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Chapter 1

Introduction

He holds him with his glittering eye—
The Wedding-Guest stood still,

And listens like a three years’ child :
The Mariner hath his will.

The Rime of the Ancient Mariner, 1798
SAMUEL TAYLOR COLERIDGE

1.1 Motivation

The effectiveness of a parallel application has been traditionally measured only
in terms of its achievement of high performance as compared with its sequential
implementation counterpart. From this point of view, the typical scenario has
been one of a high performance quest, especially in the field of scientific comput-
ing. This situation is quickly changing nowadays, since general purpose parallel
machines have become an affordable alternative to classical supercomputers, and
network connectivity improvements have enabled parallel computing based on
heterogeneous clusters, NOWs, and GRIDs. Concepts such as portability, pre-
dictability, evolution or correctness, genuinely related to software development
methodologies, play now a role as important as performance improvements. As
a consequence, the construction of high-quality parallel software at a reasonable
investment of effort has become one of the main objectives in the development
of parallel applications. Software construction methodologies, verification, ease
of debugging, interoperability and reusability become key challenges for new
generic supercomputing environments [52, 169, 175]. The continuous hardware
evolution, and the lack of an established and commonly accepted parallel com-
puting model or reference architecture results in a maturity level identical to
the one in sequential computing before everybody assimilated the compatibility

1
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Effectiveness

Execution
efficiency

Development
efficiency

Speed-up Programming cost

P
Shift in time

Figure 1.1: Shift of interest in parallel development efficiency

ideas imposed by the introduction of widespread common architectures based at
the more abstract level on the Von Neumann model [134]. The development of
quality parallel software is compromised by the lack of well-established models
and by the common design techniques for the low-level tuning which is necessary
to get maximum performance.

In the parallel programming field an important research activity is thus fo-
cused on the introduction of tools and methodologies for parallel software devel-
opment. The objective is to create an appropriate framework to develop effective
parallel applications (efficient and portable). However, parallel computing chal-
lenges are being faced from three basically different perspectives which are not
yet mature enough as to bridge the gap between them. These are the following:

Parallel semantic models

Formal models of parallelism have been proposed and studied for a long time (see
e.g. [165, 166, 190]). They are aimed to reason about correctness and concurrency
possibilities. However, the models that explore unrestricted synchronization con-
currency reveal many undecidable problems. Their inherent complexity prevents
formal analysis and the amount of tracing information about a system evolution
becomes intractable. As a consequence, there are no practical programming lan-
guages or environments which fully integrate the complete set of formal properties
prescribed by these models.

Parallel computation models

Parallel computation models were introduced as a means to reason about com-
putability, and to derive complexity measures of parallel algorithms. In sequential
programming, a Turing machine is a universal model whose complexity measures
are not modified, but in small constant factors, when an implementation is gener-
ated using the bridging model proposed by Von Neumann. However, in parallel
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computing, complexity measures and performance prediction are complicated
by the lack of an established cost-theoretic model or a widely accepted bridging
model for parallel computers [122]. As a consequence, parallel computation mod-
els proposed are either too abstract, too worried about implementation subtleties,
or even too restricted to describe many real situations.

When the abstraction level is too high, the implementation in a real machine
requires complicated transformations, specific for any new architecture and in
general not decidable, that can modify the complexity orders of an algorithm
(e.g. PRAM model). At the same time, too abstract parallel models do not
encourage programming techniques that deal with synchronization problems.

On the other hand, some models are focused on modeling the low-level details
of communication/synchronization costs (e.g. LogP). In these cases, the synchro-
nization structures are completely unrestricted and analysis problems arise. The
software development is not intuitive and the cost model (if not untractable),
cannot be used in reverse to determine which heuristic implementation decisions
produce given results.

Finally, there are models designed to provide a convenient and simple cost
model. However, they use unnatural synchronization restrictions that limit the
types of algorithms that maps directly into the model, and no clues are given for
the mapping of other types (e.g. BSP).

Parallel programming models

Given the previously discussed problems, an important part of the parallel pro-
gramming community is focused on the development of practical programming in-
terfaces that allows the programmer to exploit the parallel and high-performance
characteristics of actual machines. In search of the maximum expressive power
and flexibility, many of these programming models allow the creation of structures
that are dynamic, complex, or impossible to analyze. Poorly structured synchro-
nization is the origin of many current difficulties of parallel programming [89]. For
unrestricted synchronization structures the optimal mapping (problems to pro-
grams) is almost humanly impossible, cost models are not affordable, and good
scheduling algorithms are extremely expensive. The programmer must take low
level detail decisions, including sometimes machine dependent optimization solu-
tions hardwired in the code. On the other hand, other models sacrifice expressive
power, restricting the synchronization structures available, so as to keep analysis
properties that lead to better cost models and formal developing, verification,
mapping and debugging techniques.

From the above discussion, we identify the synchronization structures available
in a parallel system as the key factor for a trade-off between expressive power
and engineering ability. This trade-off has been, for a long time, an issue of
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still on-going debate. In this study we introduce the concept of synchronization
architecture to classify the synchronization structures in terms of their properties
related to software engineering and high-performance. This new approach lead us
to identify the minimum restrictions needed to bound the complexity of relevant
analysis problems, and to evaluate the potential problems to express parallel
applications into these restricted structures.

1.2 Parallel programming models

As already pointed out, a parallel programming model (PPM) can be defined as
a programming interface which can be targeted to any computer architecture
and lets the programmer express parallelism in terms of a set of primitives given
by the underlying parallel model of computation. There exist PPMs from the
highest (formal specifications) to the lowest (close to implementation details)
abstraction levels.

Many new design decisions take part in the creation of a parallel programming
interface. Compared to sequential programming, new degrees of freedom are to
be considered. Parallel computations are much more complicated to create, track
and analyze. The mapping of a parallel algorithm to a program is a complex task.
The resources-to-activities assignment (scheduling), and the partitioning of data
or activities that minimize communication costs are optimization problems in
the tuple (time, space), typically translated to graph problems, which optimal
solution are not known or are NP-complete [4]. A generic, heterogeneous and
evolving framework requires flexible mapping methods to create efficient and
portable applications. Thus, abstraction is a more important feature in parallel
than in sequential programming. On the other hand, a parallel programming
model is not practical if it proposes a so abstract interface that it is too difficult
or expensive to find efficient ways to implement it in real hardware architectures
(existing or evolving). The choice of a parallel programming model involves a
trade-off between portability and efficiency.

We distinguish two main categories of characteristic for a PPM. They are
related to two properties of the semantics involved in the model (see Fig. 1.2).
A model should propose an interface abstract enough to minimize the human
effort to learn it and use it for software developing (SEC, software engineering
characteristics). At the same time, the model should be simple and close enough
to the low level details to make it possible efficiently bridging programs to actual
parallel computations in a machine (AC, analysis characteristics). However,
expressive power may be lost if too much simplification or abstraction is used to
improve the quality of these SEC and AC characteristics.

The search of a convenient programming environment is the current Holy
Grail quest in parallel computing. The problem has been approached for a long
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Specifications Programs Computations

AC

Figure 1.2: Software engineering (SEC) and analysis (AC) characteristics.

time. In the 80s, there was an important gap between theoretic parallel algorithm
design (mainly based on PRAM model) and efficient implementation on real ma-
chines. Data-parallel languages and automatic parallelizing compilers based on
data analysis were the major trend of research for easy and efficient parallel
programming. Nonetheless, the restrictive data-parallelism model and the im-
possibility of reconstructing certain parallel structures from sequential code! led
to the development of alternative systems for direct and free expressions of par-
allelism (mainly message-passing interfaces), that were failing to provide analysis
characteristics [89].

In the 90s, the introduction of the restricted but portable and cost driven
computation model BSP [185], and the more detailed but less restricted commu-
nication cost model LogP some years after [49], brought new attention to parallel
programming models in general, and to those aimed to cost measurement in par-
ticular [16, 57, 76, 133, 161]. Performance modeling became an important issue.
In the middle of 90s, the performance analysis study of Van Gemund lead to the
introduction of the parallel programming model SPC [70, 71]. In this model the
dependence structures that can be generated are restricted to nested-parallelism
structures (those that can be represented by a Series-Parallel (SP) graph [184]),
extended with a simple contention mechanism. This basic restriction in the syn-
chronization structures allowed by the model is related with the possibility of
using a new performance analysis technique, with adjustable accuracy in terms
of a machine model. SPC provides a simple parallel software development frame-
work. However, some synchronization structures are not directly representable
in nested-parallelism, and they must be reprogrammed, possibly adding depen-
dences that were not in the original problem. Thus, the utility of a restricted

!When a naturally parallel application is programmed in a sequential model, the concurrency
space is compressed in only one point of the concurrency axis. Concurrent tasks are pushed
into the time axis, imposing an arbitrary order on them. Thus, important information about
concurrency could be lost.
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synchronization programming model is endangered by the potential loss of per-
formance in certain type of applications. We will come back to this important
issue along the next section.

The study and comparison of unrestricted and restricted parallel program-
ming models (like SPC) brought to light an important feature of PPMs. Most
of their properties (SEC,AC) are related to the ability to detect and evaluate
properties of communication and synchronization. Restricted models that have
good analyzability characteristics for both communication and synchronization,
can achieve all the SEC and AC requirements.

1.3 Synchronization Architecture

We propose the concept of Synchronization Architecture (SA) to be the abstract
description of the synchronization structures and communication processes which
characterize a given PPM, together with their fundamental properties. PPMs can
be classified in terms of their synchronization architecture, defined by the mecha-
nisms which are provided for expressing synchronization, and the structures that
can be created by them.

To classify parallel programming models, Skillicorn and Talia have proposed
the following criteria [174]. (1) PPMs with support for dynamic process or thread
structures; (2) PPMs with only static process or thread structures, but no syn-
tactic limits on communication; (3) PPMs with only static process or thread
structures and syntactic limits on communication. They claim that: “Models
that allow dynamic process or thread structure cannot restrict communication
[...] even models that restrict communication within a particular syntactic block
cannot limit it over the whole program. Thus such models cannot guarantee that
the communication generated by the program will not overrun the total commu-
nication capacity of a designated parallel computer. [...] some programs that
can be written in the model will perform badly, and it is not straightforward to
detect which ones”.

Although we do agree this is a good candidate for a general classification of
PPMs, we think that it can be clearly refined. In fact, restricted synchronization
models can impose structure on the way threads are created and synchronized,
to derive dynamic but restricted thread structures with a predictable number of
communications. Even for some dynamic thread structures, it is still possible to
obtain cost measures and find an efficient way to map the computations onto the
machine, as shown in Table 1.1.

Thus, we propose new more detailed criteria, including different classes of syn-
chronization restrictions. First, we distinguish two types of synchronization [9]:
(1) Condition synchronization (CS), which implies an order to be preserved in
the execution of two tasks or statements, and that is typically associated to data
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Communication

(a) Thread structure | Restricted | Unrestricted
Static Predictable | Predictable*
Dynamic Unpredictable
Comm. & Synch.
(b) Thread structure Restricted Unrestricted
Static Predictable Predictable*
Dynamic Predictable* | Unpredictable

* Depending on the exact structures and restrictions of the model

Table 1.1: PPMs classifications: (a) Skillicorn & Talia [174], and (b) our proposal.

dependences or communication; and (2) mutual exclusion (ME), that prevents
that two tasks or statements to be executed at the same time, although the order
in which they are finally executed is not relevant. These types of synchroniza-
tions can be considered orthogonal, in the sense that a PPM can support one
or both of them independently. Some models simply lack any form of explicit
synchronization (e.g., HPF [1, 27]), some do not provide any explicit dynamic
synchronization mechanisms (e.g., Fortran-M [67]), while others impose restric-
tions on the form of the static synchronization structures (e.g., BSP [185]).

In section 2.2 we will introduce a classification of the synchronization space
in terms of three different characteristics: (1) CS structures to be allowed, (2)
the ME mechanisms, and (3) the data-dependence of synchronization structures.
In particular, we distinguish two complementary classes of CS structures: one
unrestricted and one restricted to a specific compositional form called nested-
parallelism, SP or Series-Parallel. SP structures are restricted to nested-parallel
task control structures or, in other words, to the recursive application of prim-
itives with the semantics of cobegin-coend [9]. Models which allow only SP re-
stricted structures are called SP-models (e.g. BSP, SPC). The associated task
graph of these structures is in the class of Series-Parallel graphs or SP-graphs for
short.

Beside the previously mentioned engineering aspects (SEC) the introduction
of restrictions on a PPM’s synchronization architecture has a favorable effect on
its analysis characteristics (AC). For instance, improved scheduling techniques
have been designed for SP restricted DAGs [63, 20, 142, 159, 157]. One of the
reasons behind their advantages is that the number of edges in an SP graph
is bounded to be a linear function of the number of nodes (O(|E|) = O(|V]).
Another reason stems from the compositional nature of SP-graphs, which allows
a recursive local analysis of properties. Thus, many scheduling algorithms show
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a very low complexity measure when applied on SP graphs. Moreover, many
combinatorial problems which are NP-hard for generic graphs are known to be
linear on Series-Parallel graphs [179]. Cost analysis (e.g. critical path analysis) is
also improved. Even more, analytical closed form cost expressions can be derived
for SP graphs [71]. At a more abstract level, there exists a formal algebraic
characterization of the languages constructed on SP semantic models (called SP-
languages), with their extended recognition automata [125, 126, 127].

However, the restrictions imposed on the static synchronization structures do
eliminate some expressive power from the model. In some situations, tasks that
could be theoretically executed in parallel must be serialized as a consequence
of nested synchronization. This could lead to a performance loss which, unless
carefully estimated, would clearly compromise the use of these models in parallel
programming.

To illustrate this point, let us consider the task graph associated to a 1D
cellular automata with just 3 cells, where a function dependent on parameters
evaluated at neighbor cells (the ones given by a stencil) is applied in parallel
across all the cells along 3 consecutive iterations. In Fig. 1.3(a) a task graph
associated with a generic PPM computation is presented. Each edge represents
a communication or a synchronization. The version in Fig. 1.3(b) is a task graph
associated with the choice of a model which restricts communication so that
it can only synchronously take place at a barrier synchronization. The dashed
line represents the barrier. The black nodes can be executed in parallel in the
first example, but are serialized in the second. If execution times of the black
nodes is t, = 10, and white nodes t,, = 1, the total execution time (without
communication costs) is 77 = 12 in the first example, and T5 = 30 in the second
one, which give a performance penalty of almost 3.

@) (b)

Figure 1.3: Example of parallelism loss at programming level

This potential loss of parallelism is introduced at a programming level when
in the design phase, as a consequence of the restrictions of the abstraction level
we are using to describe the problem, and it will be readily propagated through
the following development phases. We are specifically interested in any potential
computation time penalty forced by the restricted expressive power of a PPM.
On the other hand, the quality of the low-level implementation phases can be
improved with restricted CS models. Specifically, SP-restricted programming
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shows interesting features for scheduling and mapping, not found in non SP-
restricted models, as mentioned earlier.

1.4 Problem statement and thesis

From the previous discussion, a number of interesting open questions arise which
we will address in this work. It is not yet clear what type of programming models
are more convenient for nowadays and near future parallel programming. It will
be highly interesting to find objective characteristics that we can use to evaluate
or classify the potential benefits and drawbacks of a given model. As mentioned
earlier, Skillicorn and Talia proposed in [174] a set of interesting properties for
ideal parallel programming models that promotes low cost software development
and maintenance, efficiency and portability. According to them, a model should
“be easy to program, have software development methodology, be easy to under-
stand, guarantee performance, and provide accurate information about costs”.
These criteria are mainly subjective, and can be difficult or impossible to agree
about the adequacy of a given model to it. On the evolution of future parallel
programming models clear directions and requirements must be proposed. The-
oretical comparisons between well-known parallel computing models has been
shown (see for example [16, 161, 128]). However, no rationale has been offered in
the more abstract level to explain the similarities and differences, Quantitative
evaluation of parallel programming models has been tried previously focusing
on efficiency and performance evaluation accuracy [114]. Related design char-
acteristic are studied in [112]. Although the experimental approach is similar
to ours in the low level, we are more interested in determining the origins of
these quantitative differences at more abstract levels and to predict the effect of
design decisions in parallel programming languages and models in both, software
engineering and analizability characteristics (SEC,AC).

The problem we want to tackle is detecting any relation between the SA
of a PPM and its software development and analizability characteristics, in or-
der to present classification criteria of SAs it terms of their characteristics for
parallel programming. If restricted SA classes appear to have advantages over
unrestricted classes, a related question is if there are methods to map known
applications in unrestricted SA classes to restricted ones, and how much perfor-
mance impact may impose such high level transformations.

In the thesis proposal we are presenting here, we identify, first, the syn-
chronization architecture (SA) as a key property of PPMs with respect to its
suitability for software engineering and analysis, and a good criterion to classify
PPMs. Some classes of restricted SA leads to good characteristics in software
engineering as well as analysis, while others prevent them. The most important
feature of an SA is the class of condition synchronization it allows (NSP vs. SP).
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The choice of a restricted SA may entail a loss of parallelism at the pro-
gramming level of abstraction (possibly propagated to lower levels). We propose
an empirical evaluation system of PPMs to grade them in terms of this loss of
parallelism as a function of their SA. Based in our value system, we promote
the class of SP-restricted PPMs as a promising PPM for general-purpose parallel
computing. SP restricted SA models present a good trade-off between expres-
siveness and software engineering and analizability characteristics. Moreover, we
show that most applications can be mapped to SP (nested-parallelism) structure
with minimal performance impact.

1.5 Approach

In this dissertation we study the problem from three different perspectives. A
conceptual review of the SA of parallel architectures, computation and program-
ming models, programming languages, and applications is needed to identify the
best criteria for classifying the synchronization structures found at any detail
level of a parallel system. Once the classes are determined and the restricted
SP class arises as the class with the most promising features, a further study of
the properties of its structures is needed. Then, the second step is a theoreti-
cal study, based on graph theory, of the properties of NSP and SP structures,
including an study of the transformation of structures in different classes. The
third step entails an experimental framework: ideas and techniques developed on
the theoretical study can be used to experimentally compare the behavior and
performance of application structures in different classes. This empirical study
validates results and proposals analyzed in the previous steps and reveals the
real parameters and behavior of real applications when programmed in different
classes of SA.

Conceptual approach: After defining the SA concept and establishing the dif-
ferent abstraction levels of study, it includes a classification of the SAs found
at any level: From parallel architectures and well-known parallel comput-
ing or programming models to the applications space. In this approach
we relate the SA class with the programming models expressive power,
analysis characteristics and the virtues and flaws associated for mapping
applications to them. The NSP vs. SP classification appears as the more
relevant feature of a PPM. We also present a conceptual discussion of the
possible mapping strategies of applications, to PPMs in a different and
more restricted class.

Theoretical approach: This approach is based on a theoretical study of the
modeling capacities and restrictions of SP models in an abstract level, and
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their significance. A formal analysis of the NSP and SP graphs, their re-
lation and the distance from NSP to SP forms is introduced. We present
heuristic transformation techniques and algorithms to convey NSP struc-
tures into SP approximations that introduce minimum changes in topology
or performance. We develop an analysis framework to predict the loss of
performance introduced at the programming abstract level as function of
SA. The framework is based on the use of graph theory, topology classes,
and task workload metrics. We measure performance differences in terms
of critical path.

Experimental approach: We present a comparison of using programming mod-
els or languages in different SA classes to implement real applications, in-
cluding the effects of typical implementation trajectories. Here we do not
restrict ourselves to the highest abstraction levels, but we use the above
framework to discuss the performance effects of various mappings and im-
plementation issues at lower level. Thus, two different frameworks are
studied:

1. Oriented to the whole program space.

We study the results of enforcing SP restrictions on a sample of the
whole graph space, and on synthetic graphs, relating the modeled per-
formance loss to generic and simple graph and workload parameters.

2. Oriented to applications.

Based on our parallel applications classification presented in the con-
ceptual approach, we select a collection of representative applications
from all relevant SA classes. We compare execution times and perfor-
mance effects produced when real codes programmed in generic and
restricted SP models are run in several machines models. The impact
of SP restrictions is empirically predicted and compared with previous
results.

As we will show along the following chapters, the results of this three ap-
proaches will fully support our theses: presenting the SA as the key factor in
the analysis characteristics of a PPM, and consequently in the software engi-
neering of parallel applications, and promoting the SP restriction of condition
synchronization as one of the most relevant choices in the design of a PPM.

1.6 Outline

This dissertation is organized following the three different approaches presented
in the previous section. Chapter 2 presents the conceptual approach. After
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introducing some concepts and terminology (including SA), we present our clas-
sification criteria for SA. Then, we travel bottom-up along the different abstrac-
tion levels studying the SA of parallel architectures, programming models and
applications. Interesting conclusions are discussed for each new layer. In Chap-
ter 3 we present the theoretical approach. We formally define SP graphs and
study their structures. Simple transformation techniques and problems are dis-
cussed, after which two new heuristic algorithms are introduced. The impact
of the transformation is studied from different perspectives. Chapter 4 includes
an exposition of the motivations and decisions taken to build our experimental
framework. Graph application modeling techniques are introduced in this phase
of the study. A broad summary of the results obtained in each phase is presented
and discussed. In Chapter 5 we recall the results and ideas presented along the
whole work, and we present our conclusions.



Chapter 2

Conceptual approach

I did not paint it to be understood, but I
wished to show what such a scene was like.

J.M.W. TURNER, 1775-1851

This chapter is an attempt to bring the reader a travelogue through the
parallel programming world. After the introduction of some concepts and termi-
nology, we will initiate a trip along the fields of parallel programming, a land full
of sight spots where the synchronization structure colors are showing up from
inside everything that blossom. From the rough and changing oceans of parallel
architectures and low level execution models, we will fly up to the low-lands of
mapping, where the implementation floods are directed by the river coasts of
compilation. In the upper valleys we will find the programming models which
allow this compilation techniques and the abstractions that hide the details to
the programmer. Finally, we will climb up the high abstraction peaks to find
their snow crowns, where applications and parallel algorithms dwell, nurturing
the waterfalls where all the implementation line begins. All around, synchroniza-
tion structure will be a friendly guide that will show us secrets beneath what the
untrained eye catches. Throughout this trip we will learn how synchronization
structure helps us to understand the roots of advantages which show, and the
difficulties to be tackled, when different parallel programming models are used.

