations. Trans. on Soft. Eng., 26(4):293{314,Apr 2000.[146℄ National Institute of Standards and Te
hnology (NIST). Matrix Market.WWW, 2002. On http://math.nist.gov/MatrixMarket/.[147℄ L. Oliker and R. Biswas. Parallelization of a dynami
 unstru
tured appli-
ation using three leading paradigms. In Pro
. SC'99, Portland, OR, 1999.ACM.[148℄ A. Omi
ini. On the semanti
s of tuple-based
oordination models. In Pro
.SAC'99, pages 175{182, San Antonio, Texas (US), 1999. ACM.[149℄ OpenMP organization.WWW. On http://www.openmp.org.[150℄ S. Orlando, P. Palmerini, and R. Perego. Coordinating HPF programs tomix task and data parallelism. In Pro
. SAC'00, pages 240{247, Como,Italy, Mar 2000. ACM.[151℄ G. Otero and R. Ferri. The Beowulf evolution. Linux Journal, 2002(100):5,2002.[152℄ S. Pelagatti. Stru
tured Development of Parallel Programs. Taylor & Fran-
is, 1998.[153℄ R.B. Pelz. Parallel FFTs. In D.E. ~Keyes et al., editor, Parallel Numeri
alAlgorithms, pages 245{266. Kluwer A
ademi
 Publishers, 1997.[154℄ A. Pothen. Parallel Numeri
al Algorithms,
hapter Graph Partitioning Al-gorithms with Appli
ations to S
ienti�
 Computing, pages 323{368. KluwerA
ademi
 Publishers, 1997.[155℄ PVM: Parallel virtual ma
hine (Home Page). WWW. Onhttp://www.epm.ornl.gov/pvm/pvm home.html.[156℄ M.J. Quinn. Parallel Computing: Theory and Pra
ti
e. M
Graw-Hill, 1993.

246 BIBLIOGRAPHY[157℄ A. Radules
u and A.J.C. van Gemund. On the
omplexity of list s
hedulingalgorithms for distributed-memory ma
hines. In Pro
. 1999 ACM Int'lConf. on Super
omputing, pages 68{75, Rhodes, Jun 1999. ACM.[158℄ A. Radules
u and A.J.C. van Gemund. Low-
ost task s
heduling fordistributed-memory ma
hines. IEEE Transa
tions on Parallel and Dis-tributed Systems, 13(6):648{658, Jun 2002.[159℄ A. Radules
u, A.J.C. van Gemund, and H-X. Lin. LLB: A fast and e�e
-tive s
heduling algorithm for distributed-memory systems. In Pro
. Int'lParallel Pro
essing Symp., pages 525{530, Puerto Ri
o, Apr 1999. IEEE.[160℄ V. Rama
handran, B. Grayson, and M. Dahlin. Emulations between QSM,BSP and LogP: A framework for general-purpose parallel algorithm design.Te
hni
al Report TR98-22, CS dept., Univ. of Texas, Austin, Nov 1998.[161℄ V. Rama
handran, B. Grayson, and M. Dahlin. Emulations between QSM,BSP and LogP: A framework for general-purpose parallel algorithm design.In Pro
. ACM-SIAM SODA'99, pages 957{958, 1999.[162℄ D.A. Reed, L.M. Adams, and M.L. Patri
k. Sten
ils and problem parti-tionings: Their in
uen
e on the performan
e of multiple pro
essor systems.IEEE Transa
tions on Computers, C-36(7):845{858, Jul 1987.[163℄ J.L. Roda, F. Sande, C. Le�on, J.A. Gonz�alez, and C. Rodr��guez. The
olle
tive
omputing model. In 7th Euromi
ro Workshop on Parallel andDistributed Pro
essing, Fun
hal, Portugal, Feb 1999. IEEE.[164℄ R.A. Sahner and K.S. Trivedi. Performan
e and reliability analysis usingdire
ted a
y
li
 graphs. IEEE Trans. on Software Eng., 13(10):1105{1114,O
t 1987.[165℄ V. Sassone, M. Nielsen, and G. Winskel. A
lassi�
ation of models for
on
urren
y (extended abstra
t). In Eike Best, editor, CONCUR'93: 4thInt. Conf. on Con
urren
y Theory, volume 715 of LNCS, pages 82{96,Hildesheim, Germany, Aug 1993. Springer-Verlag.[166℄ V. Sassone, M. Nielsen, and G. Winskel. Models for
on
urren
y: Towardsa
lassi�
ation. Theoreti
al Computer S
ien
e, 170(1{2):297{348, 1996.[167℄ K. S
hloegel, G. Karypis, and V. Kumar. CRPC Parallel Computing Hand-book,
hapter Graph Partitioning for High Performan
e S
ienti�
 Simula-tions. Morgan Kaufmann, 2000.[168℄ L.A.M. S
hoenmakers. A new algorithm for the re
ognition of series parallelgraphs. Te
hni
al Report CS-R9504, CWI (Centrum voor Wiskunde enInformati
a, 1995.