First, we will discuss about models and modeling, to propose general defi-
nitions for parallel programming and computing models, and describe the dif-
ferent detail levels involved in parallel computing. Then, we will introduce the
synchronization architecture concept, presenting classification criteria, useful for
detecting the good and bad properties of synchronization structures regarding an-
alyzability and expressive power. These criteria are used in the following sections
to classify models and applications, showing the relevance of synchronization ar-
chitecture at any level of detail.

13
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2.1 Parallel models and definitions

In this section we begin to prepare the luggage we will need for our trip. We
establish some terminology that sometimes have confusing meanings, typically
when coming from different communities related to parallel computing. We also
define the main concepts about parallel programming models we will use from
now on.

2.1.1 Parallelism and parallel computing

Although parallel computing is somehow a complementary concept to sequential
computing, they share a main substrate. They solve problems applying a pro-
grammed collection of actions, chosen from a reduced set, where each of them
modifies a well-defined environment in a deterministic way.

The important difference between parallel and sequential worlds is how these
actions interact with the environment and how they are ordered in the time space.
In sequential computing the programmer is responsible for the order in which the
instructions are executed and only one of them can modify the environment in a
given instant of time. When the restrictions of time order are relaxed, and many
(a given number) of actions can be executed simultaneously or in no specified
order, the programmer has new freedom degrees to exploit, but she/he faces
new associated problems. When two given actions modify an initial environment
state in non-compatible ways, they must be prevented to execute simultaneously
to preserve the consistence of the computation until it arrives at a known state
where the problem is solved. Thus, we distinguish actions that can be executed
in parallel and actions that must be executed sequentially.

We call parallelism to the possibility of exploiting time ordering relaxation
and simultaneous execution of actions for problem solving. Thus, parallel pro-
gramming is related to uses and techniques to express a solution to a given prob-
lem in a computational environment where parallelism is possible. And parallel
computing refers to the evaluation of solutions in such environments.

Parallel computing and programming is historically associated with high-
priced machines and high-performance. However, parallelism is a broader word
that can be associated with many terms, most of the times with unclear bound-
aries among them. For example:

Concurrency: Typically associated with the basic problems of parallelism, like
analyzing mutual dependences and using synchronization mechanisms to
access shared resources. Sometimes, concurrent computing refers to mech-
anisms of time-sharing to provide simulated parallel execution in multitask
environments with restricted number of processing elements.

Distributed computing: More related to the techniques for using parallelism
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in environments where active elements are loosely-coupled and/or have
diverse nature.

High-performance computing (HPC): While mainly using parallelism, HPC
is focused on the extraction of high performance peaks from specific (sci-
entific) applications with new or recent computing technologies.

Parallel computing: Mostly related to the programming and use of real par-
allel architectures, where several processing units operate with a hardware
or software layer that allows interaction among them.

We will use parallel computing in the broadest sense, referring to the exploiting
of parallelism in any computational environment.

2.1.2 Modeling

Human beings use modeling or models to abstract reality in order to represent
it in a simplified way which allows them to reason about it, developing theories.
However, the exact meaning of the terms model and modeling depends on many
issues related to the nature of what is being modeled, the purpose of the model,
the level of detail required and the intended techniques to be applied. Thus,
talking about, and especially defining what a programming or computing model
is, is technically difficult, as different people understand or think differently about
them.

In the parallel computing world, there does not yet exist a reference archi-
tecture or programming model accepted as universal. We present in this section
a tentative distinction of modeling levels and their relations in a parallel compu-
tation environment, that will be useful for conceptually analyze both, well-know
models of parallel computation, and the scope of our study.

The first distinction we must introduce is that programming and computing
are not the same thing. While programming is the activity oriented to express or
prescribe a solution to a problem (or family of problems) with a constrained set
of actions, computing is the activity oriented to evaluate programmed solutions
in a computational environment. Thus, parallel programming models and parallel
computing models are not exactly the same, although the boundaries are blurred,
as programming and computing are inter-related activities. Many models par-
tially cover aspects of both programming and computing activities, and they try
to fill in the gap between them. They are usually called bridging models. We
will discuss about them in the next section.

2.1.3 Parallel computing and programming models

Now we will walk through the abstraction levels, from the highest to the lowest
of the computing/programming activities, giving names to what we find on our
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way. The reader can follow our trip in Fig. 2.1.

—1 PPL’ H PPL” H PPL”"i

PPL Parallel programming language

Programming model Level 1
(Solution design) | o~ C o D C D o o e e e e e e e e mmm e e e oo -

PPM Parallel programming model

Level 2

PCM Parallel computing model
Execution model | L L L L e e e e oo
(Evaluation)

Parallel architecture

(Hardware) —

Figure 2.1: Abstraction levels of modeling

The reality that we try to model is the programming and computing task
with real machines able to use parallelism. The programming task is done by
implementing an algorithm or application specification in a programming lan-
guage with capabilities to express parallelism. A programming language is an
instance (with given words and syntax) of a programming model (which provide
specific semantics).

Thus, a Parallel programming model (PPM) is an abstract description (or
abstract virtual machine) to express parallel actions independently of the un-
derlying execution level. Message-passing interfaces, concurrent object-oriented
programming and other similar tools are mainly focused at this level. We call an
instance or specific notation for a PPM a Parallel programming language (PPL)
Thus, a PPM defines a family of PPLs (a family of possible languages that allow
the programmer to express exactly the same parallel semantics).

A complete virtual machine includes the definition of a basic information
unit and a concise instruction set with clear semantics. In parallel programming
the instruction set must include synchronization operations. The reader must
notice that a PPM defines an abstract virtual machine that in fact induces a
computation model. A PPM is a programming interface that hides some exe-
cution details and issues of the underlying ezecution model. That is what we
call a Parallel computing model (PCM). An effective parallel computing model
must be affordable to be efficiently implemented in real parallel machines and
many times it is highly influenced by real architecture model capabilities. At
the same time, it is expected that a good parallel computing model provides a
reliable cost analysis technique to test the behavior and performance expecta-
tions of programmed solutions. Examples of this level include abstractions such
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as PRAM [65] or LogP [50] models.

Finally, at the lowest level, machines are abstracted by parallel architectures.
They propose a model for hardware capabilities of the machine, defining a kind of
low-level virtual machine. A parallel architecture may include a specific machine
description (e.g. The Connection Machine [103]), or a more generic model (e.g.
NUMA architectures [51], Beowulf systems [177]). PPMs and PCMs should be
abstract enough to provide an easy interface to the programmer, and at the
same time, they should be portable (efficiently implementable) across the most
relevant parallel architectures.

For example: MPI [48] or PVM [178] are different languages (level 1) that
implement the semantics of the same PPM: Message-Passing (level 2). Message
passing assumes an underlying PCM based on a bounded number of processors
running asynchronously and exchanging point to point messages, such as LogP
(level 3). At the lowest level, such a PCM can be directly implemented on a
NOW, a cluster or even in a shared-memory architecture (level 4), with possibly
different low-level implementation mechanisms on each.

PPMs and PCMs are highly related. Since most of the times they are differ-
ent only in the point of view (from the programmer or from the implementation
level), they share many common problems, and the solutions to them may be
similar. This is the reason why nowadays there exists a wide concern about bridg-
ing models for parallel computation. These models include the main features of
a PPM, offering a high-level parallel programming interface, and give details
about performance cost modeling and low-level implementation issues associated
with the PCM (typically representing a given architecture or real machine with
a small number of parameters). They try to jump over the gap between two
communities: The architecture design community (concerned by efficiency and
implementation) on one hand, and the parallel solution design community (con-
cerned with programming techniques and parallelism exploiting) on the other
hand. Many models can be considered bridging models, although the concept
was proposed with BSP [185]. We will review some bridging models and their
characteristics in section 2.4.

In the following paragraphs we review other definitions and ideas found in
the literature about what parallel programming and computing models are or
should be.

Skillicorn & Talia define a PPM in [174] as an interface separating high-
level properties from low-level ones. It is an abstract machine providing certain
operations to the programming level above and requiring implementations for
each of these operations on all the architectures below. It is designed to sep-
arate software-development concerns from effective parallel-execution concerns
and provide both abstraction and stability.

A similar idea introduced by Maggs in [129]: A PCM defines an abstract
execution engine, powerful enough to produce a solution to relevant classes of
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problems, which must reflect the salient computing characteristics of practical
parallel computing platforms. The model is both, descriptive and prescriptive.
It describes realistic platforms behavior, and at the same time it suggests hints
and directions for new hardware development, as it models features desirable for
interesting programming and computing techniques.

2.1.4 Detalil levels

From the more abstract specifications of a problem solution, to the real imple-
mentation and program, there exist several detail levels that can be considered
and included in a model. Most of them are clearly related to the abstraction
level where they typically can appear. We introduce here a classification of these
detail levels from McColl, as presented in [35]. From the maximum abstraction
to the lowest level of detail, a PPM/PCM can include or model the following
levels (we present some examples of models that include a given level):

Specification: Unambiguous description of a computational problem (e.g. Z,
CSP, m-calculus).

Programming: Notation for a precise, high-level description of correct and ef-
ficient solutions to a given computational problem (e.g. HPF, Occam).

Cost analysis: Basis for evaluation and comparison of efficient methods for a
programmed solution to a computational problem (PRAM, BSP, LogP).

Architectural (also called mapping level): Framework for the description
of implementations of programs (e.g. monitors, semaphores, RPC, message-
passing).

Physical (also called machine level): Description of a real machine char-
acteristics in which to implement and solve a program (e.g. distributed-
memory vs. shared-memory models, NOWs).

A programmer typically walks through these levels top-down during the de-
sign and implementation until the program can be executed in a real machine.
The term implementation is sometimes used for the whole process of transform-
ing a problem specification in real code for a given machine. In our framework,
it typically means the process of transforming a program (specified in a PPM
notation for the programming level) into a ready-to-run executable.

2.1.5 Requirements of PPMs

What characteristics should have a PPM/PCM to be a good candidate for general
all-purpose parallel programming? We discuss here a proposal from Skillicorn
and Talia [174]. They propose six main requirements for a PPM/PCM:
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Easy to program: A PPM should conceal details about decomposition of the
computation in threads, communication and synchronization between them,
and any mapping decisions to adapt the computation to the underlying
hardware model.

Software development technology: A firm semantic foundation is needed to
bridge from specifications to programs.

Easy to understand: To educate existing software developers.

Architecture independent: Even with new evolving or future technologies.
(In [129] we also read that a PPM should be somehow prescriptive, and
point into new interesting directions for hardware development).

Guaranteed performance: Although it is not needed to exploit it to the best
possible in each architecture, especially at the expense of much higher devel-
opment and maintenance costs. “Implementations should aim to preserve
the order of the apparent software complexity and keep constants small”.

Cost measures: They should cover execution time, process utilization, devel-
opment, etc. They must be compositional and convex.

These requirements can be divided in two broad categories. The first three re-
quirements are focused on the software development characteristics (more related
with the PPM), and the last three ones are focused on the good mapping charac-
teristics (more related to the induced PCM). The achievement of the requirements
depends on the modeling decisions taken in the design of a PPM/PCM at the
different detail levels (see section 2.1.4). These decisions define the power of the
model ezpressiveness and analyzability, being foundations of the feasibility of the
software development and good mapping requirements categories respectively.

Specific restrictions at the programming level, that somehow reduce the num-
ber of applications that have a natural mapping from specifications to the struc-
tures accepted at this level, may produce benefits for the lower levels. Specif-
ically, advantages may appear on cost analysis techniques and implementation
transformations to map applications into the architectural level.

The programming model, formally, provides a set of rules or relationships that
defines the meaning of a set of programming abstractions. Its objective is to allow
reasoning about program meaning and correctness [129]. Thus, a model must
be simple enough to allow analysis and stable software developing techniques.
At the same time it must provide meanings to express problems in a natural
way (obvious to any programmer), complying to the original specifications of the
problem solution and obtaining efficient implementations and good performance
in real machines. Such mapping decision should be helped by a performance cost
model, based on a sufficient detailed but abstract enough machine model. Cost
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models that allow to plug different machine models in a standardized description
language or formalism are the best candidates. The programmer may trade
complexity and accuracy in the process to determine the best implementation of
an algorithm for a given machine [70].

Our study is mainly focused on the cross relationships between the program-
ming, cost analysis and architectural (or implementation) detail levels and their
impact on the expressive and analysis power of the model. We have identified
the synchronization structures supported in the programming model as a basic
component of a PPM design. We have found it responsible for an important
trade-off between expressiveness and analyzability, which are foundations for the
two PPM/PCM requirements categories. This matter is discussed in the follow-
ing sections.

2.2 Synchronization architecture

Applications that exhibit the same synchronization structures usually have prop-
erties that can be exploited through the programming and implementation pipe-
lines. PPMs can restrict or support specific kinds of structures in order to offer
advantages in software engineering, programmability and portability (automatic
or interactive performance analysis, verification, etc.) Identifying important
classes of programming structures with interesting properties becomes a chal-
lenge for parallel software engineering.

We propose the concept of synchronization architecture to classify parallel
systems regarding its main synchronization structure properties. In this section
we propose and describe a classification of the different main types of synchro-
nization structures.

Definition 2.2.1 A Synchronization architecture (SA) is the formal description
of the properties that define the communication structures and synchronization
mechanisms either present in a specific application or supported by a given PPM.

2.2.1 Types of synchronization: CS, ME

Although several names are used in the literature, we distinguish only two main
types of synchronization (see e.g. [9, 122]).

Condition synchronization (CS): It is used when an operation or process
must be delayed until a certain condition is satisfied. It is typically asso-
ciated to data dependences, communication or other processes ending. It
implies an execution order in the processes or operations involved for the
computation to be correct. It is also called static, deterministic or event
synchronization.
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Mutual exclusion (ME): A critical section is a sequence of statements that
must be executed as an atomic operation. When two or more critical sec-
tions or processes cannot be executed at the same time (in parallel), we
say they are mutually exclusive. If two or more mutual exclusive processes
try to begin their executions, only one of them can proceed, but the order
in which they are executed is not relevant for the computation correctness.
It is also called dynamic or non-deterministic synchronization.

These types of synchronization are orthogonal in the sense that a PPM can
support both or either of them independently. Nevertheless, they are only dif-
ferent from the programming point of view. In the execution model, the ME
synchronization is transformed in CS, creating an order of execution for the
mutual exclusive critical sections. This transformation is done by scheduling al-
gorithms in the PCM implementation or directly by the hardware (e.g. through
communications contention). The difference is the freedom for the critical sec-
tions to be scheduled in any order, that allows the underlying execution layer
to detect or apply a different order for a particular execution of the code. This
order is chosen to maximize the performance and must be determined by the
computation status, the execution times of other tasks, and previous scheduling
results.

2.2.2 Mutual exclusion, mapping and bounded resources

In this section we discuss the relation of ME nature with mapping tasks at low
levels of detail. Thus, ME appears to be highly related to implementation details
oriented to deal with restricted resources. Processors are typically a restricted re-
source. The discussion evolves to the relative importance of supporting bounded
or unbounded number of logical processing elements in a PPM, that is related
to the parallelism granularity supported.

A PPM must include CS mechanisms. Although some problems can be solved
with only ME, there are many others whose solutions need an specific order of
execution in some operations for the computation to be correct. On the other
hand, ME exclusion may be implemented by a programmer in terms of CS cre-
ating an unnecessary order in the tasks involved. The programmer faces the risk
of degrading performance if the order chosen is not the optimum for a specific
execution of the program, but many times she/he has a good heuristic to decide
what should be an acceptable order. Furthermore, many times ME is introduced
by programmers to solve mapping problems in environments where the PCM or
execution model cannot solve them directly.

The main purpose of ME is to let the programmer deal with restricted re-
sources. These resources can be of any nature, but they are intrinsically related to
the architecture, model, or design of real machines (e.g. shared-memory accesses
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in shared-memory architectures that do not provide an implicit contention mech-
anism). At the more abstract level of specification ME scarcely appears. Only
when the programmer (or compiler designer) is facing mapping problems, con-
sidering a restricted number of resources (e.g. a restricted number of processors),
ME becomes really important. Explicit ME can be used by the programmer to
annote the tasks which can produce contention problems, for its implementation
in architectures that do need it, and for being used in a cost model during the
mapping.

Consider the following example. A classical parallel solution for load balanc-
ing in many irregular problems is the farm paradigm, also called work-stealing
strategy (see e.g. [43, 189]). In problems solved with this strategy, there are
k work providers and n workers. The workers repeat a simple cycle until the
computation is finished: Get work from a work provider and do the work. The
work providers act as resources that must be accessed through contention by the
workers. See a graphic representation of the generated structure in Fig. 2.2. For
work balancing reasons and simplicity, in most examples there is only one cen-
tralized work provider £ = 1. In some applications the work done can produce
many other pieces of work to do in the future which are sent to a work provider
when the exclusive access for this operation is obtained.

w; = Work supply resource
i=1..k

ME(w) Get-Work

Do-Work

ME(w) Get-Work

Figure 2.2: Workers-Farm scheduling strategy

This description corresponds to a mapped and free scheduled solution for the
problem. The original problem only considers that many workers can do pieces
of a job in parallel. The original problem solution only specifies that many
workers can get a piece of job and do it iteratively. If the number of processors
is not bounded, then, m simultaneous workers can do one of the many m pieces
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of the job. If the work produces more m’ pieces, then, m’ new workers in m’
new processors can start processing these new m’ pieces, as soon as they are
available. Nevertheless, the number of processors is typically a limited resource.
When mapping to n processors one logical choice is to start n workers, and
let them process the pieces of work iteratively. In a second mapping phase, if
we consider £k = m work providers, each worker has an exclusive font of work
pieces, and the computation does not need mutual exclusion. However, for the
kind of irregular and data-dependent problems that this strategy is oriented to
solve, a worker can produce many more pieces of work than others. We want to
balance the load such that no worker is idle while others have still many items to
process. Thus, workers that become idle should contact the work providers to get
more job pieces. One or more centralized sources of work are needed, acting as
resources and needing mutually exclusive access to avoid several workers creating
race conditions when downloading or uploading job pieces.

This load balancing strategy is a mapping decision that works appropriately
when the computation is highly irregular and the computation time of a worker
doing a job piece compensates the communication and contention delays. The
number of work providers can be selected depending of many cost factors and load
predictions. All these mapping issues are faced by a programmer implementing
a farm directly, when the original problem definition was much simpler. In fact,
the original solution structure is hidden or even lost in the mapped-scheduled
code generated. We argue that this mapping decision must be postponed to
the mapping phase, done by the PCM implementation, guided by information
provided by the programmer either, on the code or interactively.

An interesting question derived from the previous discussion is whether a
PPM should force the programmer to work with a fixed number of logical pro-
cessors or with an unbounded number of them. As is discussed in following
sections about existing PPMs, working with an unbounded number of processors
allows the programmer to exploit the maximum level of fine-grain parallelism in
the problem. However, in most situations, this is not an efficient solution in real
implementations. Fine grain parallelism can create a huge amount of small tasks
with too frequent communication, reducing the parallel slackness' and unbal-
ancing the communication/computation ratio, incrementing the communication
costs over the computation. On the other hand, if the programmer must take
in account that he is working with a fixed number of processors, sometimes he
is lead to deal with this restricted resource directly, facing and solving the data
partition, scheduling and other mapping details. This could compromise porta-
bility and the possibility of using powerful software development techniques. In
section 2.4 we discuss PCMs that try to face this problem from different points
of view.

!The granularity of the computation partition among tasks [185].
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The best solution is to find a good mapping technique that transforms fine-
grained parallelism expressed in an abstract form by the programmer in coarse-
grained parallelism in the best possible form, adapted to the number of processors
and other machine details. An accurate, minimum cost model that detects at
least the asymptotic performance alterations of a given data-layout, scheduling
or other mapping transformations is a key for this kind of techniques.

From the above discussion, we suggest that an ideal PPM should abstract
the programmer from the number of processors that he is going to use, letting
him only to show hierarchically the different levels of parallelism in the prob-
lem solution (from the coarsest to the finest). The PPM/PCM should include
an automatic or interactive procedure to map this kind of programs to the re-
stricted resources of a given architecture using: (1) ME, (2) an asymptotically
accurate cost model supplied with the target machine model and parameters, (3)
a proper scheduling technique to transform fine-grained parallelism to the proper
granularity, eliminating unnecessary communication and leading to the proper
parallel-slackness needed to obtain an efficient program.

We conclude that ME is not needed at the highest abstraction level of spec-
ification, but it is helpful to express some solutions to specific problems and to
help the PCM implementation to take decisions about where and how to deal
with contention problems that are not solved by typical underlying architectures.

2.2.3 Classification criteria for SAs

We can classify SAs according to the different properties (in expressiveness vs.
analizability trade-off) they induce in a PPM/PCM or application. We propose
criteria based on three orthogonal axis as shown in Fig. 2.3. The two first axis
correspond to the two orthogonal types of synchronization (CS and ME synchro-
nization). They are orthogonal in the sense that a PPM can support both or
either of them independently. The third axis is based on a criterion that distin-
guish data-dependent from non-data-dependent synchronization structures. CS
and ME are combined by the programmer to create the appropriate synchro-
nization structures for a given application. Some applications will always create
a given synchronization structure or combination. However, applications that
are data-dependent may create processes and any type of synchronization (ME
or CS) dynamically. Thus, it is possible that the exact synchronization struc-
ture created by an application will be not known until execution time. This
third criterion becomes important to detect if synchronization structures may
be analyzed and manipulated statically at compile time or only dynamically at
run-time.
The relevant classes identified in each of the three axis are:

1. CS synchronization subtypes:
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Condition Synchronization

Mutual exclusion <. RN Phd Data-dependency

Figure 2.3: SA classification criteria

We propose only two complementary main categories of CS structures re-
garding the properties of the PPM that derivate from its class: (1) Hi-
erarchical, SP, or Series-Parallel (also known as nested parallelism); (2)
Non-hierarchical, NSP, or Non-Series-Parallel.