BIBLIOGRAPHY 247[169℄ H.J. Siegel. Panel: Top 10 most in
uential parallel and distributedpro
essing
on
epts in the last millennium (M. Chandy position state-ment). In Pro
. 14th Int. Parallel and Distributed Pro
essing Symposium(IPDPS'00), Can
un, Mexi
o, 2000.[170℄ D.B. Skilli
orn. A
ost
al
ulus for parallel fun
tional programming. Jour-nal of Parallel and Distributed Computing, 28:65{83, 1995.[171℄ D.B. Skilli
orn. Building BSP programs using the re�nement
al
ulus.Te
hni
al Report ISSN-0836-0227-94-400, Department of Computing andInformation S
ien
e, Queen's University, Kingston, Ontario, O
t 1996.[172℄ D.B. Skilli
orn. miniBSP: A BSP language and transformation system.Te
hni
al report, Dept. of Computing and Information S
ien
es, Queen'sUniversity, Kingston, Canada, O
t 1996.[173℄ D.B. Skilli
orn, M.D. Hill, and W.F. M
Coll. Questions and answers aboutBSP. Te
hni
al Report PRG-TR-15-96, Oxfor Univ. Computing Labora-tory, Oxford (UK), Nov 1996.[174℄ D.B. Skilli
orn and D. Talia. Models and languages for parallel
omputa-tion. ACM Computing Surveys, 30(2):123{169, Jun 1998.[175℄ B.J. Smith. How shall we program high performan
e
omputers? ENACTS,The HPC Te
hnology Roadmap, Seminar presented at NSC in Linkping,WWW, Jun 2001. On http://www.ns
.liu.se/rd/ena
ts/Smith/smith.html.[176℄ T. Sterling. The s
ienti�
 workstation of the future may be a pile of PCs.Communi
ations of the ACM, 39(9):11{12, 1996.[177℄ T.L. Sterling, J. Salmon, D.J. Be
ker, and D.F. Savarese. How to Build aBeowulf. S
ienti�
 and Engineering Computation. The MIT Press, 1999.[178℄ V.S. Sunderam. PVM: A framework for parallel distributed
omputing.Con
urren
y: Pra
ti
e and Experien
e, 2(4):315{339, De
 1990.[179℄ K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time
omputabilityof
ombinatorial problems on series-parallel graphs. Journal of the ACM,29(3):623{641, 1982.[180℄ Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Performan
e evaluationof OpenMP appli
ations with nested parallelism. In S. Dwarkadas, edi-tor, Pro
. 5th Int. Workshop LCR'2000 (Sele
ted Papers), number 1915 inLNCS. Springer, May 2000.

248 BIBLIOGRAPHY[181℄ T. Tobita and H. Kasahara. A standard task graph set for fair evaluation ofmultipro
essor s
heduling algorithms. In ICS'99 Workshop, pages 71{77,Jun 1999.[182℄ V.D. Tran, L. Hlu
hy, and G.T. Nguyen. Parallel program model for dis-tributed systems. In J. Dongarra et al., editor, Re
ent Advan
es in PVMand MPI (EurPVM/MPI 2000), volume 1908 of LNCS, pages 96{103, Bal-atonf�ured, Hungary, Sep 2000. Springer.[183℄ A. Va
a-D��ez. Tools and te
hniques to assess the loss of parallelism whenimposing syn
hronization stru
ture. Te
hni
al Report 1-68340-28(1999)02,TU Delft, Mar 1999.[184℄ J. Vald�es, R.E. Tarjan, and E.L. Lawler. The re
ognition of series paralleldigraphs. SIAM Journal of Computing, 11(2):298{313, May 1982.[185℄ L.G. Valiant. A bridging model for parallel
omputation. Comm.ACM,33(8):103{111, Aug 1990.[186℄ H.A. van der Vorst. Linear system solvers: Sparse iterative methods. InD.E. Keyes et al., editor, Parallel Numeri
al Algorithms, pages 91{117.Kluwer A
ademi
 Publishers, 1997.[187℄ R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal. EÆ
ient load balan
ingfor wide-area divide-and-
onquer appli
ations. In Pro
. of PPoPP'01, pages34{43, Snowbird, Utah, USA, Jun 2001. ACM.[188℄ S.A. Ward and S.H. Halstead. A synta
ti
 theory of message passing.Journal of the ACM, 27(2):365{383, Apr 1980.[189℄ B. Wilkinson and M. Allen. Parallel Programming: Te
hniques and Appli-
ations Using Networked Workstations and Parallel Computers. Pranti
eHall, 1999.[190℄ G. Winskel and M. Nielsen. Handbook of Logi
 in Computer S
ien
e,
hap-ter Models for Con
urren
y, pages 1{148. Oxford University Press, 1995.[191℄ A. Zavanella and A. Milazzo. Predi
tability of bulk syn
hronous programsusing MPI. In Pro
. 8th Euromi
ro Workshop on Par. and Dist. Pro
essing,Rhodes, Gree
e, Jan 2000. IEEE Computer.