2. ME synchronization subtypes:

We consider two classes: (1) PPMs not supporting mutual exclusion (NME),
or applications which do not need it; and (2) another complementary class
for PPMs supporting, or applications which use, ME.

3. Data-dependency subtypes:

We distinguish between: (1) Non-Data-Dependent synchronization struc-
tures (NDS), and (2) Data-dependent synchronization structures (DS),
created by a PPM which allows dynamic thread creation [174] or data-
dependent, synchronization structures (determining which and when pro-
cesses communicate at run-time). Parallel algorithms may also be designed
with non-data dependent structures or may use semantics that need data-
dependent (dynamic) synchronization.

Thus, we propose eight SA classes, where some of them can be empty at
some abstraction or modeling levels if no useful parallel computations (PPMs or
applications) present such synchronization structures. Each class will be named
by a triplet (a, b, c), where a will be the class of CS, b will indicate if ME can be
exploited and ¢ if data-dependent synchronizations are possible. In the following
sections we will fully describe each axis subclass, presenting examples of PPMs
and programs for each one.
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SP

(SP,ME,DS)
L
=
(SP,ME,NDS)
(SP,NME,DS)
L
=
Z
(SP,NME,NDS)

Figure 2.4: SA classification

We will conveniently represent the SA space in two dimensions as in Fig. 2.4.
In this graphic representation, the less restrictive SA classes are in the top right
corner, and the more restrictive are in the bottom left corner. Fig. 2.5 shows the
idea of increasing restrictiveness from one class to another with small arrows, and
the intuitive idea of general increasing restrictiveness from the top right corner
to the bottom left corner with a big arrow.

2.2.4 Condition synchronization: CS classes

PPMs that do not support condition synchronization must base all solutions in
ME. They cannot solve many concurrency problems that need fairness, should
ensure no-starvation or should avoid dead-lock conditions. We consider this case
a degenerated class of PPMs not fully useful for general parallel computation.
Applications based mainly in ME for problem solving typically include some form
of CS at least to create processes or threads and to wait for them to end before
another stage begins, or the application finally ends (see e.g. section 2.5.5).

We will present now the two classes of CS structures with an example of a
possible parallel programming language and a possible program for each class.



2.2. SYNCHRONIZATION ARCHITECTURE 27

SP

ME

NME

Figure 2.5: Restrictiveness increase of SA classes

A. SP (Series-Parallel)

This class contains the SAs which only allow CS structures which dependences
can be represented by a series-parallel partial order set or series-parallel directed
acyclic graph (see section 3.2.1). Series-parallel structures are generated by the
so called nested-parallelism, nesting (or recursive applying) series and parallel
compositions. They appear in PPMs with language primitives with the same
semantics as the cobegin, coend constructors [9]. The end of the parallel section
implicates a barrier synchronization before it proceeds. Next tasks are dependent
on all of the tasks in the previous parallel section. Communications are implicit
and only occur during the fork and join phases of a parallel section.

A formal definition of SP languages based on SP partial order sets and SP-
algebras is presented in [126]. Automata theory can be extended for recognition
of SP languages (see [127, 125]).

For example, consider a PPL where the only condition synchronization that
can be expressed is implicit in cobegin, coend statements. Arbitrary computation
blocks are identified by an integer in a do <integer> statement. An example of
a possible code and its task graph representation is shown in Fig. 2.6. The
numbers in the task graph represent the numbers of the computation blocks in
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the code. The synchronization structures that can be created are constructed by
recursive application of spawning parallel sections, and serial composition. The
use of global variables or data in tasks from different threads of parallel sections
could compromise the program correctness, as the model considers the tasks in
different subthreads completely non-dependent.

(1) begin

(2) do 1;

3) cobegin

(4) tl: do 2;

(5) t2: do 3; do 4;

(6) cobegin

) tl: do 5; do 6; do 7;
(8) t2: do 8;

9) t3: do 9; do 10;
(10) coend

(11) do 11;

(12) £3: do 12; do 13; do 14;
(13) coend

(14) do 15;

(15) end

Figure 2.6: Example of series-parallel code and structure

Subclasses of SP class

In SP class of SAs we can distinguish two subclasses associated with well-known
concepts related to the synchrony in PPMs, and widely used in the literature.
Presented in order of decreasing synchronization restrictiveness, they are:

Lockstep: Each computation step is synchronized among all processing ele-
ments in the system. SIMD machines in Flynn’s classification [64] works
with these SA (see also PRAM model discussion in section 2.4.1). Typi-
cally, lockstep mechanism assume unit cost for the operations and no cost
for the synchronization mechanism.

Bulk-synchronous: Each processor executes a series of local computational
steps or tasks before all processors synchronize together in a full barrier.
Communication or accesses to shared memory only occur such that the
results are only available in the next phase, after the full synchronization.
(See BSP, QSM and some PRAM derivate models in sections 2.4.2, 2.4.3
and 2.4.1 respectively). The recursive application of bulk-synchronizity
creates SAs that are in the full SP class.
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The relation between these subclasses is presented in Fig. 2.7. SP and
NSP classes are complementary. Lockstep is a more restricted class than bulk-
synchronization that is in turn a subclass of SP synchronizations.

Bulk-synch.

SP Class ! NSP Class

Figure 2.7: Classes of condition synchronization

B. NSP (Non-Series-Parallel)

This is the class of the SAs which allows static structures whose dependences
can NOT be represented by an SP partial order set or SP directed acyclic graph.
Any kind of dependences combination expressed with CS can be found in an
application programmed in this kind of model.

PPMs in this class are also called asynchronous. Non-series-parallel models
are related to the concept of synchronization by point to point message-passing
or mechanisms as signal, wait primitives. Consider a toy PPL where arbitrary

(1) do(>1>ab)

(2) do(>2>¢c)

(3) do(b>3>ef)
(4) do(a>4>4d)
(5) do(e>5>g)

(6) do(cf>6>h,j)
(7) do(dg>7>kl)
(8) do(i>8>mno)
(9) do(j>9>paq)
(10) do (n,p > 10> rs)
(11) do (o.g>11>1t)
(12) do (l,rs > 12 > u)
(13) do (st >13>v)
(14) do (ku> 14 >)
(15) do (m,v > 15 >)

Figure 2.8: Example of non series-parallel code and structure

computation blocks are identified by an integer number, and they are executed
provided that a collection of preconditions, identified by a name, are true. At
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the end of the computation a collection of postconditions can be issued. The
syntax used will be the statement do (preconditions_list > taskNumber > post-
conditions_list). Any task with no precondition will be executed (in parallel) at
the beginning of the computation. In Fig. 2.8 we show an example of a program
which generates a complex non-SP graph. Any kind of synchronization structure
or generic graph can be generated with such a language. (For this example toy
language it is possible to create computations that never end, due to infinite
cycles or conditions impossible to be satisfied).

2.2.5 Mutual exclusion: ME classes

We distinguish two classes in the ME axis: PPMs that do, and PPMs that do not
provide ME mechanisms. We include a discussion about the different natures and
ME mechanisms in the description of the related class. Application definitions
also may or may not use ME semantics. In section 2.2.6 we discuss the problems
of simulating ME semantics with CS.

A. NME (No mutual exclusion)

Models and applications in this class do not support or need ME mechanisms.
In previous sections we have shown examples of PPLs and programs which do
not use ME (see Fig. 2.6 and Fig. 2.8).

B. ME (Mutual exclusion)

In this section we discuss the different mechanisms that support ME. We will
use as example a simple problem where n threads need to access a global vari-
able (accessible in shared-memory or through communication mechanisms across
threads) to use it as a counter. ME must be used to avoid race conditions. The
typical mechanisms are:

1. Shared-Variable paradigm with mutual exclusion primitives:

Some PPMs provide the programmer with mechanisms or primitives that
have implicit ME semantics. In this case the programmer can directly
specify which tasks cannot be executed in parallel (simultaneously), with-
out specifying any implicit order. Any one can be executed before the
others.

The exact mechanisms can be of any nature: Atomic operations on vari-
ables, atomic transactions, critical sections specification, monitors, ... The
main advantage of direct ME primitives is that the compiler can easily de-
tect and reason about the effects of the unordered synchronization in the
program performance. An approximation technique to the cost modeling
of ME is given by Van Gemund in [70].
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a=0
ISOMP_PARALLEL, shared(a)
myld = OMP_GET_THREAD_NUM()
ISOMP_CRITICAL
a=a+l
WRITE(*,*) " Thread ",myld,” scores ",a
1I$SOMP_END_CRITICAL
WRITE(*,*) "Ending thread ”,myld
I$SOMP_END_PARALLEL
WRITE(*,*) "End of computation”

Figure 2.9: Example of code and structure with ME primitives

Consider for example OpenMP [149]. It provides a parallel section pragma
OMP_PARALLEL and another pragma called OMP_CRITICAL to specify a
part of code that is a critical section. Critical sections of code are mutually
exclusive for all the threads in the same parallel section. The simplified code
in Fig. 2.9 shows an example using OpenMP in FORTRAN language. In
the associated task graph we cannot use normal oriented edges to represent
this dependence, as it does not induce any order in the tasks. We use
shaded nodes to represent this dynamic dependence. The shaded nodes
will be executed sequentially but in no specific order. The number in a
node represents the number of the thread executing the task. The screen
results of this code execution depend on the order in which the threads
get access to the critical section, but they will be consistent as no race
condition in the a = a + 1 statement can be produced.

. Message-Passing paradigm with programmed ME:

Other models do not provide primitives with ME semantics, but they have
a contention mechanism that can be use to manually program mutual ex-
clusion.

Consider for example a SPMD parallel language which begins a parallel
section with a parallel() statement, a facility to get the own thread num-
ber get_id(), and has a message-passing interface with send(p,i), recv(p,i)
operations, where p is the number of processor to send to or to receive
from, and 7 is an integer. Suppose we allow the receive operation to get a
message from any processor, the first that arrives at the in-port. For our
example language, if p = —1, then the recv(p,i) operation will return in p
the number of the processor from which the next message comes. We are
allowing a kind of contention between arriving messages in the in-port of
the receiving processor. We consider a case in which if several messages are
sent simultaneously the order of arriving cannot be predicted. In the code
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parallel(n+1) {

}

printf(”" End of computation”);
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in Fig. 2.10 we show an example of using this feature to produce mutual
exclusion, using one thread as a (monitor like) dynamic synchronization
server. Again, the number in a node represents the number of the thread
executing the associated task. The results will be similar to those of the
previous example for ME primitives.

myld = get_id();

if ld==0
I (mZ:O; ) { getld; a=0 Q o e o getld
for (i=1; i<=n; i++) {

—_1- /% * recv; a=a+1;
p=-1; /* From any */ verd 0 o 9 send

recv(p,foo);

a=a+l1; recv; aza+l; 0 .o recv
send
send(p,a);

} } rec;/ér?;aﬂ: Q o 9 o printf
else {

send(0,foo);

recv(0,result);

printf(” %d reads %d”,myld,result);

recv; a=a+l;
send

}

printf
Figure 2.10: Example of code and structure with programmed ME

Although it is still possible to produce similar results as using ME primi-
tives, the programs get more complicated, the programmer must face semi-
scheduling issues, and the global effect of the mutual exclusion is hidden to
the compiler. Typically, in these programming models, the analysis of the
contention must be done at a very low level, where the original semantics
of the mutual exclusion are lost, complicating the overall cost analysis with
new low-level parameters.

2.2.6 Mutual exclusion vs. condition synchronization

Some PPMs do not include any mechanism for mutual exclusion (NME). When
such a model needs to deal with a problem like the one proposed as example
in section 2.2.5, the only possible solution is to use condition synchronization
between the tasks that cannot be executed in parallel, creating a specific order,
that may be not the optimum schedule.

Consider a SPMD language extension of C, with an explicit parallel region

construct, with a facility to identify the number of the current thread get_id() and
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with semaphore-like operations: wait(c) that waits until ¢ condition is signaled,
signal(c) that signals the condition ¢. Conditions will be identified by an integer
number. Thus, the code in Fig. 2.11 shows how to use condition synchronization
to avoid race conditions in the access to the shared variable a.

(1) a=0;
(2) parallel(n) {
(3) myld = get_id();
(4) if (myld==1) { /* thread 1 */
(5) a=a+1; .
(6) printf(” %d reads %d”,myld,a); n ) get_id
(7 signal(2);
(8) } a=a+l; p_rintf;.
(9) else if (myld < n) { signal;
R v
a=a ; signal;
(12) p.rintf(”%d reads %d",myld,a); _— pn/natift;;
(13) signal(myld+1); anal
(14)
(15) else { /* thread n */
(16) wait(myld); o wait
(17) a=a+tl1; a=a+1; printf;
(18) printf(" %d reads %d",myld,a);
Elgg } } printf;
20

(21) printf("End of computation”);

Figure 2.11: Example of none ME synchronization code and structure

However, condition synchronization creates an ordering over-specification not
really coming from the original problem. In cases of not perfectly balanced situ-
ations, where the contending threads may arrive at the critical section in random
order, this over-specification could delay threads prepared for execution until the
previous threads in this false order arrives and finish the critical task. Fortu-
nately, not many parallel problems present this kind of unbalanced behavior.

2.2.7 Data-Dependency: DS, NDS classes

This classification axis is related to the creation, from the same program, of
potentially different synchronization structures at run-time (data-dependent).
We distinguish only two classes.

A. NDS(Non-Data-Dependent synchronization structures)

Many applications create the same synchronization structure independently of
the input data (no thread creation or communication target is decided as a func-
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tion of the data values). Although not common, PPMs may support only this
kind of data-independent structures. In this case, synchronization mechanisms
are provided with explicit information about which processes or threads commu-
nicate at compile-time. A PPM that is restricted to only non-data-dependent
synchronizations must have a predetermined number of named processes run-
ning. The name of the process to which a communication or synchronization is
issued must not be able to be determined at run-time.

initialize, numiterations=3

(1) initialize( M(1:1000,1:1000) )

(2) numlterations=3 I o 9
(3) do i=1,numlterations

(4) dopar

(5) cellAutom(M(1:251,:), M(1:250,:))

(6) cellAutom(M(250:501,:), M(251:500,:)) cetlautom (1)

(7) cellAutom(M(500:751,:), M(501:750,:))

(8) cellAutom(M(750:1000,:), M(751:1000,:))

(9) end-dopar

(10) end-do cellAutom o

(11)  write(M)

Figure 2.12: Example of static synchronization code and structure

Let us consider an example PPL, where the parallelism can be only expressed
by a dopar, end-dopar construction that contains no code, but a maximum of
p function calls with one input and one output parameter. Each function is
executed in an independent process that receives the input parameter from the
root process and communicates the output parameter back to the root process.
The semantics of the language do not allow conflicts by syntactically forcing that
the variables which receive the output parameters int the root process must be
in non-overlapping memory cells. The functions inside a parallel construction
must not contain other parallel construction. In this model, the synchronization
structure is completely non-data-dependent if the dopar construction may not
be inside a conditional statement. Hence, no run-time decisions may affect the
parallelism or communication structure. An example of a static cellular automata
like program in such a PPL is shown in Fig. 2.12. The input parameter of each
function include the frontier lines of the matrix, while the output parameters do
receive only the computed part, with non-overlapping lines.

B. DS(Data-Dependent synchronization structures)

Almost all PPMs allow an implicit or explicit form to create data-dependent syn-
chronization structures. Typical cases of these synchronization mechanisms are
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communication/synchronization primitives inside conditional statements, com-
munication channel names selected at run-time by a computed value, data-
dependent asynchronous communications, wildcards for message receiving primi-
tives in message-passing, dynamic creation of processes inside conditional or loop
statements, etc.

(1)  MPLINIT (err)

(2)  MPI_COMM_SIZE(MPI_.COMM_WORLD, numP, err)
(3) MPI_.COMM_RANK(MPI_COMM_WORLD, myld, err)
(4) IF (myld==0) THEN

(5) read(*,*) s

(6) END-IF

(7) MPI_LBCAST(s,1, MPILINTEGER,0,MPI_COMM_WORLD,err)

(8) DO i=ls

(9) neig = MOD(myld+i,numP)

(10) CALL MPI_SEND(myld,1,MPI_INTEGER,neig,0,MPI_COMM_WORLD,err)
(11) END-DO

(12) DO i=1s

(13) neig = MOD(myld+numP-i,numP)

(14) CALL MPI_RECV(lec,1,MPILINTEGER,neig,0,MPI_.COMM_WORLD,status,err)
(15) write(*,*) myld, "receive: ", lec

(16) END-DO

(17) MPI_FINALIZE (err)

Figure 2.13: Example of dynamic synchronization code and structure

In Fig. 2.13 we present an example of a FORTRAN-like MPI based code that
produce different synchronization structures depending on a run-time value. The
value is read from an input device and determines the number of communications,
and the processes to which they are sent. Two examples of the generated graph
are shown for values s = 1, s = 2 and executions with 4 processors.

2.3 Execution-level models

In the following sections we will use the SA classification to show that bene-
fits and disadvantages found at different modeling levels are strongly related to
the concepts used for our SA classification criteria. Our trip along the parallel
programming abstractions begins in the lower level, where the unknown oceans
of parallel program execution are shaking the dangerous cliffs of machine mod-
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els. The rocks fight with the fierce waters, trying to resist in the middle of the
moaning winds to form an established coast line. People working in parallel
architectures try to rule this broken seaside, in constant change, applying all
new affordable technologies. In their efforts, some machine models have been
acknowledged and are being used as abstractions for development of higher level
programming tools.

The machine models we review in this section are more or less established
ideas. Sometimes they are thought as equivalents of Von Neumann architecture
for parallel computing, but many of the times they are considered little abstrac-
tions of current technology trends in the concurrency and high performance race.
Nevertheless, there exist a convergence of parallel machine models at hardware
and organization levels [51].

2.3.1 SA class of machine models

Most machine models are designed to provide full capacity of communication and
synchronization among processes. Thus, they are mainly in the SA class that
presents no restriction (NSP,ME,DS). The two main trends of parallel architec-
tures have been shared memory-address space and distributed memory-address
space or message-passing models. We discuss also the data-flow machine model,
because it is a different and interesting graph-based approach to generic parallel
computing. There are other non-generic models that are not considered in our
study, e.g. systolic arrays (simple lock step application oriented circuits), vector
machines, and data-parallel machines. Their architectures are specifically de-
signed to obtain better performance for specific types of computations. Thus,
their SAs are highly dependent on them. The following descriptions are mainly
based on [51].
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Figure 2.14: Shared address space machine models
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Shared address space

Shared address space systems have hardware support for global access to any
memory cell from any processor. The latency of memory access can be uniform
(UMA) or non-uniform (NUMA) depending on the physical configuration of the
memory across the machine, the presence of caches with a coherence system, and
the processor to memory access hardware (see a block diagram of two typical con-
figurations in Fig. 2.14). But it is anyway transparent to the upper levels. This
kind of machines provide different mechanisms to prevent race conditions when
accessing memory cells concurrently. However, the programmer is responsible
for using the synchronization and contention mechanisms provided by the archi-
tecture (operative system or hardware) to create programs with fixed semantics
and no stochastic behavior. ME is then programmed with explicit primitives that
implement lock systems. CS is created through similar primitives also hardwired
in the operative system (e.g. semaphores) or the hardware itself (e.g. CrayT3E
provide even a hardware barrier mechanism, and cache coherence hardware may
be exploited in ccNUMA machines for the same purpose [102]). As they are
based on some kind of flag set, flag test mechanism, the CS structures created
by processes are not restricted.

Message-Passing

Message-passing (distributed address space) machines are based on a model
where processors only have access to a local memory, and communicate with
other processors to obtain remote data by exchanging messages. There exist
many different message communication mechanism, all of them abstracted as an
interconnecting network from the machine model point of view (see a block dia-
gram of these machine models with two example configurations of the abstract
node elements in Fig. 2.15). Messages are used to create CS in a natural way
(when the precondition is activated, a message is sent to all the processes wait-
ing for it and the reception of the message fires the action). Messages are in
transit through the communication network for an unknown and typically un-
predictable time (usually depends on network traffic). Thus, the order of several
messages sent from different processors at different times cannot be predicted.
The programmer may program ME using messages. The processes that want
to execute a mutual exclusive task (critical region) must send a request message
to a resource server process and receive a confirmation message from it before
they proceed. After the execution of the critical region, the process send an
ending message to the server to indicate that it can send a confirmation to other
requesting processes. Thus, in this model ME must be manually programmed.
As presented in [51], there exist a convergence in these two main trends of
parallel machine models. Traditional message passing operations are supported
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Figure 2.15: Message-passing machine models

by shared-memory machines using hidden shared buffer storage with a proper
API. On the other hand, over a message-passing system it is possible to build a
more abstract layer where a global address space hides the necessary messages
to exchange data. Thus, in upper abstraction levels, even if different PPMs seem
to be more oriented to a specific machine model, all of them can be implemented
in both types of architectures.

Data-Flow machines

These machines architecture are based on a hihgly abstract execution model.
The programs are specified as static task graphs. A node is a basic operation
to be executed when all precondition (input parameters) are available. After
execution, a node throws its post-conditions to successor nodes. The processors
are based on a matching mechanism that identifies ready to run graph nodes
(those which inputs are already computed) and spawns new threads to execute
them. The execution graph has the same topology as the input graph, which
structure is not restricted. Thus, any kind of NSP CS is possible, although it
must be static. In a more dynamic version, the nodes can be function invoca-
tions with contezrt information. Dynamic synchronization structures are possible.
As information generated as node output may be used or modified by different
successor nodes, lock mechanisms to create ME are provided to access memory
elements (by hardware) or entire data structures (by operative system). Thus,
ME is implicit in the low level data access system.
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2.3.2 Conclusions about execution models

All machine models are in the less restricted SA class (NSP,ME,DS); see Fig. 2.16.
Parallel machine developers try to satisfy all possible consumer requirements.
Hence, most machine models proposed have the capacity to create any kind of
CS structure. Moreover, ME is needed at low levels for shared resource control. It
is a basic feature for distributed and parallel operative systems. They should also
have mechanisms to create or destroy processes and threads to attend new user
jobs and system requests. These elements, that appear and disappear at hand,
may communicate or synchronize among them. Although an specific installation
of the operative system may limit this capacity, the parallel machine models are
fully dynamic and support data-dependent synchronization structures.

SP

ME

NME

Figure 2.16: SA classification of machine models

In generic environments, such as NOWs or GRID computing, it is common
to have only software mechanisms to synchronize. Especially in these environ-
ments with mixed architectures and high latencies that inefficiently increase the
synchronization time with the number of processors, structured and hierarchi-
cal synchronization highly increases performance. Hierarchically splitting the
computation in subsets of processors improves locality, and maps well to big het-
erogeneous or hierarchical clusters (see e.g. [119, 187]). Thus, more restricted
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synchronization architectures (specifically in SP class) will be found in higher
abstraction levels, to improve software development on these generic execution
models.

2.4 Bridging models and cost models

Walking up from the execution level coasts, we will travel through the wide lands
of cost evaluation and bridging models (PCM /PPM). We will find pleasant slants
of greenery where new proposals flourish, but most of the time we will cross vast
fields which old well-known PCMs have ploughed long ago, and where the crops
so many of experience are now hanging on their heads.

We review several models frequently found in the literature. All of them
propose a PCM based on an abstract parallel machine, give a performance cost
model (at least for asymptotical complexity measures) and prescribe a SA for the
PPM. Some of them are more focused on the solution design point of view, but
most of them are introduced as bridging models, proposing a trade-off between
programmapbility and efficient mapping for any machine. We examine here the
most popular ones, focusing on the features relevant to our study, to show how
SA is highly related to the analyzability properties of a model. (For a more
complete survey of parallel computation models see e.g. [129, 35, 4]).

2.4.1 Class (SP,NME,NDS): PRAM

In this class we find an important family of PCMs with a common origin. The
PRAM parallel computing model [65] has been used for parallel complexity mea-
surement during more than two decades. In PRAM, a parallel computer archi-
tecture is highly abstracted, leading to a very simplistic model for easy program-
ming. Although in many references (see e.g. [73, 156]) it has been presented
and used as the equivalent of a data-parallel programming model, based on the
SIMD (Single Instruction, Multiple Data-flow) machine model of Flynn’s classi-
fication [64], the PRAM model has indeed more expresive power and it is a full
MIMD model.

Description

A PRAM machine [65] consist of a control unit that synchronously activates the
execution of one machine level instruction on an unbounded number of processors
that, apart from their private memory, work with an unbounded global memory
space of uniform time access (see Fig. 2.17). When the execution begins the
same program is loaded in each processor (SPMD model). The processor P, is
the only processor activated when the computation begins, but the instruction
set includes a fork operation to activate other processors which may evolve in
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different ways as they have their own program counter, acumulator register and
an unbounded number of private memory cells. Note the conceptual similarity
with the shared-memory machine model block diagram in Fig. 2.14.

T S
| Synch. control

Global memory H

Figure 2.17: PRAM computing model

The cost of a PRAM algorithm is the product of the parallel time complex-
ity by the number of processors used. Time complexity is easily measured as
the processors operate synchronously and global memory accesses have uniform
latency included in the processors step.

Derivates of the basic PRAM model exist to cover the problem that appears
when more than one processor issues simultaneous accesses to a cell in the global
memory (see e.g. [156]). They affect the programmer in the techniques available
for algorithm design, but the stronger the model (the more expressive power) the
further from easy implementation of the model in a real machine. The PRAM
model can be considered:

EREW (Exclusive read, exclusive write): Two processors are not allowed
to read or write at the same memory cell simultaneously.

CREW (Concurrent read, exclusive write): Only simultaneous reads are
allowed in the same cell, but only one processor can write. This is the
default PRAM model.

CRCW (Concurrent read, concurrent write): Reads and writes to same
cell are possible in the same step. A policy for handling concurrent writes
must be specified, leading to more subclassifications of the model (see
e.g. [156]).

PRAM models can be simulated, sometimes efficiently, in other variants of
PRAM or in other parallel computing models (see e.g. [97, 128]).
Synchronization architecture

The basic PRAM model presents a extremely restricted SA. The CS is restricted
to a synchronous advance step by step, or lockstep (a subclass of SP). All tasks
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in one step depend on all tasks of the previous step. Whether all processors
execute the same instruction or they execute different ones does not affect the
synchronization structure. The most important simplification for the cost model
is the assumption of similar latency in memory accesses and computation steps,
forced by the synchronization control.

We consider PRAM to be in the NDS SA subclass because even if data-
dependent applications may be programmed, the synchronization structure is
transformed to a static lockstep structure. Although processors may activate
other processors at any moment, the PRAM algorithms are typically designed
in two phases [156]: In the first phase a sufficient number of processors are acti-
vated, and then, in the second phase, all processors activated are used to execute
the program with no new activations. In this case, the number of processors
used for a given computation is fixed. Let us analyze now the allowed synchro-
nization patterns among them. The number or index of the processor and the
values of memory cells may be used in conditional statements. Thus, in principle,
the exact instructions and memory locations accessed in one computation phase
can be completely data-dependent. From this point of view, the communication
structure can be also data-dependent. However, from a more abstract point of
view, the lockstep mechanism transforms any communication structure in a full
all-to-all synchronization structure. On one hand, programmer do face an static
programming model, as the synchronization structure is synchronized and mem-
ory latencies or communication problems are transparent. On the other hand,
data-dependent applications may be programmed, being the lockstep mechanism
the responsible to deal with the dynamic behavior during implementation.

The objective of PRAM is to simplify the cost model assuming unit cost for
computation step and communication. One can see PRAM as synchronized only
because of equal latency on the operations. This simplifies the algorithm design,
but the implementation should keep the communication structure expressed in
the algorithm, in the presence of real latencies and even with asynchronous exe-
cution in each processor. In this case, the implementation of a PRAM algorithm
can express regular but not fully-synchronized patterns between each layer of
computation (a SA in NSP and DS class). As it is shown in the discussion
below, these differences between specification (using a cost model in a highly
restricted SA) and implementation (in unrestricted SA), is one of the reasons
why PRAM fails to provide good mapping features.

The basic PRAM model lacks ME mechanisms, as they are not needed in a
lockstep SA. The only shared resources are the memory cells. The EREW model
do not allow writing algorithms that need contention control, while the CREW
model assumes the possibility of simultaneous reading but no writing contention
is allowed. In the CRCW model, a contention policy for conflicts prevents the
need of ME. However, if an arbitrary non-deterministic policy is assumed, ME
may be explicitly programmed. One processor may be used as resource (critical
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region) server, using the non-ordered contention in a memory cell to communicate
the requests. Thus, for non-deterministic contention policies, CRCW is in class
(SP,ME,DS).

Discussion

The simplicity of the model allows immediate cost measures. The parallel time
complexity is in the order of the number of instructions executed (as any opera-
tion is synchronized among all processors), and no more parameters are consid-
ered. However, the simplicity of the model makes it to ignore important details
of real parallel and distributed programming.

First, global memory access in uniform time is not portable. It is not easily
simulated in non-uniform memory access (NUMA) machine, and the model does
not consider the cost of full communication in a distributed memory architecture.
Thus, the model does not discourage the design of algorithms with a very fine
grain of parallelism. Communication patterns can produce bottlenecks that com-
pletely neglects performance improvement and scalability. The time needed for
contention solving in real concurrent accesses to memory cells is also disregarded.

Second, the number of processors is unbounded. It is considered that a fixed
number of processors can simulate a set of PRAM processors, but the implemen-
tation of the synchronization system, a load balance mechanism when PRAM
processors are dynamically switched on and off, and the cost of the simulation
with concurrent memory accesses are difficult issues and can completely modify
the complexity bounds of the original algorithm.

The conclusion is that PRAM model is adequate for basic theoretic com-
plexity measurement, or gross classification of algorithms. However, it is so
unconcerned about real machine details that the mapping problem of PRAM
algorithms is far from direct, and many details must be still considered by the
programmer to keep the original features of the algorithm for a specific machine.
However, for its simplicity, and for assuming unit resource costs, it encourages
the algorithm designer to expose all possible parallelism in the problem (even
if this fine-grained parallelism will have a non-efficient or even a non-affordable
cost). Thus, it surely will survive as an interesting tool for theoretical purposes.

PRAM extensions

Many extensions of the original PRAM model have been proposed to solve the
model shortcomings. They typically try to tackle one of the main important
features not contemplated in basic PRAM, although some of them try several at
the same time. Some are still too simplistic and they do not usually map well in
real architectures. Others lead to much more complicated or even non-practical
cost models. In general they try to preserve simplicity, by assuming restricted
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SA. Evolution to real bridging models can be noticed in some of them. Consider
these few examples (see [129, 35] for a detailed survey of more alternatives):

Contention problems: An extended family of PRAM models known as the
QRQW-PRAM [75] (Queue read, queue write PRAM) deals with the con-
tention problem in memory accesses. This model is better suitable for archi-
tectures with pipelining contention rules in cells, and sufficient processors-
to-memory bandwidth. Efficient implementations in other architectures
are not supported. This model support programmable ME using the con-
tention queues, moving the SA to ME class (still in lockstep subclass of SP
CS).

Asynchrony: It is another important issue in PRAM model extensions. Some
examples of partial asynchrony are in the Asynchronous PRAM [74] and
the APRAM [46] models. In these models different processors may exe-
cute at different time rates, skipping the lockstep mechanism. Neverthe-
less, explicit synchronization is needed to keep consistency in write/read
operations. Thus, these models propose global or partial synchronization
mechanisms. Communication through write/read operations between syn-
chronization points is limited to eliminate dependences (e.g. no read after
a write in the same global memory cell before a synchronization point).
There exists several variants:

APRAM: Synchronization occurs in fixed rounds. SA moves to bulk-
synchronous SP subclass.

Phase Asynchronous PRAM: Full synchronization is explicitly used
by the programmer for consistency in read/write operations: Bulk-
synchronous SA.

Subset Asynchronous PRAM: The programmer can use full synchro-
nization in hierarchical subsets of processors. SA moves from lockstep
and bulk synchronous subclasses. SP synchronization structures are
allowed. As the subsets of processors may be created dynamically by
data-dependences, the synchronization structures are change to DS
class. The SA is in (SP,NME,DS).

All these models still keep an affordable cost model due to the SP-restricted
CS structures.

Another model called Asynchronous QRQW-PRAM ([77] combines con-
tention in cells and real asynchrony, where dependences through accesses to
global memory can appear in any form. Thus, SA moves to (NSP,ME,DS)
class. However, to avoid the problems of complexity, reducibility and anal-
ysis in the cost model, derived from unstructured CS, it forces the program-
mer to construct the program in a way that it assures correctness under
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the worst case assumption on the finite delays incurred by the processors
in queuing global memory accesses. The cost model uses an optimistic syn-
chronous assumption. Thus, the complexity introduced by the NSP SA,
is moved not to the cost model (that works properly for bulk-synchronous
structures), but to the programmer decisions. Many PRAM algorithms
must be reconsidered and reprogrammed to get profit of this model, and
to assure correctness if the simplified cost model is to be used.

Communication latency: Several variants consider different latency values
for accessing local or global memory. Some well-known examples are the
LPRAM and BPRAM models.

LPRAM model [3] distinguish only two latency times: One for accessing
local memory (unit time) and one for accessing global memory cells (a new
latency parameter). It is suggested that LPRAM algorithms should restrict
their behavior to perform two different kind of steps. Communication steps
(where the accesses to global memory has a high fixed cost), or computation
steps (where processors work in local memory in unit time). Thus, the cost
model includes two types of steps with different costs, but the SA does not
change and the analyzability is not affected.

The Message-Passing Block PRAM (BPRAM) [2] includes a startup cost
for a message (or access to a global memory block) and a constant cost
for any word in the message (pipelined read/write operations). Thus, it
rewards the sent of long messages, and encourages the design of algorithms
that exploit data locality to form cohesive blocks that can be moved fast.
A processor can send and receive at most one message in a step. This
model does not greatly modify the SA. As long as different block accesses
can have different costs, the lockstep is inherently substituted by a bulk-
synchronous activity. The cost model of a step is a little more complex
due to new parameters for more accurate predictions. But the overall cost
model simplicity is similar because of the still SP-restricted SA class.

We conclude that many extensions of PRAM model try to cover features
ignored in original PRAM to jump over the implementation gap. Some try to
improve accuracy by adding new parameters and a little complexity to the low
level details of the cost model, but keeping a restricted SA to make the overall
solution simple and easy to handle. Others move to unstructured SAs, leading to
cost models that become too complicated. Some of them are so far from original
PRAM model that no algorithm developing techniques and practice have been
yet exerted. In general we notice how newly introduced features that seriously
modify the SA lead to important changes in the cost model or mapping properties
of the model.
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2.4.2 Class (SP,ME,NDS): BSP

The Bulk Synchronous Parallelism model [185] was introduced as a more realistic
bridging model for a parallel machine. BSP and variants have been studied for
more than a decade and its introduction has produced a lot of expectation and
interest. However, its acceptance is not complete due to its restricted parallel
expressive power. We focus on several key features of BSP and especially in ex-
tended BSP models that support nested parallelism, as they provided the nearest
framework to a pure SP parallel programming model.

Description

A simplified model of a parallel computer, called the bulk-synchronous parallel
computer (BSPC) consists of: (1) A fixed number p of processors with local
memory; (2) an interconnecting network with limited bandwidth and simple
bounded latency parameters; (3) a fixed cost barrier synchronization system.

The BSP computer works in supersteps. In each superstep every processor
works independently with its local memory and data. During the computation
phase every processor sends or receives at most h messages of little size (typ-
ically one word) to other processors (if h = p every processor communicates
with all the others). This is called an h-relation (see e.g. [173]). Data received
from other processors are not available until next superstep. After the com-
putation/communication phase, a full barrier synchronization is issued. Every
processor begins the next superstep at the same time (the full synchronization
can be inherent to the communication phase when h = p).

Two main interpretations of how BSP superstep works and its cost model
exist (see Fig. 2.18). The main premise for the model is a consistency statement
that assures that data coming from other processors during superstep s are not
used for computing before the beginning of superstep s 4+ 1. Thus, communica-
tions could be issued during the computation phase at any moment, provided
that transfered data arrived during the current superstep are not used in the
target processor before the beginning of the next superstep.

Interpretation 1: Completely horizontal model. The messages are delayed un-
til the end of the computation phase (all processors end their computation
for this superstep), and sent during a communication phase. See for exam-
ple [114, 173].

Interpretation 2: Overlapping model. The messages are sent during the com-
putation phase, overlapped with computation. Examples of this interpre-
tation can be found in [76, 133].

The cost parameters of the model are:
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Figure 2.18: BSP computing model

p: Number of processor elements.

g: The cost per communication (the basic throughput of the communication
system while in continuous use).

Some simplifying assumptions are made here. The cost of establishing
initial communication is generally ignored, as long as the minimum number
of communications per processor in a superstep is considered to be enough
to neglect this innitial latency, in comparison with the total communication
cost. Global communication structure can also be exploited to hide it.

Another simplification assumed by the cost model is that messages are
small (in the order of the processor word), in order to always have similar
sending latency time.

L: Periodicity. The computing unit for a superstep.

As originally proposed by Valiant [185], each L time units the system checks
if every processor has finished its superstep activity. Then, communica-
tions are finished and a new superstep begins after a full synchronization.
During a superstep each processor can do L computation steps, and can
send/receive at most | L/g| messages.

L parameter has other meanings depending on the interpretation of the
model used. See following discussion about the cost model.

The cost measurement is easy as any computation works in supersteps of
cL + gh time complexity (c is the number of periods of L time used by processors
before they end the computation phase).
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Authors using the horizontal interpretation typically consider another param-
eter [ for the cost of the barrier synchronization, and they completely split compu-
tation and communication costs. In this case, w; represents the work /computation
time of each processor during the superstep and h; the total number of messages
sent by the processor i. The cost model of a superstep is:

T = max w; + max gh; +1
i=1...p i=1...p

Other authors using this interpretation consider L to be the minimum cost
of a superstep. Thus, L represents the time for synchronization and activation
of next superstep and it substitutes / in the formulae.

However, in the second interpretation, computation and communication over-
lap. Typically L is considered a minimum latency parameter that represents
the minimum time length of a superstep imposed by the hardware. Let be
W = max;—1..pw; and H = max;—y. ph;. Thus, the superstep cost model is:

T = max(W,gH) + 1

Or, in other versions:
T = max(W,gH, L)

The parameters L, [, g are empirically measured for a given architecture and
a given number of processors p. The cost model can be used to test how an
algorithm maps to a range of values for the parameters combination (the BSP
space). Thus, if the cost model shows to be accurate enough, the programmer can
easily predict which algorithm is going to perform best for an specific machine.

In [49] we read that being the L parameter (the duration of a superstep or
periodicity) calculated as a function of A it must be considered for the worst
possible h. In this case, the cardinality of interprocess communication can be
different in different supersteps leading to performance losses in some steps. The
Eztended BSP (E-BSP) model [113] includes an extended cost model based on
more complex and variable routing relations. It provides reliable measures for
unbalanced communication patterns in different supersteps and models locality
(network proximity) in communications.

Implementations

Implementations of the BSP model in generic architectures have been developed
since 1993. Mainly the Oxford BSP library [138], the Green BSP library [92] and
the BSPIib library [101] which includes Direct Remote Memory Access (DRAM)
and Bulk Synchronous Message Passing (BSMP). BSPlib has almost become a
standard or at least a reference point for BSP implementation research and pro-
gramming. New implementations with nested parallelism approach are discussed
below.
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Synchronization architecture

The SA of the BSP model is highly restricted. The only condition synchroniza-
tion structures allowed are sequences of supersteps, and a superstep is a parallel
composition, always with the same degree of parallelism. Each parallel thread
is a series of tasks of any length. These structures are in the bulk-synchronous
subclass of SP CS class. The restriction of using always p processors in each su-
perstep is not important for the SA point of view. The latency parameters L, [, g
are typically dependent on p. The purpose of fixing p is to use fixed and known
values of parameters throughout all supersteps for cost formulae simplification.
At the same time it is a reasonable choice to use as many processors as possible
during all the program execution.

Some kind of contention is produced by the arbitrary arriving of messages
sent to the same processor. Thus, even if no ME primitive is considered in the
model, ME can be programmed and the SA is in the ME class.

For the same reasons discussed in the PRAM model in section 2.4.1, the
SA is static and non-data-dependent, in the sense that the programmer do not
face the problems of dynamic communications among processors. She/he sees
only one bulk synchronization and communication step, independently of the in-
ternal dynamic structure created in lower implementation levels. Programming
data-dependent applications is possible, but the bulk synchrony barrier system
is responsible for transforming the dynamic structure into an static one, mak-
ing it transparent for the programmer. Thus, we consider BSP to be in the
(SP,ME,NDS) class.

Discussion

The thesis of Valiant [185] is that when the programmer uses enough parallel
slackness® the model behaves neutral with respect to the number of processors,
and the programs run efficiently as long as the communication is at least balanced
with the computation. The value of L can be pre-calculated for any machine and
h value combination, for any program to run with optimal efficiency (in constant
factors) for this model.

It is claimed by Valiant that the implementation of this model in any archi-
tecture is possible loosing only little efficiency (no logarithmic losses). Successful
implementations of BSP models and applications confirms it for many cases (see
references in [173, 100, 91]). The model lets the programmer determine which
algorithm is better suitable for any machine simply checking the results of the
cost model for the given parameters measured for the machine, and knowing the
h-relation cardinality of the algorithm.

2Programs are written for v virtual processors to run on p physical processors where v is
much larger than p (e.g. v = plogp)
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Nevertheless, objections and counter-objections to this model are stated. The
accuracy of the cost model is not so high, although it is “very reliable in modeling
the overall behavior of an application, including the prediction of breakpoints at
which the performance changes” [91]. In the same paper it is also claimed that
the accuracy could be increased by adding new parameters, but this will made the
model more complex and the algorithmic trade-offs less obvious. Nevertheless,
as far as the SA does not change, the main analyzability properties that leads to
an affordable cost model will not change. The choice of modeling parameters of
the underlying machine is a trade-off between accuracy and complexity that can
be applied to the same cost modeling techniques [70].

BSP cost model ignores possible delays due to contention problems derivated
by many processors sending messages to a given processor at the same time. The
solution is to use specific message ordering adapted to the computation. Imple-
mentations of BSP can do it internally, but most of the time the programmer
should be aware of the problem and provide a solution changing the order in
which messages are sent in the algorithm [112]. Thus, the programmer is facing
a mapping problem derivated by the limited number of resources (processors and
network interfaces).

At the same time full barrier synchronization is claimed to be an expensive
mechanism that most machines do not provide by hardware, and a mechanism
with no fixed cost, which scales-up with the number of processors. Hill and
Skillicorn studied the practical implementation of barrier mechanisms in [102].
The performance of the different mechanisms available in shared memory archi-
tectures is good enough, but difficult to predict without very low-level detailed
knowledge. For distributed memory architectures, which rely on message-passing
models, performance of barrier synchronization is predictable and reliable, but
poor in general. However, better synchronization systems are constantly devel-
oped and it is reasoned that synchrony is an important feature to improve analyz-
ability and correctness proofing. The model suggests this direction for hardware
developers. Software alternatives to direct barrier synchronization exist:

1. When h = p and every communication is delayed until the end of the
superstep, the communications can be optimized and the barrier is implicit
in the A = p information exchange [57].

2. A special system of zero-cost emulation of a barrier that can be used in
special circumstances was proposed in [62, 8]. It is implemented in the
PUB library with the name oblivious synchronization [25]. When every
process knows exactly the number of messages that other processes are
going to send to it during a superstep (the exact receiving h-arity), when it
receives that number of messages it can proceed to the next superstep. The
consistency is maintained, as long as no process uses data received during
a superstep until next local superstep begins.
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3. A relaxed barrier synchronization emulation by a handshake protocol only
between communication processes is proposed in [121]. It uses the number
of the superstep (s) in the sending process as control information in the
message to keep the consistency statement (data are not used before the
s + 1 superstep in the receiving process). The efficiency of the system is
improved due to the relaxation of the synchronization phase.

However, these systems only work under special assumptions (e.g. known
number of receiving messages), and the relaxation of the synchronization com-
promises the simplicity of the cost model because of a change in the SA. Tt is
difficult to deal with the lack of synchrony and still keep cost measures tight, es-
pecially in irregular or not highly-balanced problems. A new cost model should
be devised, but the lack of synchrony can lead to NSP SA and non-reducible cost
models. An approximation to this problem has been presented in [81].

Another profitable feature is that BSP model is mainly used in the most
general case where h = p (assuming a full interprocess communication in each
superstep). For this case, implementations may exploit the implicit and ex-
plicit knowledge of the communication global structure. Repacking, destination
scheduling and pacing techniques used in an implementation of the BSPIib im-
prove performance to a factor of approximately four comparing with a generic
message-passing interface (MPI) [57]. This is a good example of how restricted
and structured synchronization architectures lead to performance improvements
in implementation.

An interesting proposal for increasing the expressive power of BSP and main-
taining or even improving the performance, somehow related to the idea of sub-
dividing the BSP machine, is the Collective Computing Model (CCM) [163]. In
this model the number of possible communication patterns at the end of a normal
superstep is limited to a chosen subset that includes all typical collective commu-
nication schemes. Accurate cost measures can be obtained for them, and specific
efficient implementations are possible for such a limited number of well-know
communication patterns. At the same time they propose a new special kind of
superstep, the division superstep, that splits the processors in groups, distributes
data among them, computes specific tasks in each group, and redistributes the
results, always trying to benefit from the reduced number of efficient communi-
cation patterns. However, the division steps are rigid and cannot be nested to
extent the SA to an SP class. The model keeps the great simplicity of the BSP
cost model even in the division steps as the SA is still bulk-synchronous. This
direction is mainly focused to the integration of BSP with the efficient and per-
formance predictable collective communication operations, that are so commonly
used in message passing environments (see section 2.5.4).
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Nested parallelism in BSP

It has been said that “global barrier synchronization is an inflexible mechanism
for structuring parallel programs” [135]. Trying to keep the good properties of
BSP model but getting more expressive power, some new versions of BSP include
support for the concept of nested parallelism (SP synchronization architecture)
using the nested BSP computers concept. The whole BSP abstract machine, with
p processors can be recursively subdivided in & BSP submachines, each with k;
processors that work like a small BSP machine, synchronizing their processors
independently of the other sub-machines. When a subset of (perhaps also sub-
divided) machines end their work, they must wait to be synchronized together.
Examples of the implementation of this idea can be found in the Paderborn Uni-
versity BSP (PUB) library [25], NestStep [119] (that also includes support for
virtual shared memory), H-BSP [39], and NBSP [80].

The BSP model assumes that the computer has a global synchronization
mechanism (a bulk property). It has been argued that synchronizing a subset
of executing processes can be a complex issue [173]. However, the same re-
port states that architectures in which barrier synchronization is implemented in
software can make to it without any problem. Moreover, many works oriented
to fine-grained parallelism indicate that nested parallelism can be implemented
efficiently (see e.g. [180, 131, 19]).

Nested BSP has basically an SP SA class. Thus, the cost model of a nested
BSP can use the compositional analysis properties of SP class over the local BSP
cost models. For example, a simple nested theoretic BSP cost calculus named
miniBSP was introduced in [172].

If the subsets of processors may be chosen dynamically by data-dependences,
the synchronization structures are no more static. Nested parallelism move the
SA to real SP class, where dynamic construction of the nesting is possible. Thus,
nested BSP is in (SP,ME,DS) class. SP languages map without much trouble in
any implementation of a nested parallel BSP model.

Conclusion

The BSP model proposes a highly restricted SA (bulk-synchronous) to obtain
a very simple and easy-to-use cost model. At the same time, full synchroniza-
tion helps in software development because it makes much easier to reason about
correctness [91]. For example the refinement calculus can be used to check cor-
rectness in BSP program building [171]. In the same report it is also said that
this technique can be also used for nested BSP. Refinement calculus works in a
recursive framework, being useful for all SP class models.

Although the programming discipline imposed by the bulk-synchronous archi-
tecture is very user-friendly and easy to understand [91, 72], no software engineer-
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ing techniques that helps the programmer to flatten more complex SA schemes
to only one-dimensional parallelism exist. Automatic flattening by the compiler
has been only achieved for SIMD parallelism [119], as e.g. in NESL [18]. Sim-
ulations of other models (as PRAM) are possible in BSP, but for real efficiency
direct BSP algorithm design is desirable. At the same time the programmer is
faced with data-partition problems, as the point-to-point message system forces
to explicitly know where data are and where they must be moved to be used.
Data-layout is then fixed in the final algorithm.

It is an interesting question to determine which range of applications can be
efficiently programmed in a bulk-synchronous scheme [91]. No measures of the
potential loss of parallelism inherent to the full barrier synchronization have been
previously shown. Measuring the distance from BSP programming to a more
expressive or generic model is an important issue in this dissertation. Although
we focus in the more broad SP synchronization architecture class, we show that
most of our results are applicable to BSP programming.

2.4.3 Class (SP,ME,NDS): QSM

The Queue Shared-Memory model is the evolution of the QRQW-PRAM model
(see section 2.4.1) to a bridging parallel computation model based on latency-
contention in a shared-memory environment. It tries to keep the simplicity of
use of shared-memory with the same cost model features of BSP or LogP models
(see section 2.4.4). QSM detailed description and rationale can be found in [76].

Description

The QSM machine model has a fixed number p of processors with local memory
and connected to a shared memory global space. Every cell has a queue of
read/write operations that deals with the contention of many processors trying
to read/write the same cell.

Processors execute synchronized phases. A phase is an arbitrary interleaving
of three possible operations:

Local computations: Each processor i performs ¢; RAM operations in its local
memory.

Shared-memory reads: Each processor ¢ reads r; shared-memory cells, copy-
ing their contents into the local memory. Shared-read operations are not
guaranteed to complete until the end of the phase. Thus, values cannot be
used before the next phase begins.

Shared-memory writes: Each processor ¢ writes to w; shared memory cells.
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Figure 2.19: QSM computing model

Concurrent reads or writes in a given cell are possible during the same phase,
but not both. The read/write restrictions allow the emulation of a QSM machine
in a MIMD environment, pipelining the shared memory accesses to amortize the
latency of remote accesses. When multiple writes are issued, any one of them
finally succeeds.

A phase finalizes when the local computations finish in every processor and
all the read/write operations pending in the R/W queues of shared-memory cells
finish.

QSM proposes only two parameters to model the architecture features:

p: The number of available processors.

g: The latency parameter for read/write operations in shared-memory. It repre-
sents the gap between local instruction rate and communication rate due
to limited bandwidth in the processor interface.

The cost model of a phase represents contention vs. computation vs. com-
munication. Let the mazimum contention k represent the maximum number of
processors reading or writing to a given shared-memory cell during the phase.
Let m,, = max;{¢;}, and m,, = max{r;,r,} for the phase. The total cost of
the phase is:

T = max{mep, gMyw, k}

Synchronization architecture

The CS SA is bulk-synchronous. The model works in synchronized phases, no
read/write are allowed in the same phase in the same shared-memory cell, and
shared-read values are not obtained until the next phase begins. Thus, no con-
dition dependences can be produced except from one phase to the next. The
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dynamic data-dependent structures are reduced to static ones due to the bulk-
synchrony (see discussion in section 2.4.2). This model has no ME primitive,
but it supports ME. Read/write operations invocated by the programmer can
content in the queues of the shared-memory cells, allowing programmed ME.

Discussion

The model presents the facility of a shared memory space, to be used with the
usual read/write operations. However, the semantics of the read operations is
modified (values can not be used before next phase), in a way that is equivalent
to the consistency statement of BSP model.

In fact there is a highly inherent conceptual equivalence between QSM and
BSP model. The read/write accesses to the shared-memory have similar seman-
tics to message passing, and they are done in two phases that can be pipelined
by the processors. Each phase is charged with a similar latency parameter g.
The h-relation is substituted by many concurrent writes, and many concurrent
reads.

The main difference with BSP is that in QSM the contention in the arriving
messages (read/write operations in this model), is accounted explicitly. Thus, the
cost model can predict contention problems due to non-balanced communication
patterns (bottlenecks that appear when many read/write concurrent operations
are issued to the same shared-memory cell). An interesting remark is that the
model do not charge any cost for the synchronization mechanism. This can fa-
vors programming with too small computation phases and many synchronization
points. The cost model does not penalize this practice.

Efficient emulations of BSP are possible in QSM and viceversa [76]. The
relationship of emulation possibilities between QSM, BSP and LogP models is
presented in [160]. The main results indicate that these latency based models
are quite similar in computational power and modeling solutions of real archi-
tectures. QSM has the advantage of a comfortable interface based on simple
shared-memory operations, making the data-layout transparent for the program-
mer.

This model exploits the highly restricted bulk-synchronous static SA to allow
the insertion in the cost model of a simple account of the contention scheme
(that allows ME), assuming that the bulk-synchronization waits for contention
problems to be solved. Again, a restricted static SA shows its analyzability
benefits.

2.4.4 Class (NSP,ME,DS): LogP

Another important model based on messages and network latency modeling is
LogP [49]. It tries to overcome PRAM and BSP models limitations by creating
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a more realistic and detailed model of real parallel computers. In fact, its SA is
in the most flexible and expressive class. Its success is still compromised by the
higher complexity of use that it introduces.

Description

In this model the idealized computer architecture is similar to the BSP concept of
independent processors with local memory and a non topology-detailed network
represented by few parameters (see Fig. 2.20). This is a representation of a generic
distributed-memory multicomputer where processors communicate by point-to-
point messages. Compare it with the block diagrams of message-passing machine
models in Fig. 2.15.

||v|1| ||v|2| ||v|3|

Figure 2.20: LogP computing model

The main new features are:

Asynchrony: No synchronization device is considered, as in BSP. In LogP, pro-
cessors work at their own path and do not synchronize except by explicit
message-passing instructions included in the program.

Limited bandwidth: In LogP does not exist the concept of h-relations in syn-
chronized phases to limit the amount of traffic. Processors can communi-
cate to their heart’s content, limited only by the speed of their network
ports (modeled with new parameters). Thus, the network capacity can be
overcome, producing a stall state. The limited bandwidth of the network
must be considered.

The cost model includes the following parameters:

L: Latency upper bound of the communication of a small message (in the order
of a few words).

o: The overhead or time during which a processor cannot work when engaged
in sending a message. It has been argued that new network interface tech-
nology has reduced this overhead to almost negligible times. Thus, some
authors claim that this parameter may be effectively disregarded.
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g: The gap. Time interval between consecutive messages reception or transmis-
sion in a given processor.

P: The number of computing elements (processor, memory and network interface
modules).

The capacity of the network is limited by the parameters. No more than [L/g]
messages can be in transit through the network at the same time. Processors
that try to transmit over the capacity of the network stall until the network is
not saturated. Messages that produce stall states can take more that L time
units in being sent.

The description of the model includes the following remark: “an algorithm
must produce correct results under all interleaving of messages consistent with
the upper bound of L on latency” [49]. For the general cost model all messages
are assumed to incur in the worst case latency of L. Although some examples are
provided in the literature, no general procedures to derive cost model formulae
are proposed, as each algorithm can present a complete different behavior that
must be analyzed on its own.

Synchronization architecture

The model assumes asynchrony in the processors work, and point-to-point com-
munication without restrictions. Any static as well as dynamic synchronization
structures are possible. The expressive power is big, being the SA in the NSP
and DS classes. ME can be explicitly programmed due to the unknown interleav-
ing of messages during network transit. No order rule exist in message arriving,
allowing non-deterministic contention. Thus, the SA is in the (NSP,ME,DS)
class.

Discussion

Due to its NSP condition synchronization, the LogP model does not offer a sim-
ple analytic cost calculus for performance prediction. For a generic application
that can use unstructured programming constructions, it is usually not possible
to reduce the cost expressions to simple formulae only dependent in given ap-
plication and model parameters values. At the same time, the complexity and
asynchrony of unstructured computations prevents simple debugging techniques
based on global state checking.

Scheduling, data partition and mapping decisions are completely faced by the
programmer. Even more, the stall states in the network must be detected and
prevented by the programmer, as the contention is not represented in the cost
model (see details about LogGPS below).
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Performance predictions are computed in an unrestricted structure of commu-
nication produced by the implementation of the application, and results cannot
be projected backwards through the implementation transformations path (is
impossible to automatically determine what effects are produced by each trans-
formation or implementation decision). The fast growing complexity of testing
any possible mapping or transformation make the testing of a wide range of
choices impossible. Thus, the model gives little help for software development in
the generic case.

LogP has been proven to be useful for optimal design and performance pre-
diction of low level applications [116, 50]. Some low-level implementations of
message-passing could support the LogP model of computation. However, its
simplicity of parameters and machine modeling is not enough to predict the
optimized operations of a complex message-passing interface such as PVM or
MPI [5]. Extensions to the LogP model include:

LogGP: Support for long-messages communication latencies [6].

LogGPS: Variable overheads to simulate implicit synchronization of proces-
sors before long-message transmission in message-passing interfaces [109].
LogGPS is indeed a complex architecture-oriented model, which includes
hidden features of optimized messages-passing interfaces like MPIL.

LoGPC: Contention in network traffic [139].

The first two extensions model the underlying architecture with many low-level
details, obtaining improved accuracy for specialized cases. However, the SA is
not changed, and the difficulties of applying the model are still coming from the
unstructured NSP synchronizations.

The LoGPC model presents the same problem as long as the SA is also not
changed. However, the contention costs are considered and added to the cost
model. Thus, it eliminates an important problem of the LogP cost model, where
applications were not encourage to be designed with communication patterns
that do not cause stall conditions due to contention. Low level trade-offs between
contention, communication and computation can be modeled.

Conclusion

Although it is similar to BSP as a latency oriented model, and substantially equiv-
alent as a computation model in asymptotic analysis [16], LogP presents worse
software development features (e.g. easy of programming, correctness checking
and debugging). In this model, the programmer does not only face data-layout
but many other mapping problems like explicit scheduling. Any set of mapping
decisions lead to a new algorithm that must be analyzed in detail with the cost
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metrics. The LogP model has an NSP SA that prevents easy and methodical
generic algorithm design, driven by a cost model.

Its extensions can better represent the behavior of the underlying architec-
ture, and predict it with better accuracy than the basic model. Thus, they are
more suitable for low-level analysis of optimized routing, scheduling and commu-
nication schemes and tools. Portable low level layers or last phases of parallel
applications implementation can be designed and studied with these extended
models.

2.4.5 Conclusions about PCMs SA

The graphical classification of the discussed PCMs SA is shown in Fig. 2.21. In
this section we present some important conclusions about it.

After this review of parallel computing models the main conclusion is that
SA is a key component of a PCM for its expressive power and analyzability
features. Specifically, the CS axis becomes the most related to the complexity
of the associated cost model. SP and NSP classes show important differences.
The analysis complexity of the NSP structures becomes too hard for anything
but toy problems. Restricting the CS structures seems necessary for achieving
the PCMs/PPMs requirements proposed in section 2.1.5. SP models appear
to be good candidates for their simplicity of programming and analyzability.
However, we must determine the expressive power of these models, which types of
applications may or may be not inherently SP, and check if it exists a systematic
form to map more unstructured parallel computations into SP forms. More
restricted CS subclasses of SP, as lockstep or bulk synchrony, provide only better
analyzability if important expressiveness restrictions are assumed (as PRAM),
where programmer finds even more troubles to map NSP applications.

We have classified PCMs in NDS or DS structure from the point of view of
the synchronization structures created at programming level. Highly restricted
models (lockstep and bulk-synchronous CS) appear to be highly static and data-
independent. However, the implementation of the restriction mechanisms (lock-
step or barrier) is the responsible of hiding the dynamics of the communication
included by the programmer, to keep the structure static. In this sense, re-
stricted PCMs provide only static synchronization structures, but they anyway
allow the programming of dynamic or data-dependent applications. It would be
a risky restriction not to support data-dependent communication structures, as
many applications need them (see section 2.6). All PCMs, except PRAM model,
consider a fixed number of processors. Applications that dynamically generate
threads may need extra programming to pre-schedule the threads into the fixed
number of processes. This shows that PCMs are oriented to the mapping level,
where cost models become important. Models in full SP class include a dynamics
level not which does not appear in bulk-synchronous and lockstep SP subclasses.
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Figure 2.21: SA classification of PCMs

The origin is the possibility of data-dependent control of the parallelism nesting.
This dynamic makes the static cost analysis much more difficult and not always
possible. Programming techniques that do not allow dynamic control of nesting
in SP models, would be more desirable with respect to cost analysis.

Only more restricted PRAM models do not allow ME, because it is inherently
avoided by the lockstep system and contention solving policies. However, this
situation restricts some of the expressive power in the model. Some applications
that need mutual exclusion (see section 2.6) can not be directly programmed
in these restricted PRAM models. The PCMs studied that include ME mecha-
nisms have something in common: Instead of using primitives with implicit ME
semantics (as locks), the ME is programmable by queuing up memory accesses or
messages, assuming non-deterministic orderings. Some restrictions to the queue
lengths may directly or indirectly help in cost modeling (for example limited
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bandwidth, limited number of messages among processors, or limited number of
messages in the same computation step). The reason is that contention queues
model real machine effects produced in the lowest level.

It seems that exists a convergence in the restrictions that PCMs assume
to provide an accurate cost analysis for generic applications. Nowadays, bulk-
synchrony is a typical feature which allows the transformation of dynamic and
complex synchronization structures in static and analyzable ones. ME is sup-
ported by programmable contention through (somehow limited) queue systems
of non-deterministic reception. However, the completely unrestricted message-
passing oriented models, as LogP, are popular because they model the current
trends of high-performance programming, where complex synchronization struc-
tures are generated due to manual low-level optimizations.

2.5 Parallel programming languages and models

Our trip is taking us now to the mountain shoulders, where PPLs provide the
programmer with higher abstraction levels. In the shadowy depth of narrow
valleys, near the quick waters, we will find classical approaches that lead directly
to the PCMs low lands. Trekking up-hill through the more dangerous rocky
paths, we will make to the more abstract PPLs. In hidden glacier valleys new
models with different conceptual proposals feed the rainbowed waterfalls, which
impressive view we enjoyed from the valleys.

We review many popular and conceptually interesting parallel programming
languages. They have been designed from the higher abstraction levels, but
they also implicitly impose a PPM. Most of the time, languages that have been
developed with other design principles in mind than to be good parallel com-
putation models present different approaches and solutions to the analyzability
vs. expressiveness problem. We will study some of them in terms of their SA
and other characteristics related to the decisions taken during the model de-
sign. The expressiveness vs. analyzability trade-off is considered in each case.
A more detailed study of parallel programming languages and a comprehensive
classification can be found e.g. in [174].

2.5.1 Class (SP,NME,DS): Pure nested parallelism

Some languages include only pure nested parallelism structures of synchroniza-
tion. A well-known example is Cilk [19, 42] (see other examples commented
in [187]). This language proposes a multi-threaded model, where spawning and
joining of threads is only possible hierarchically. The only possible synchroniza-
tion between threads is through the spawning/joining process. Thus, the possible
synchronization structures are always in SP class and no ME exists in the model.
However, spawning of new threads can be data-dependent, with no restriction
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for the number of threads that are spawn at any time (the programmer does
not concern about the number of real processors). Thus, the SA is in class
(SP,NME,DS).

The good point of Cilk is that it uses the analyzability advantages of the
SP structure to implement a run-time work-stealing scheduling algorithm. It
achieves good performance even with highly dynamic structures. Many applica-
tions with typical non-structured solutions have been programmed in SP struc-
tured Cilk, experimentally showing minimal loss of performance [42]. The SP
structure can be further exploited with other simple scheduling policies to be
efficiently adapted to wide-area and hierarchical networks [187].

2.5.2 Class (SP,ME,NDS): Nested parallelism with ME

The nested parallel SP programming languages that support ME include specific
primitives with ME semantics. We find in this class an important programming
set of primitives oriented to shared-memory architectures (OpenMP), as well as
more abstract proposals (as SPC). Both are oriented to static and non-data-
dependent synchronization structures. Nevertheless, both examples may create
less restrictive SA structures when mechanisms not promoted but supported in
the models are used.

OpenMP

The OpenMP [149] programming tool has become a major trend for program-
ming in shared-memory machines (and possibly distributed-memory in the fu-
ture, as several proposals for mixed message-passing and shared-memory support
are appearing [36]). The main advantage of OpenMP is that it provides the pro-
grammer with a portable and easy to understand interface of pragma directives to
parallelize sequential code (for reusability purposes), getting profit of the shared
memory capabilities of the underlying implementation. OpenMP is the result of
a common effort of several vendors and corporations, thus, it is well supported
and is widely being used.

Shared memory accesses should be controlled to avoid race conditions. The
typical way is to include a dynamic non-deterministic accessing mechanism to
create ME. OpenMP provides two types of ME directives to create critical sec-
tions: (1) For code pieces, or (2) for atomic access to a given variable for a
single operation. At the same time it allows a parallel section of code to declare
their own private variables for programming flexibility (which do not introduce
new properties in the synchronization mechanisms). The main parallel control
directives provide only nested parallelism for code sections, or for loops in a
data-parallelism fashion. However, current implementations may support only
one level of parallelism, running sub-threads sequentially in the main thread
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that creates them. Thus, the main programming model is nested parallelism (SP
class), while most implementations relay on a more restricted BSP like model.
Global reduction operations® and a barrier mechanism is also supported. Al-
though not popular, designers of OpenMP included compulsory support of an
external library for lock-variable based synchronization. It has been added to
let the programmer to create any kind of complex CS structures. Thus, the full
implementation moves to NSP and DS classes.

Thus, the spirit of the OpenMP model is in the (SP,ME,NDS) class, or even
the (SP,ME,DS) class if data-dependent control of the (mostly unsupported)
nested parallelism is allowed. But the use of the external lock variable mechanism
allows all kind of unrestricted structures: (NSP,ME,DS) class.

OpenMP does not propose a specific cost model or software engineering
methodology. However, while using only the nested parallelism (SP class) con-
dition synchronization scheme, the restrictions included in the design allows
program compilers to include interesting mapping and optimization features.
However, the semantics of OpenMP nested directives are complex and poorly
defined [44].

Because OpenMP is designed to operate in shared-memory environments,
processes have direct access to the full memory space. Thus, in NUMA machines
any variable usage may imply a bounded but unpredictable cost for the memory
access or communication. Shared memory accesses, not marked by a dynamic
synchronization mechanism, could produce inherent communications and syn-
chronizations that change the apparent structure or produce non correct results.
These perturbations can only be detected by the compiler using data-dependence
analysis of the sequential code and internal data deployment information.

The OpenMP standard does not include data distribution directives. Al-
though interesting for the unification with a distributed-memory environment [17],
recent studies claim that for state-of-the-art ccNUMA shared memory computers
“reasonable balanced page placement schemes incur modest performance losses,
and the OpenMP runtime environment can use page migration for implementing
implicit data distribution and redistribution schemes without programmer inter-
vention” [144]. Thus, the programmer can work in a proper abstraction level to
achieve portability.

SPC programming model

The SPC (Series-Parallel & Contention) model [71] proposes a restricted SP syn-
chronization architecture that allows improved analysis techniques to be used
during the implementation path. SPC is a nested parallelism model plus non-
deterministic coordination expressed as mutual exclusion restrictions. An an-

3Reduction can be forced to be non-synchronized. But in this case, the values of the reduction
variable are undefined until an explicit synchronized directive is issued.
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alytic cost estimation model is associated with SPC programs [71, 170]. The
accuracy depends on the level of detail of the target machine model used. SPC
is designed to obtain benefits from explicit and structured synchronization. It
is a programming paradigm with respect to the coordination of the program
parallelism, based on a process-algebraic specification model. The model is pre-
sented as a coordination language. Thus, its constructs can be used to express
parallelism and coordination, using any sequential programming language for
computation.

An SPC program consist in a collection of processes equations, mutual ex-
clusion declarations and computation parts associated with processes. Computa-
tions are functional units declared in any sequential language, thus their syntax is
not specified in SPC. The set of process equations constitutes one parallel process
expression through substitution. (By convention, the expression tree is rooted by
a special process called main). Processes can be composed with serial (;) or paral-
lel (||) operators. For correct binding of compound process expressions, delimiters
are allowed ({, }). Parallel composition works with cobegin/coend semantics [9],
thus, it implies a full synchronization after tasks completion. No hidden condi-
tion synchronization is allowed. The programmer must avoid data-dependences
between different processes for program correctness.

Conditional and iterative execution of tasks are supported, although they
can introduce a kind of probabilistic (data-dependent) effect that produces dy-
namic synchronization structures, affecting the performance analysis (see discus-
sion below). Resources are computation providers that introduce limitations on
the parallelism exploited. A resource can be logical (e.g. a critical section, a
server) or physical (e.g. a processor). In SPC, they are modeled with a global
name. The programmer specifies which resources are needed to proceed with
each task. Mutual exclusion is associated with task to resources assignment
(task — r1,79,...,7y). Tasks contending for a resource will be serialized in the
scheduling phase.

The SPC model restricts CS structures to those which the associated task
graph is Series-Parallel [184]. The non-deterministic contention for global named
resources has implicit ME semantics. Thus, the SA is in (SP,ME,NDS) class. If
conditional and iteration statements are allowed in the process equations, then
dynamic structures are possible: (SP,ME,DS) class.

The cost estimation in SPC is based on several performance modeling tech-
niques [70]: When the model allows only series-parallel static synchronization
structures a simple analytic cost calculus can be introduced, based on critical
path analysis of the generated graph. (See the equivalent calculus for nested BSP
in [172]). The mutual exclusion effect in performance can be only approximated.
Algorithmic techniques that keep lower/upper bounds are provided in the cost
model [70]. Although syntactically not yet provided, the use of resources with
several units is allowed in the associated cost modeling language Pamela [69]. In
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the case of iterative or conditional constructs that are data dependent, with no
possible probability derivation, only classical simulation techniques are available
to get performance approximations. However, the static and dynamic part of the
application performance model can be substituted by the analytic and approx-
imation expressions obtained by the previous techniques, highly improving the
simulation performance.

Using only explicit structured synchronization (SP + ME), interesting analy-
sis techniques are possible to help decisions during the implementation trajectory.
Full cost-driven mapping to any architecture is possible except for irregular data-
dependent applications with no load-balancing or scalability properties.

2.5.3 Class(NSP,NME,NDS): Mapping oriented models

In this section we discuss features of models oriented to express synchronization
structures generated by typical applications (like neighbor synchronization, static
access patterns and specific data mappings). We study two important examples:
HPF as example of the long-ago introduced data-parallelism programming model,
and some new proposals evolved from the skeletons world.

HPF and data-parallelism

Languages based on the data-parallelism paradigm are originated on the SIMD
(Single instruction, multiple data) model. In this model, the operands of a given
parallel instruction are a set of data pieces with the same type, and all processors
execute the same operation on a different subset of them.

In the 1980s there was a significant research in parallelizing compilers. How-
ever, sequential languages obscure or eliminate the parallelism inherent to an
application with sequential constructs as loops or recursion, that are difficult to
analyze for parallelism detection. Writing a parallel program in a sequential lan-
guage is not a natural approach. In the early 1990s, there appeared extensions of
sequential languages that could express the parallelism associated with executing
the same operations on different pieces of a data structure partition (e.g. Vienna
Fortran [40], Fortran D [104]). Compilers and environments for data-parallelism
were widely studied [1]. The most famous language derived from these efforts
was HPF (High Performance Fortran) [27, 108].

Data-parallel languages typically include parallel constructs such as parallel
array operations, forall and where statements, and intrinsic functions.

ME typically cannot be exploited in these languages. The data-parallel model
allows the programmer to create repetitive static CS structures. The tasks as-
sociated with the data operations are synchronized with next tasks through a
fixed pattern, as the model simply replicates the same operation, with the same
dependences, in each piece of data. Thus, the generated synchronization struc-
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ture presents a repeated synchronization pattern between each consecutive pair
of task layers. In some situations this property can alleviate the analysis problem
derived from the NSP structure, but typically any new pattern must be studied
and analyzed.

Compilers take advantage of this structure regularity to optimize the codes.
Static mapping and scheduling is typically easy. One problem with the model is
that the exact synchronization pattern must be extracted analyzing the code in-
side parallel constructs. Many times the programmer must help the compiler with
data-distribution or alignment information. The technique is sensible to changes
with the target machine architecture and communication system. The second
problem is the restrictions of the model. Only data-parallelism (fine-grain paral-
lelism) can be efficiently expressed. Many applications (coarse-grain, less regular,
dynamic, fault prone ...) present task-parallelism that cannot be efficiently ex-
pressed in this model [32, 33]. Many efforts to combine data-parallelism with or
within more generic task-parallelism languages exist [66, 94, 41, 15, 11, 150].

Nevertheless, data-parallelism is an interesting and productive model [30,
145, 110]. Many computing intensive applications or parts of bigger applications
(mainly lattice and matrix computations) can be efficiently exploited by data-
parallelism methods.

From skeletons to structured languages

Algorithmic templates or skeletons try to identify and exploit the structure of
a family of algorithms. Parallel structures that have common properties can be
used as a skeleton or a programming paradigm. The programmer must identify
the skeleton that fits with her/his application, and fill in the exact computation
details. Specific compiler transformations and techniques can then be fully ex-
ploited. Skeletons are usually implemented in high-order functional languages,
where a skeleton function that encapsulates the parallel behavior can receive as
parameters other functions that are internally used as the computation part of
the generated tasks.

Several libraries or sets of program skeletons have been proposed and stud-
ied [43, 53, 26]. Identifying parallel structures present in applications are a key for
constructing such sets [31, 152]. More information about skeletons can be found
in [45]. A further refinement of the skeletons idea, known as archetypes [132],
combines broadly-defined computational patterns with data-flow considerations
for systematic development of parallel programs.

Skeletons are fixed-structure templates. Thus, the ME and CS structures
allowed are the ones defined in each set or library. Each skeleton encapsulates
the abstract description of a very concise synchronization structure. Many par-
allel skeletons proposed are static well-known synchronization structures, such as
pipeline or neighbor synchronization. They are specific examples of high regular



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 67

NSP structures that have been individually studied and analyzed. There are
skeletons that support ME. It is at least typically supported in a given skeleton
called farm (see section 2.2.2 for the close relation between ME and the farm
paradigm). This specific skeleton is in SP and ME SA classes. Data-dependent
and data-independent versions are possible.

What skeleton libraries propose is a set of given synchronization architecture
schemes for which interesting applications can be derived, and for which efficient
specific mapping, scheduling and optimizing methods are well-known. In this
sense, the skeletons model is the most restrictive one, since only a given set of
fixed structures can be programmed. However, many parallel applications fits in
these skeleton structures. The skeletons key is that they capture the common
parallel structure of many applications, and can produce efficient and reusable
components (see e.g. [54]).

Structured languages

A further step in parallel structure analysis leads to the structured languages
approach. In these languages several parallel constructs, based on typical struc-
tures found in applications, can be composed to form a more complex application
structure (see e.g. P3L [152]). The key of the applicability of this languages is a
cost model which is able to compose the predictions based on the basic structures.
At the same time, composition of basic structures leads to software development
based on well-defined decomposition techniques of the problem.

There are still applications that do not properly fit in the basic structures
proposed. They must be modified and mapped by the programmer. The cost
calculus is also not so simple and the different techniques of composition increase
the complexity of the analysis.

Skeletons in the nested parallelism framework

A new approach to skeletons idea is introduced in the Frame language [44]. In
this language a nested parallelism skeleton is implemented as a set of primitives
that can be composed generating high-level SP structures. This scheme provides
clear semantics and a familiar syntactic framework for programming (SP advan-
tages). In a further step, the programmer has the option of using inside the high
level nested parallel structure other low level unstructured computations. This
can be done with other skeletal elementary units, or by allowing the programmer
to access the underlying communication or parallel software layer in a controlled
form. Thus, the programmer has access to the advantages of both, SP program-
ming semantics and specialized and optimized non-SP parallelism. We see this
option as a promising research direction. Currently, Frame does not support ME
in the high level structure.
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2.5.4 Class (NSP,ME,DS): Message passing

The message passing model is based on communication models [107, 34, 188].
Standard interfaces and implementations of this model like MPI [48, 140] or
PVM [178, 155] are widespread used, and it is nowadays one of the most common
models for general parallel programming environments.

Its success is derived from the generic approach it uses, giving only the mech-
anisms to communicate and explicitly synchronize isolated processes through
abstract channels. Thus, it allows the programmer to create and exploit any
kind of parallelism that fits a problem solution. At the same time it is a low-level
model, for which efficient and highly optimized implementations in real hard-
ware are possible. In fact it is highly related to the implementation level and the
message-passing machine model (see section 2.3.1).

In the message-passing model a process is an independent active element. It
executes a sequential code and it uses a local memory space. Processes can be
created and destroyed dynamically, either by other processes or externally by
the system (typically in the context of distributed computing). Abstract named
channels can be established between processes for communication. The sequential
code can send data through a named channel, or try to receive data through a
named channel. Sent data is kept in the channel until the target process is in a
state in which it tries to read it. Synchronization is produced when a blocking
receive operation waits for the arrival of a message. Processes can scan several
channels at the same time for data, reacting in different ways depending on which
channel data is received first.

This kind of point-to-point communication is enough to express any computa-
tion and communication scheme. Nevertheless, extended primitives for collective
communications (reduction, broadcast, scan, barrier synchronization ...) are in-
cluded in interfaces and implementations. For these collective operations, using
restricted processes groups is typically possible, in order to create virtual com-
munication topologies. To hide many communications in one primitive is a more
high level abstraction. Thus, it simplifies programming and allows better opti-
mized implementations of the collective operations. Furthermore, programming
with collective operations can lead to even more high-level transformations for
performance improvement and software development techniques [90, 88].

The model allows any condition synchronization scheme. Thus, it is in the
NSP class. There are no ME primitives, but non-deterministic contention exist,
because a process can be waiting for data from different sources at the same time,
reacting in different ways depending on the order in which messages are arriving.
This feature can be exploited to produce programmed ME. The sending and
receiving of messages can be data-dependent. Thus, dynamic synchronization
structures are allowed. In many interfaces even the number of active processes
may change. Thus, the SA is in (NSP,ME,DS) class.
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The counterpart of the model advantages is that being a so low-level model,
the programmer faces problems about parallelization grain, data-partition, map
and scheduling of any new application considered. As the static or dynamic struc-
tures allowed are completely unrestricted, no special heuristics or techniques can
be exploited by the compiler or run-time environment for a generic application.
The compiler can not match the send and receive primitives for syntactic or
semantic validation or reasoning.

The theoretical models on which message-passing is based, provide a calculus
to derive possible or forbidden states of the system. Nevertheless, the fast growing
complexity of the search space makes such tests intractable for anything but toy
problems. Extensions of LogP also try to model the internal features of message-
passing interfaces (see section 2.4.4), but they offer no help in software design.
They can predict the communication behavior of a given communication pattern,
but do not provide a systematic procedure to analyze a full subset of the possible
solutions or design search space, due to the NSP SA.

However, the message-passing interfaces hide the communication details, and
can be used as an efficient abstract communication layer when accurate measures
of given communication patterns are affordable. More high-level programming
techniques can be applied or integrated in an environment that, underneath, uses
message-passing for communication [87, 182, 191].

Other authors complain about the non-deterministic behavior of message-
passing interfaces. It leads to non-reproducible and more difficult to debug de-
velopments, that is antithetical to scientific methods. An interesting approach
to eliminate the non-determinism in a message passing model is FortranM [67].
It is based on extensions to sequential languages (in this case, Fortran) with
semantic and syntactic restrictions in the creation and manipulation of commu-
nication channels. Nevertheless, FortranM provides non-deterministic constructs
for applications where it is needed. Thus, the programmer can restrict the use
of non-determinism and she/he has more control on the type of SA used (NME
or ME). Its modular or object-oriented approach make it easy to couple with
data-parallel modules (see section 2.5.3).

2.5.5 Class (NSP,ME,DS): Maximum abstraction

In this section we discuss two more abstract example models that fit in the SA
class with maximum expressive power: Concurrent object-oriented programming
and tuple spaces. They present a PPL/PPM with powerful semantics. Many
PPL solutions include both of them. The counterpart is the problems of cost
analysis and efficient implementation.
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Concurrent object-oriented programming

In a pure concurrent object-oriented model, a computation is a collection of
processes that access and use shared objects with a contention mechanism to
avoid race conditions. Thus, it can be viewed as a model without CS that relies
only in the contention mechanism to control the parallelism. The contention is
controlled by monitors associated with objects. A monitor also implements a
mechanism to wait for or notify the success of a guarded condition [106]. Thus,
condition synchronization is affordable if a complete monitor implementation is
provided in the language.

For example, the JAVA synchronization model is based on inherent monitors
associated with the objects. Not only methods, but also code pieces can be made
mutually exclusive using the monitor associated to a given object. The primitives
wait, notify, and notifyAll, associated with the Thread object, can be used inside
synchronized methods, along with specific condition fields, to create and control
condition synchronization.

The underlying model for concurrent object-oriented programming is also a
message-passing model when non-shared-memory architectures are used. Remote
method invocations create communication channels for the data interface when
accessing objects information across processes. Three main differences (advan-
tages) can be observed with respect to pure message-passing:

e The remote method invocation is done across a shared name space of ob-
jects.

e ME can be directly used as it is implicit in method invocations controlled
by monitors.

e Data are associated with objects and methods. Although data partitioning
decisions are still faced by the programmer, they can be helped by this
arrangement.

From the previous discussion it follows that a basic concurrent object-oriented
model has no CS and uses only ME to control parallelism. The implicit con-
tention mechanisms (calls to monitor protected methods) have ME semantics.
The SA is always in class ME. However, monitors allow the creation of condi-
tion synchronization and certain implementations make use of remote method
invocation to create other CS mechanisms. Both lead to NSP structures. Con-
dition synchronization structure is unrestricted and dynamic. New objects are
created and unpredictably used during execution of the system. Compilers and
run-time systems do not get much help to decide where to locate objects, or how
to schedule processes to processors from the unknown and non-SP structure. The
main synchronization control in this model relies on monitors and mutual exclu-
sion, then, in an implicit dynamic synchronization system. However, analyzing
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dynamic mutual exclusion is not as easy or accurate as condition synchroniza-
tion analysis [70]. SA in NSP class inhibits analyzability also in the dynamic
synchronization space.

The monitor system and the global name/address space makes this model a
middle point between pure message-passing and the more complete global tuple
space model described below.

Coordination languages a la Linda. Global tuple spaces.

The tuple-spaces are a coordination and communication system, independent of
the computation language [37, 38, 68, 148]. Tuple-spaces provide a PPM with
a high-level abstract virtual machine, separated from the computational issues.
The PCM is considered to provide a global shared space of data pieces called
tuples. A tuple is a named collection of data fields of any nature. Processes work
asynchronously and exchange data by writing, reading, inserting and extracting
tuples in the tuple space. The language also provides primitives for checking the
presence of tuples and information in the global space.

The condition synchronization is done through checking, writing, and reading
tuples. There is no restriction about which processes synchronize and when they
do it. Multiple processes can check the same tuple at the same time. Thus,
the language is rich in expressive power and full of possibilities for condition
synchronization structures. The counterpart is that it leads to NSP SA class.
Operations of checking and reading/writing/modifying tuples can be atomic.
Thus, the languages provide primitives with ME semantics. The SA is in the
ME class. There are no restrictions to the use of the synchronization mechanism
or even to the manipulation of threads. The system is fully dynamic and data-
dependent (thus, the model is in the class DS).

Due to the NSP condition synchronization scheme, the cost model presents
the problems associated to any NSP model. Efficient implementations on real
architectures are not so simple, as the communication problems that arise to
maintain the shared tuples are complex. However, the tuple syntactics are clean,
and the compiler can do some semantic checking and verification. They provide
a good abstraction for a maximum expressive power PPL/PPM.

2.5.6 Conclusions about PPLs/PPMs SA

In Fig. 2.22 we show the location in the SA space of the more relevant models
reviewed in this section. The arrows represent a possible change in the SA class
when some extensions are added to the basic model. The main conclusions
obtained previously for PCMs and bridging models (recall section 2.4.5), are
confirmed and extended in this more abstract level. SA is an important feature
of the PPLs/PPMs for its expressiveness and analyzability features.
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Figure 2.22: Classification of PPLs/PPMs reviewed

Comparing with PCMs and bridging model, a first observation is that the
more abstract models usually include ME primitives instead of relaying in a low-
level programmable ME mechanism. The lower mapping level is oriented to easier
implementations in a full range of real architectures, promoting programmable
mutual exclusion. However, in the more abstract level of programming, the
models are more oriented to simplify the programming task. Primitives with
implicit ME have clear semantics and are easy to use. Except for the case of
OpenMP (clearly oriented to shared-memory architectures), the implementation
of ME in other architectures is not so direct, although it is clearly promoted from
the higher abstraction levels.

At this level we can also see that models which allow NSP CS structures are
in the lower or higher extremes of restrictiveness. Models in the NSP classes
that offer mapping solutions or reliable cost analysis are based on analyzing and
using only a small set of well-know structures and solutions for parallel prob-
lems. They are oriented to specific applications structures, like data-parallelism
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or skeleton based models, that are all in the (NSP,NME,NDS) class. On the
other hand, full NSP models are oriented to maximum expressive power, like
concurrent object-oriented programming, tuple spaces or message-passing, all in
(NSP,ME,DS) class. In these models, the programmer gets little help to under-
stand or predict the system behavior. Mapping and optimization decisions must
be taken manually and must be based mainly on the programmer’s experience.

At the opposite side of the CS axis, we find SP models. In this case, there is
not such an extreme diversification. In fact, the most popular SP based models,
either do not support ME (pure nested parallel languages such as Cilk), or are
oriented to static synchronization structures (as OpenMP or SPC). The reason
is that restricting the SA to the SP class is always introduced in a model to
increase the analyzability characteristics of the model. In the case of Cilk, the
dynamic scheduling algorithm works with the CS information available. Thus,
no ME mechanism exists but data-dependent synchronization is available. In the
case of OpenMP or SPC, ME mechanisms are considered, but no data-dependent
structures are promoted to still get mapping benefits derived from the static SP
structure. However, is important to notice that both SPC and OpenMP allow
also dynamic constructions to let the programmer implement any kind of ap-
plication. In the case of using data-dependent structures, the programmer is
responsible for explicitly programming some kind of scheduling and mapping
tasks. Therefore, the benefits of using SP structures regarding automatic map-
ping are prevented. OpenMP goes even further, allowing the programmer to
create NSP structures with the lock-managing external library. For a modern
and commercial oriented language it would be a real shortcoming if the so many
unstructured-mind oriented programmers could not implement their ideas with-
out restrictions. Manual mapping and optimization is still current practice in
parallel programming.

2.6 Synchronization architecture of applications

Finally, we are to climb the highest peaks of abstraction, where applications lie
surrounded by the clouds of parallel algorithmics. For this upper perspective,
we will contemplate all the lands we have previously traveled along. PPLs and
PPMs are interfaces to express the parallelism of an application. Thus, we study
the SAs present on typical parallel applications, kernels, and parallel problems
solutions. We also discuss how do they map to restricted SA classes.

This classification of the SA of applications is intended to help the reader
to understand the real purposes, benefits and disadvantages of the different re-
stricted and unrestricted PPMs. At the same time it will point us to case-study
applications for the mapping problem (systematically transformation of synchro-
nization structures across different SA classes). In the following classification
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we are not trying to be exhaustive, but we are only presenting some well-known
examples of parallel solutions and applications which are representative of each
SA class. The graphical representation of this classification is shown in Fig. 2.26.

2.6.1 Class (SP,ME,NDS/DS)

There are two typical programming paradigms or problem solutions that are
based on the use of ME: Farms and non-ordered macro-pipelines.

Farms: Many irregular and dynamic applications are directly programmed us-

ing a pure ME scheme through a workers-farm or work-stealing paradigm
(centralized or decentralized load balancing scheduling algorithms). Thus,
many highly irregular applications, derived e.g. from graph exploration
or combinatorial search [156, 189], are transformed to this structure. The
scheduling module is then reported about the possibility of non-deterministic
synchronization between computation pieces. Applications of this type are
typically dynamic (tasks generate new data pieces to process), but the
number of tasks may also be statically determined by the problem nature.

ME-Macropipeline: Macro-pipeline is a wide-accepted name for a synchro-

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

nization structure that represents a generic solution for many problems.
Consider macro-pipelines representing problems based on the parallel exe-
cution of n processes composed by m tasks or stages, such that the stage i
of a process needs ME with the i stages of all the other processes (typ-
ically due to the use of a shared resource). An example code of such
a macropipeline programmed with semaphores is presented in Fig. 2.23.
These macro-pipelines can be programmed as a collection of task series
with no CS between different series and ME among the i-depth tasks.
Other macro-pipelines not based on resource restrictions are not in this
class and will be discussed below. The number of stages is known in almost
all situations. If the number of processes is also known the structure will
be static, else it will be dynamic.

MEmacropipeline() { (1) process(...) {
Semaphore s[m]; (2) int stage;
createSemaphores(s); (3) for(stage=0; stage<m; stage++) {
initializeSemaphores(s,1); (4) P(s[stage]):
spawnThreads(n); (5) do(stage);
process(...); (6) V(s[stage]):
syncThreads(n); @)
} ®

Figure 2.23: Example of a ME-Macropipeline
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If the programming model selected for implementation directly supports ME
primitives, the application structure is formed by spawning n tasks that synchro-
nize only by ME to obtain more data pieces in the farm, or to avoid concurrent
access to the same resource in ME-Macropipelines. If ME is not supported, a
false order originally not present in the problem definition should be introduced
with CS (see section 2.2.6). The solution probably will incur in high losses if SP
synchronization is forced.

It is arguable whether this kind of solutions must be explicitly programmed
with ME or they can be even automatically detected and scheduled by a compiler.

2.6.2 Class (NSP,ME,NDS/DS)

No typical parallel applications are found in these classes. In problems where ME
is used to provide a solution, it is frequent that no CS is needed except to create
sequences of processes that use only ME to avoid interactions, or full barriers
to synchronize between iterations. Thus, they can be programmed in a nested-
parallel restricted model (SP,ME,NDS/DS). We are not taking into account here
implementations that use ME only to simplify communication phases when using
a shared-data space. In this case the original application does not really need ME
and they can also be programmed in their relative (NSP,NME,NDS/DS) classes.

2.6.3 Class (SP,NME,NDS)

In this class we found applications that directly map to CS structures in the SP
class. The problem or solution is hierarchical or highly synchronous. Thus, it can
be programmed with hierarchical self-synchronized processes groups. The struc-
ture is also static, dependent only in the input data-size or number of processors,
and possibly fixed in compilation phase.

Types of applications to be found in this class are trivial parallel compu-
tations, static structures derivated from divide & conquer or branch & bound
paradigm (sometimes as a data-partition scheme), and synchronized loops.

Trivial parallel computations: Applications that are easily and directly par-
allelized by a wise data-partitioning avoiding communication between tasks
during normal computation phases. The only synchronization needed is to
distribute data and collect results. They do not need a powerful NSP
language or model to be programmed. Some examples are found in image
processing algorithms: Geometrical transformations of a set of different ob-
jects in n-dimensional spaces, ray-tracing and other rendering algorithms.
Other examples are searching and optimization methods like simple Monte
Carlo or hill climbing methods, specifically when parallel random number
generators are used [31, 189].
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Reduction trees: Parallel prefix sums, maximum or leader identification, etc
[73, 156].

Some sorting algorithms: Merge-sort and radix or bucket sort [189, 120].

Parallel multigrid methods: The overall structure of V-cycle and multigrid
simulation programs based in cellular automates (not the cellular automata
itself) is hierarchical. Grid local operations to solve partial differential equa-
tions, or SOR methods in general, present a divide & conquer SP structure
that can be implemented with only one synchronized communication phase
per iteration. Many typical solutions to simulation programs in grids use
synchronized phases (see e.g. [111]).

Some numerical algorithms: Numerical integration [189]. The overall struc-
ture of Strassen matrix multiplication [156] (although local dependences
can be exploited in a complicate NSP form).

Synchronized parallel loops: Many applications are programmed with par-
allel loops or similar structures. After a computation phase, processes
interchange boundary information with neighbors, or communicate in an
unpredictable pattern with other processes. If the problem semantics need
a full barrier synchronization after the communication phase, they can be
directly programmed in an SP form.

Because of the easy of programming and understanding of such synchro-
nized structures have, they are used in most situations, even when the
synchronization is not in the original problem semantics. For example, the
OpenMP [149] model assumes this kind of behavior for its main primi-
tives for parallel loops and sections, although variable-locks can be use to
produce NSP patterns at programmer discretion. For well-balanced appli-
cations the delay introduced by processes waiting for other processes to
synchronize is negligible.

2.6.4 Class (SP, NME, DS)

Divide & conquer may be used as a load balancing technique. In this case data-
partitions should be dynamically constructed. Many applications also present an
adaptable hierarchical structure that is further or recursively spawned in a data-
dependent form. For example, solutions that are recursive over selected pieces of
data (like quicksort algorithm) force dynamic structure. However, applications
that split data into equal size chunks generate a static structure if the data size
is known from the beginning (like mergesort). Some examples of dynamic SP
applications are:

Unbalanced sorting: Quick-sort [189].
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Some geometric problems: Convex hull or Voronoi diagrams [56].

N-body simulations: Barness-Hutt, Fast Multipole Methods and other non-
adaptative hierarchical algorithms for N-body simulation are based on a
hierarchical divide & conquer paradigm. (See e.g. [136, 189]). They are
intuitively programmed in SP, as they basically construct and evaluate
dynamic trees.

2.6.5 Class (NSP,NME,NDS)

In this class we discuss applications which their problem natures imply static
non-hierarchical CS structures. The exact synchronization pattern is quite dif-
ferent for different applications. For example, many high regular and scalable
applications are generated by replication of a local communication pattern. Most
of them are well-known data-parallel solutions, where processes receive a piece of
a data-structure partition and proceed in two phases: Computation and commu-
nication of boundaries of the data structure with neighbor processors (in a virtual
topology defined by the problem, the data partition, and the mapping). They are
widely used in simulation and engineering fields and they are specifically studied
to obtain specific high-performance optimized solutions. Iterations of a neighbor
synchronization pattern defines an NSP CS structure. Many of them present a
well-known repetitive synchronization structure that scales-up easily.
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Figure 2.24: D&C block matrix multiplication.

Irregular divide & conquer: Not all divide & conquer techniques lead to SP
structures. When the conquer phase merges partial solutions generated
by other processes, an NSP communication pattern may be natural. In
Fig. 2.24 we show the NSP pattern generated by a typical divide & conquer
block matrix multiplication, where each processor uses only 7 of the 16
pieces computed in the previous phase.
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Static dependent pipelines: Pipelines produced by static code dependences
leads to a typical NSP structures. For example, the data-parallel loop
presented in Fig. 2.25 creates a macro-pipeline structure that cannot be
expressed by ME.

(1) FOR i=1,n-1 parallel=8
(2) V[i+1] =V[i+ 1]+ f(V[i])
(3) ENDFOR

Figure 2.25: Example of static dependent pipeline

Simple neighbor synchronization: Cellular-automata and other grid/lattice
simulation programs based on stencils or local synchronization patterns [162].
Example applications include many physics and chemistry simulations or
image processing programs.

Problem solving networks: Many applications based in a specific topology
exchange network as FFT [153], odd-even reduction or sorting networks [156].

Matrix scientific computing: Most dense matrix scientific computing algo-
rithms like Gaussian elimination, matrix multiplication, QR and LU re-
ductions [79, 78] can be programmed in an NSP form to exploit all possible
parallelism. The synchronization structures generated for these applica-
tions is not so symmetric as in previous examples. However, they are
regular and easily scalable.

For most of these problems, the computation phase is executing the same piece of
code on a approximately equal sized piece of data for every process. Synchronized
iterations (see section 2.6.3) are very popular for these very regular and high-
balanced computations. The performance degradation effect of programming
them in an SP PPM is very small [86].

Moreover, specifying these regular computations in a hierarchical synchro-
nization structure, with fine grain parallelism, may allow automatic mapping
techniques that perform a good data-partition and load balance, minimizing po-
tential performance degradation.

Another solution is to encapsulate an efficiently programmed solution based
on the NSP communication structure into a skeleton [45] or a given language
construction [152]. Thus, it can be used compositionally as a language primitive
and inside a hierarchical nested-parallel scheme [44].
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2.6.6 Class (NSP,NME,DS)

In this class we find applications that generate non-repetitive specific NSP com-
munication patterns depending on the input data and partial computation re-
sults. Applications in this class include:

Sparse linear-algebra algorithms: Although most sparse linear solvers try to
reduce their behavior to regular vector operations [99, 186], in many spe-
cific techniques the synchronization structure is dependent on the matrix
density structure (e.g. [124]). In these applications all the structure may be
predicted if the matrix structure is known. Sparse linear solvers are an im-
portant category of algorithms for many different domain applications, and

direct solving methods for sparse linear systems is an important research
field (see e.g. [96]).

Simulations in graphs: Many structural engineering applications and similar
problems based on iterative PDEs solvers. A graph partitioning algorithm
is applied to the input graph to distribute data among processors, minimiz-
ing the communication needed due to interactions between points assigned
to different partitions [154].

Adaptative grids: PDEs solvers where an adaptative grid is dynamically re-
fined [147]. These problems need dynamic evolution of the data partition,
that can lead to dynamic modification of communication patterns.

Dynamic simulations: Adaptative N-body simulations [136] and chemistry or
physics simulations, where particles or points are in motion, changing the
data elements with which they interact to [115]. In some solutions, the
data partition must evolve dynamically.

When the irregular synchronization structure is predictable, once the data struc-
ture (e.g. an sparse matrix structure) is known, sophisticated algorithms can be
used to transform the structures to SP form trying to minimize the losses [85].
These algorithms may be used even as a pre-scheduling phase. Multilevel graph
partitioning may also be used to create nested dissection orderings for solving
sparse linear systems of equations [154].

The highly dynamic solutions to simulation problems where communication
patterns evolve along iterations are still a big challenge on themselves. In most
cases these solutions are heuristic hard-wired load-balancing techniques highly
dependent on the problem. Most of the time complex knowledge about the appli-
cation behavior and decomposition is needed. Good results may be obtained by
the hierarchical application of different scheduling polices for processes that show
different synchronization roles instead of only one plane policy [115]. However,
the identification of such processes classes is not direct and it is not clear how a
hierarchical specification of the original problem could help.
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Figure 2.26: Classification of example applications

2.6.7 Conclusions about applications SA

In Fig. 2.26 we show a diagram that summarizes the classification of some ex-
ample application types described in this section. Dashed lines indicate typi-
cal transitions between classes to map applications structure into restricted SP
PPMs.

An important observation is that ME is used only to program applications
mainly based on two SP paradigms that implicate a specific load-balancing
scheduling solution, useful for many dynamic applications. In fact, some dy-
namic NSP applications may be transformed to fit into the farm paradigm, and
consequently into SP class. It is important for a PPM to support ME to easily
program this kind of dynamic solutions.

Most applications do not need ME. We have found many of them suitable for
SP PPMs. For the applications that do really have NSP CS structure we have
identified representative examples for any SA class. Simple possible mapping
solutions to convey their synchronization structure into SP SA classes have been
discussed.
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2.7 Summary

In this chapter we have presented the synchronization architecture concept and
its relevant classes accordingly to three important criteria: CS, ME and data-
dependence. Then, we have explored the different programming abstraction lev-
els to detect the SA classes of PCMs, PPMs, PPLs and applications.

At the lowest abstraction level, execution models provide maximum expres-
sive power and synchronization opportunities. However, as we travel up to the
higher abstractions proposed by parallel programming models, we notice that
low-level based implementation models (as e.g. message-passing interfaces) are
being substituted by higher level models with two main trends:

1. High abstractions with maximum expressiveness power (as e.g. tuple spaces)

2. Restricted models with efficient mapping and software development initia-
tives (as e.g. BSP).

A parallel computation is a much more complex object than a sequential com-
putation. More and more parallel programmers are accepting that a higher
level of abstraction is needed to introduce software development and debugging
techniques in parallel programming [89]. However, implementation and map-
ping problems plague the highly abstract but unrestricted programming models.
Nowadays, the programming models that look more promising are those which
analyzability capabilities are improved by introduced expressiveness restrictions.
In our study we have found that the most relevant frontier in this analizability
vs. expressive power trade-off is the SP vs. NSP choice in the condition synchro-
nization axis. Programmers who take the decission of crossing this frontier and
force the CS structures to SP form (nested-parallelism), achieve an important
increase in their analizability capabilities, opening a full new world of compil-
ing and run-time techniques for verification, performance prediction, mapping,
scheduling, portability and software development in general.

Although many typical parallel applications are perfectly suitable for these
SP restricted models, some important ones still present a challenge for being
efficiently transformed to nested-parallel form. Intuition indicates that in many
cases the impact of such a transformation in the application performance is lim-
ited. However, the potential performance loss produced by the SP restriction
introduced at the programming level, before the application is coded, has not
been yet fully studied. The rest of this dissertation addresses this important
problem. In chapter 2 we use graph theory to characterize both NSP and SP
structures and we study systematic transformations from NSP to SP forms. We
also investigate the potential performance impact of such transformations. An
experimental framework to verify the propositions introduced in our study, that
can also be extended for quantitative evaluation of PPMs in general, is presented
in chapter 3.
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Chapter 3

Theoretical approach

“This is how I will do it: if there is a whelp of
the same breed to be had in Ireland, I will rear
him and train him until he is as good a hound
as the one killed; and until that time, Culain,”
he said, “I myself will be your watchdog, to
guard your goods and your cattle and your
house.” “You have made a fair offer,” said
Conchubar. “I could have given no better
award myself,” said Cathbad the Druid. “And
from this out,” he said, “your name will be
Cuchulain, the Hound of Culain.”

Cuchulain of Muirthemne, 1902
LADY GREGORY

In the previous chapter we have classified SAs and identified the SP (nested-
parallelism) restriction as the most important frontier between expressiveness
and analyzability. We have also determined that many applications directly map
to models in the SP SA classes, but others do not. Although strategies for this
mapping are proposed, two important questions arise:

e How much potential parallelism loss is introduced by a transformation
which map NSP application structures to SP form, and is it possible to
predict it?

e [s it possible to derive automatic transformation techniques to map NSP
structures to SP form?

The latter question is motivated by the fact that (1) tool support is an important
enabling factor in the use of SP models for NSP problems, and (2) such tools
can be used to partially automate the experiments needed to address the first
question.

83
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A formal approximation to the mapping of NSP structures to SP form may
be developed with the help of graph theory. The synchronization structures of
applications have been for a long time represented with graphs. More precisely,
DAGSs (Directed Acyclic Graphs) have been used to represent the Posets (Partial
Order Sets) or dependences that CS introduce between tasks. These graphs do
not directly support specification of ME dependences or alternative structures
of data-dependent programs. They may be used to represent only one possi-
ble structure created during the execution of a given program in a given PPM
(when ME and data-dependences are transformed to CS). Nevertheless, we are
interested mostly in the CS structures, as long as we have previously show that
CS and ME are orthogonal, and we have determined the impact of ME in the
expressiveness vs. analyzability trade-off. To represent the structures created by
data-dependent programs we can use several graph representations of the pos-
sible structures generated by the program. A complete study of how to extract
task graphs from applications is presented in sections 4.2.2 and 4.2.3.

Hence, we will study graph transformations to approximate NSP structures
to SP form. The devised transformations will try to minimize the potential par-
allelism loss introduced by added dependences, that may be responsible of the
performance degradation. We study not only the topology impact of a trans-
formation, but the potential impact in the performance through critical path
analysis. For such an study, the workload distribution of the graph nodes is criti-
cal. At the highly abstract level of programming, no exact (or even no) workload
information is typically available. In our study, several synthetic workload mod-
els are considered. In an experimental study with real applications, presented
in section 4.2, we validate and refine these workload models to consider real
execution workloads.

In this chapter we use graph theory to formally present definitions and prop-
erties of NSP and SP graphs. We also study and compare basic techniques and
full algorithms to transform NSP synchronization structures to SP form, min-
imizing the potential parallelism loss. The impact of such transformations is
theoretically analyzed and discussed.

3.1 Graph preliminaries

We present here a collection of mathematical notations used throughout the rest
of this dissertation. They are organized in sections about specific subjects: Basic
graph concepts, transitive closure and reduction, simple topological parameters,
and task graphs.
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3.1.1 Basic graph concepts and notations

Since graph-theoretical definitions differ somewhat in the literature, we define
here the basic concepts. Definitions are mainly adapted from references [12, 28,
93, 184]. A reader who is familiar with graph theory may skip this section and
refer to these definitions later if it is needed.

In this dissertation we denote sets with upper case alphabetic characters
(A, B,C,...), and elements of a set with lower case (a, b, ¢, ...). Calligraphic upper
case alphabetic characters denote set partitions:

Definition 3.1.1 The symbol P denotes a partition of a set in non-overlapping
subsets:

PS ={S1,8,...8:}: 8 CS()Si=0)Si=S5
O

Definition 3.1.2 A directed graph G is a pair (V, E), where V is a finite set
of nodes or vertices and E CV XV is a set of ordered pairs called edges. The
number of nodes in a graph is denoted by n = |V'|, and the number of edges by
m = |E|.

There can be multiple edges between the same nodes. Graphs with multiple
directed edges are called multidigraphs. Self-cycles (nodes in the form (v,v)) will
not be used in our study. a

Definition 3.1.83 Two graphs G1 = (V1, E1) and Go = (Va, E3) are isomorphic
(G1 ~ G9) if there exists a bijective function f from Vi to Vo such that (v,v") €
By = (f(v), f(v')) € Ea.

For the following definitions let G = (V, E) be a directed graph.

Definition 3.1.4 For each edge (v,v') € E, v is the source of the edge and v'
is the target of the edge. |

Definition 3.1.5 For each node v € V', indeg(v) is the indegree or number of

edges for which v is the target and outdeg(v) is the outdegree or number of edges
for which v is the source:

indeg(v) = {e € E:e= (v',v)}]

outdeg(v) = |{e € E : e = (v,v)}|
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Definition 3.1.6 A root or source of a graph is a node v with indeg(v) = 0.
R(G) s the set of all roots in G: A leaf or sink of a graph is a node v with
outdeg(v) = 0. L(G) is the set of all leaves in G.

R(G) ={v €V :indeg(v) = 0}
L(G) = {v € V : outdeg(v) = 0}

a

Definition 3.1.7 The successors set of a node v is the set of target nodes of
edges for which v is the source. The predecessors set of a node v is the set of
source nodes for which v is the target:

Succ(v) = {v' : (v,0") € E}
Pred(v) = {v': (v',v) € E}
O

Definition 3.1.8 A subgraph of G is another graph S = (Vs,Eg) in which
Ve CV and Es C E. O

Definition 3.1.9 A Path from a given node to another p(v,v') is non-empty a
sequence of nodes connected by edges that defines a possible way from v to v':

p(v,v") = v,v1,v9, ...y Uy, V';
(’U,’Ul), (’1)1,’1)2), sey (’Up,’l)l) €L

The length of the path is the number of edges p in the path:
length(p(v, ")) = [p(v,)] - 1
A non-direct path is a path with length more than 1:
Pra(v,v') = p(v,v') : length(p(v,v')) > 1

A Full path is a path p(v,v") where v is a root and v' is a leaf. Pr(G) is the set
of all possible full paths in G:

Pi(G) = {p(v,v") : v € R(G),v" € L(G)}

A Cycle is a path from/to the same node: p(v,v). O
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Definition 3.1.10 A node v’ is said to be reachable in the graph G from another
node v iff exists p(v,v") orv="10':

v 2, v <= Fp(v,0) Vo =1

Where it is obvious by the context in which graph is this relation defined, we omit
the name of the graph G and we use the symbol < alone. a

Definition 3.1.11 A node v' is said to be strictly reachable in the graph G from
another node v iff exists p(v,v') and v,v" are different:

v <, v < Ip(v,v") Av £

Where it is obvious by the context in which graph is this relation defined, we omit
the name of the graph G and we use the symbol < alone. a

Definition 3.1.12 Two nodes v,v’' are connected in the graph G iff one of them
is reachable from the other:

v=<=,0 = v 2,0 VU 2,0
v#4 v = v AL v AV AL

Where it is obvious by the context in which graph is this relation defined, we omit
the name of the graph G and we use the symbol <> alone. a

Definition 3.1.13 For any node v € V, the depth level or d(v) is the length of
the longest path from a root to that node:

d(v) = mazx(length(p(r,v)) : v € R(Q))

O

Definition 3.1.14 A directed acyclic graph (DAG) is a directed graph G =
(V, E) with no cycle. For any node v there is no p(v,v):
G € DAG <= Vv € V : Ap(v,v)

O

In this dissertation we only study directed acyclic graphs. From here on, the
word “graph” always refers to a DAG.

Definition 3.1.15 A two-terminal directed acyclic graph, also called standard
two-terminal or STDAG is a DAG such that there is only one root and only one
leaf in the graph:

G € STDAG < G € DAG,|R(G)| = 1,|L(G)| = 1
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Proposition 3.1.16 Properties of STDAGs:

1. Any node in an STDAG is reachable from the root.
2. The leaf of an STDAG is reachable from any node in the graph.
3. Any STDAG is a connected graph.

4. For any node v € V exists at least one full path that contains v.

Proof: A node v € V, is the root or it has at least one predecessor. If it is
not the root, take any predecessor of v and proceed by induction. Use the same
rationale for successors and the leaf. The rest is trivial using the definitions. O

Definition 3.1.17 The normalized STDAG G of a DAG G is a two-terminal
directed acyclic graph, constructed from G, adding at most two nodes and O(n)

edges to resynchronize the possible multiple roots and possible multiple leaves of
G, as follows:

Let G = (V,E) be a DAG, G = (V', E'):

V=V U{v} if |IR(G)| > 1
V=V U{u} if |IL(G)| > 1
E'=EU{(v,v):v € R(G)} if |R(G)|>1
E'=FEU{(W,u):v € L(G)} if|LG)|>1

|

Proposition 3.1.18 The normalized STDAG G of any DAG G can be con-
structed in O(n) time complexity.

Proof: Detecting the R(G) and L(G) sets implies checking only the in-degree
and out-degree of every node in V. Each node appears at most once on each set.
Thus, each set has O(n) nodes. When the two sets are known, at most two new
nodes are added, and exactly one edge per node in each set. O

3.1.2 Transitivities

The reachability relation established by edges in the graph is transitive. Thus,
we define the following concepts as in [137]:

Definition 3.1.19 An edge in a graph e = (v,v") € E is a transitive edge iff
there is a non-direct path between the nodes pypq(v,v'). O
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Definition 3.1.20 The transitive closure of a graph G = (V, E) is another graph
Gt = (V,E™) such that E* contains an edge (v,v') iff exists a path p(v,v') in

G. O
Definition 3.1.21 The transitive reduction of a graph G = (V, E) is a subgraph
G~ = (V, E7), minimal under inclusion, whose transitive closure coincides with
that of G. O

Definition 3.1.22 A topological order of a graph G = (V, E) is any total order
<t of V such that if (v,v') € E then v <! v'. Each DAG has at least one
topological order. a

3.1.3 Topological graph parameters

We define the following basic graph topology parameters that we will use to
characterize the graphs.

Definition 3.1.23 We define Maximum Degree of Parallelism as the mazimum
number of nodes in a graph that are not dependent on each other:

mP(G) = max |L € V/ %]

This number can be approzimated by the cardinality of the biggest layer (subset
of nodes with the same depth level) in the graph. We call it simply Degree of
Parallelism:

P(GQ) = max v : d(v) =i}

|

Definition 3.1.24 The Depth of a graph is the mazimum depth level of any
node in it:

D(G) = max d(v)

|

Definition 3.1.25 Synchronization Density of a graph G is the amount of edges
relative to the number of nodes:

S(G) = |E|/IV]
a

In a graph G, the S parameter (number of edges related to the number of nodes)
may provide information not only about dependences, but about the overall shape
of the graph. For very high sizes of |E/|, the graph will have so many dependences
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that most nodes will be serialized. For very low number of edges, most nodes
will be disconnected and the degree of parallelism will be higher. We may define
a more topology-independent parameter to represent the overall number of edges
in a graph.

Definition 3.1.26 We define Relative Synchronization Density as the synchro-
nization density relative to the number of nodes:

Ry(G) = 5(G)/|V]

Or in other words, the amount of edges relative to the square of the number of
nodes. It represents the amount of edges relative to the mazimum number of
possible edges in a DAG with |V| nodes:

Ry(G) = |E|/|V[?

3.1.4 Task graphs

In this thesis we use activity on nodes (AoN) graphs. The nodes represent an
activity and the edges a precedence order for the execution of the activities. More
specifically we introduce the following definitions:

Definition 3.1.27 For a given system, a task is an atomic activity which mod-
ifies the global state of the system and can be executed independently of the local
state of other activities (tasks), provided a collection of preconditions. After the
execution of the activity a task may produce a collection of postconditions (de-
pending on the system state), in order to allow activation of other tasks. a

Definition 3.1.28 A task graph T' = (V, E) is a DAG in which a node v € V

represents a task and an edge e = (v,v') € E represents the precedence relation

established between two tasks when a postcondition of v is a precondition of v'.
O

Definition 3.1.29 In the context of task graphs, the reachability property is also
called dependence. A node v' is dependent on another node v iff v <, v'. a

A task graph represents a possible evolution of a system given an initial state.
In the case of a parallel program, a task graph represents the dependences of the
tasks generated by the program when executed with specific input data. The
task graph generated by a parallel program for a given initial state (input data)
is unique only if the program has no race conditions, and the evolution of the
system state is independent of the scheduling of the tasks.
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A task graph is some times transformed to an STDAG adding a root and a
leaf that represent the starting and ending points of the whole system activity.
Then, properties of STDAGs can be exploited.

Definition 3.1.30 The load of a node is a positive number that represents the
cost or span of executing the task in a given parameter axis. The load distribu-
tion of a graph is the function that maps nodes to their load values:

T:ivEeEV 5 RT

|

A typical parameter for which load is defined is time, where load represents
the execution time of the activity. The total cost of a graph (the summation of
all its node’s load) is associated with the cost of the computation represented by
the graph. The notions of path cost, and critical path are also defined.

Definition 3.1.31 The cost or load of a graph G, is the sum of the loads of all

1ts nodes:
T(G) = (v)
v, EV

|

Definition 3.1.32 The cost or load of a path, is the sum of the loads of all its

nodes:
Tp(v,0) = > T(w)

CH Ep(v,v’)
a

Let us consider some usual concepts in distributed computing. In complete
asynchronous communication models, the complexity of an application is related
to the largest chain of messages [122]. Modifying the synchronization structures,
the chains of messages are altered, and probably, also the length of the largest
chain. The computation times should also be included if they are significant [122].

Application and program synchronization structures are modeled with task
graphs. In our case we use AoN graphs, with nodes representing tasks or com-
munications. Thus, the accumulated load value of the nodes in a full path rep-
resents the estimated performance time of executing this chain of nodes, with
the precedence restrictions expressed by the whole graph. The maximum load
of any full path, or critical path value (cpv) of the graph, represents the largest
chain of communications or dependences, with computation times considered.
Consequently, the cpv of a graph may be used as an indicator of the modeled
application performance.
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Definition 3.1.33 For a given graph G = (V, E) and a given load distribution,
the Critical paths of the graph P.(G) are the full paths with mazimum load. The
Critical path value cpv(G) is the load of any critical path.

Pe(G) ={p € Pf(G) : 7(p) = max(7(P;(G))}

cpu(G) = 7(p) : p € Pe(G)

3.2 Series-parallel graphs

3.2.1 Definitions
Series-parallel DAGs, their construction and their relation with general DAGs are
the main focus of this chapter. We present here formal definitions and properties
of this kind of graphs. The following definitions are adapted mainly from [14,
184].
SP-graphs preliminaries
The class of edge series-parallel directed graphs is defined recursively as follows:
Definition 3.2.1 Edge series-parallel multidigraphs (ESP):

1. A DAG with a single edge joining two nodes is ESP.

2. If Gy = (Vi,Ey1) and Gy = (Va, E3) are ESP multidigraphs, so are the
DAGs constructed by each of the following operation:

e Two-terminal parallel composition: Identify the root of G1 with the
root of Go, and the leaf of G1 with the leaf of Gs.

e Two-terminal series composition: Identify the leaf of G1 with the root

of Go.
O
Definition 3.2.2 Series-parallel graphs (SP-graphs):
A DAG is SP iff its normalized STDAG is ESP:
G € SP < G € ESP
O

Definition 3.2.3 Non-series-parallel graphs (NSP-graphs):
A DAG is NSP iff it is not in the class of SP-graphs. ad
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The class of SP-graphs can be characterized by not exhibiting a forbidden
subgraph. This subgraph represents the basic topological characteristic associated
with an NSP structure. We use the term homeomorphic to refer to graphs with
similar topological features, or in other words, graphs that contains nodes with
the same partial order relation. We first introduce a formal definition of the
homeomorphic term to help us to characterize the relation of a graph with the
forbidden subgraph.

Definition 3.2.4 An induced subgraph G' = (V', E') of another graph G =
(V, E), is a subgraph obtained by eliminating some nodes from V and eliminating
from E the edges incident to those eliminated nodes:

GODG = V' CV,E ={(u,v) € E:u,veV'}
O

Definition 3.2.5 A graph G = (V, E) is homeomorphic to another graph G' iff
its transitive closure does contain G' as an induced subgraph:

GI1G «—<G"O¢
0

Theorem 3.2.6 A DAG is an SP-graph iff it is not homeomorphic to the W
graph of Fig. 3.1; or using an equivalent characterization, iff its transitive closure

does not contain the W graph of Fig. 3.1 as an induced subgraph. (See proof
in [59]). O

Figure 3.1: The forbidden subgraph for SP-graphs

SP graphs are a subclass of planar graphs, and also a subclass of k—terminal
graphs (see e.g. [28]). SP graphs are equivalent to partial 2-trees, a subclass
of bounded tree-width graphs (see e.g. [21, 28]). Based in the properties of
these graph classes, linear time complexity algorithms to recognize SP-graphs
are possible.
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Proposition 3.2.7 The recognition of a series-parallel digraph can be done in
linear time. (See proof in [184, 168]). O

Efficient parallel recognition algorithms also exist for SP-graphs and derivated
classes (see [98, 61, 22, 105, 23]).

An interesting property of SP graphs, that justifies the tight complexity
bounds of many algorithms for these graph class, is the bounded number of
edges:

Lemma 3.2.8 Let G=(V,E) be an SP-graph with no multiple edges. The number
of edges is bounded by (see e.g. [168]):

Bl <2|v| -3
This lemma is easily proven by induction on the SP-graphs definition. a

Lemma 3.2.9 Let G=(V,E) be an SP-graph with no multiple edges and no tran-
sitive edges (G = G~ ). The number of edges is bounded by

[E| <2(|V]-2)
A proof may be found in [84]. O

SP reduction

Two operators which reduce the series or parallel structures in a graph to a single
edge have been proposed [14]. The result of the use of these operators in simple
graphs is shown in Fig. 3.2.

S p

Figure 3.2: Reduction operators

Definition 3.2.10 The series reduction operator or ﬁ, s a4 mapping,
e:STDAG x V — STDAG, according to:

Gev = (V' E");
indeg(v) = outdeg(v) = 1,
E'=E \ {(s,0), (v,t)} U (s,2),
Vi=V\v
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Definition 3.2.11 The parallel reduction operator or g, s a4 mapping,
6:STDAG x E — STDAG, according to:

Go(v,v') = (V', B');
{(v,v") € B} > 1,
E' =E\{(v,v') € E} U(v,0)

O

Definition 3.2.12 A trivial graph is a graph with only two nodes and one edge:
Gy =(V,E); V={v,v'}, E={(v,v')}

O

Definition 3.2.13 The symbol F denotes a sequence of one or more reduction
operations in a graph:

F={e,6}F
Fe= (o)t
= (Bt

a

Definition 3.2.14 A series graph is a graph which can be reduced to a trivial
graph using only series reduction operations:

GeSGe— GF ¢ ~a,
O

Definition 3.2.15 The minimal SP reduction graph of G, is another graph [G]
obtained by using all possible series and parallel reduction operations in G:

G+ [G; 3G, G+ G’
O

Proposition 3.2.16 A graph G is an SP-graph iff its normalized STDAG, can
be reduced to a trivial graph by series and parallel reduction operations.
G € SP = [G] ~ G,

This result is easily proven by induction on the ESP and reduction operation
definitions. |
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3.2.2 Distance from NSP to SP graphs

In this section we present formal methods to define and measure the distance
from an NSP to an SP approximation graph. These definitions motivate some
transformation techniques and a distance concept to be used later to try to
measure the impact of NSP to SP transformations.

We can measure the distance from an NSP to an SP form by the number
of induced forbidden subgraphs it has. This distance has shown to be a very
important parameter of a graph. Many graph analysis problems that show to
be feasible when the graph is bounded to an SP form, are NP-hard to solve
in a generic NSP graph. Nevertheless, it is possible to derive algorithms that
are exponential in the distance from the graph to an SP form, instead of in the
number of nodes [14].

Node reduction and complexity

The number of forbidden subgraphs in a graph G can be algorithmically mea-
sured by reductions or path expressions [14, 143]. The reduction system uses
series and parallel reductions to eliminate the parts of the graph that are al-
ready SP. After that, only nodes and edges associated with forbidden subgraphs
remain. To eliminate one node and its associated forbidden subgraph, a new
operator called node reduction operator is introduced. It operates on a node that
is connecting one to many or many to one nodes. In the first situation, it substi-
tutes a node with only one predecessor for a collection of edges between its only
one predecessor and its successors. In the second situation it substitutes a node
with only one successor for a collection of edges between its predecessors and its
only one successor. The effect of a node reduction in both cases (indeg(v) = 1
and outdeg(v) = 1), is shown in Fig. 3.3.

Definition 3.2.17 The node reduction operator or i, s 4 mapping,
*:STDAG x V — STDAG, according to:

Gwv = (V', E'); indeg(v) = 1V outdeg(v) = 1,
If indeg(v) =1,
E' = E\{(s,v), (v,t;) : t; € Succ(v)} U{(s,t;) : t; € Succ(v)}
V' =V\{v}

If outdeg(v) =1,
E' = E\ {(v,t), (si,v) : 8; € Pred(v)} U {(s;,t) : 5; € Pred(v)}
V=V \ {v}
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Figure 3.3: Node reduction operator

After all possible series-parallel reductions are applied all nodes except the
root and the leaf are associated with a forbidden subgraph. Any one can be
chosen for elimination. At least the children of the root have indeg(v) = 1,
and at least the parents of the leaf have outdeg(v) = 1. Thus, there are always
nodes that can be node reduced. After applying a node reduction, new series and
parallel reductions are usually possible. They should be applied before new node
reductions.

Duplication of nodes

Although previous works which present the node reduction do not rationale it,
this operator is intrinsically related to an NSP to SP transformation based on
the duplication of nodes, also discussed in section 3.3.1. See Fig. 3.4. The node
reduction operation intrinsically creates multiple instances of the node that is
being reduced. A different path from/to the unique parent/child is constructed
through any of the multiple copies. The duplicated nodes are inherently reduced
by serial reduction. Thus, the node reduction does not add new dependences to
the graph, and the non-SP conflict (the forbidden subgraph) disappears.

We may define a distance from any graph G to an SP form based on the
reduction complexity of G:

Definition 3.2.18 The reduction complexity of a graph G, denoted by u(G), is
the minimal number of node reductions sufficient to reduce G to a trivial graph.

1(G) = min(c); [...[[Glxv1[%vs]..xve] ~ Gy
O

Definition 3.2.19 The sequence of u(G) nodes (vi,v2,...,v.) that reduce the
graph G to a trivial graph is called the reduction sequence. a

As was shown by Bein, Kamburowsky and Stallman in [14], it is possible
to compute u(G) and the reduction sequence in polynomial time complexity.
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indeg(v)=1

outdeg(v’)=1 Giv'

Figure 3.4: Intrinsic operations in node reduction

At the same time the maximum distance of a graph to an SP form (reduction
complexity) is limited by the number of nodes:

(@) <n-3

3.3 Transformation problem (NSP to SP)

In this section we investigate the foundation of full transformation methods to
approximate the structural differences between NSP and SP graphs. The usual
asymptotic notation is used for complexity bounds throughout the following sec-
tions. We use O, and © notation as defined in [13].

3.3.1 SP-ization

We are interested in methods to approximate NSP graphs to an SP form that
both: (1) keeps the dependences information of the original graph; and (2) min-
imizes the potential parallelism loss. Different approaches are possible:

Duplication of nodes: As shown in section 3.2.2, a method to transform an
NSP graph into an SP form by the duplication of nodes is possible. The
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main interest of this transformation is that it does not add dependences
to the task graph, and it produces no potential parallelism loss. However,
the duplication of tasks increases the total cost of a computation (it is not
a work-preserving transformation). In specific circumstances it can trade
communication costs for computation and memory costs. Duplication of
tasks (in other processors) increments the total computation and resources
cost, but it may lead to a higher locality degree, reducing the number of syn-
chronization or communication operations among processors that execute
the duplicated tasks. Task duplication is known to have a favorable effect
on minimizing the total execution time in distributed systems scheduling
(see e.g. [158]).

The cost increase is determined by the number of node duplications. Taking
into account that every node reduction duplicates the node a number of
times equal to the number of incident edges minus one, the number of
node duplications can be O(m)! In cases of small degree of parallelism,
very low u(G) and specific topologies where the nodes to reduce have a
very small indeg, outdeg, the benefits obtained may compensate the global
cost increase. Let 7(G) be the total cost of a computation represented by
G. Let G’ be the SP version of G produced by duplicating nodes with
any reduction sequence. Then, if max,cy (indeg(v), outdeg(v)) = k, the
following result can be derived:

7(G") < k7(G)

Also, in the case where all nodes in G have the same load, Vv € V, 7(v) = ¢,
we can exert the result:

7(G") < cku(G) + 7(G)

Although a linear time algorithm for detecting the shorter reduction se-
quence exists [14], it does not assure that the nodes with less incident edges
are the ones selected. The problem of selecting a reduction sequence which
minimizes the edges affected (node duplications) is, as far as we know, not
studied.

Another problem with this approach is that we are only considering the
CS problem. However, if the PPM supports mutual exclusion mechanisms,
the nodes to duplicate may need to contend with others for execution priv-
ilege. The duplication of a node involved in a mutual exclusive operation
can increase the critical path, as the copies of a duplicated node cannot be
executed in parallel, leading to more contention and more synchronization
costs. Indeed, most of the time, duplication only minimizes execution time
if additional (CPU) resources are available. Moreover, a task that uses a
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previously non-shared resource cannot be safely duplicated without mod-
ification; duplicated operations on the resource may lead to a correctness
fault.

For general parallel computing, especially in massive parallel computing or
applications with many inter-task dependences the total cost increase can
easily be unaffordable. The applicability scope of this technique is narrow.

Adding dependences: The alternative mechanism to transform an NSP graph
to SP form without duplicating nodes and without increasing the total
computation cost is adding new dependences. These work-preserving tech-
niques are not directly based on reduction sequences, and the number of
topology modifications may be not related to x(G). Indeed, graphs with
higher p(G) may need less added dependences to be transformed to SP.
We study in section 3.6.2 an algorithmic metric of the impact, in a given
graph, of a given technique based on adding dependences. The main draw-
backs of these techniques are that: (1) they serialize previous potentially
parallel tasks, and (2) the selection of dependences to add is guided by
heuristics which should make assumptions about the task workloads, in
order to minimize the potential impact of the task serialization.

Mixed techniques: Mixed techniques that mainly add dependences but strate-
gically select a small subset of nodes to duplicate could be interesting.
However, no convenient one has yet been proposed. A good starting point
to devise such techniques will be: (1) the methods based on adding depen-
dences studied in this thesis, and (2) the works about reducing expensive
communication costs by computation redundancy, or scheduling with re-
dundancy in UTC (Unit Time Cost) graphs [24, 60, 141].

In this work we study new methods and heuristics to transform NSP to SP
graphs by adding dependences, trying to minimize the potential loss of parallelism
introduced by them. We denote such transformation methods as SP-izations.

Definition 3.3.1 An SP-ization is a graph transformation technique T which
transforms any generic STDAG into an SP form, keeping the same nodes and
dependences as in the original graph, and possibly adding new zero loaded nodes
(resynchronization points) and edges (dependences).

T:STDAG — SP;
T(G) = (V' E),
VvV V'\V = {w;r(w) =0}
Vu,v e Viu 2o v=u=_v
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3.3.2 Local resynchronization

Several SP-ization techniques may be proposed. We will focus first in the ap-
proximation of graphs containing in its transitive closure only one basic NSP
problem, or in other words, only one instance of the forbidden subgraph pre-
sented in theorem 3.2.6. Then, more elaborated techniques for complex NSP
problems (combinations of several instances of the forbidden subgraph) will be
studied.

In the following examples and figures we will not present full NSP graphs,
but only the induced subgraph which contains nodes related to the NSP problem
we want to illustrate. Thus, every edge in the example graphs may represent a
full SP-reducible subgraph of the original graph, and the propagated dependence
is not eliminable by a transitive reduction. We name these edges as SP branches.

Definition 3.3.2 The SP branches of a graph G are the subgraphs S C G that
are themselves SP graphs, S € SP. |

Consider for example the graphs in Fig. 3.5. The graphs on the right side
represent the forbidden induced subgraphs found in the transitive closure of the
left side graphs. The light-grey edges represent SP branches of the original graph.
Thus, the original left-side graphs are homeomorphic to the forbidden subgraph,
and the transformation solutions presented below can be applied to both of them.

We present three different methods to resynchronize the forbidden subgraph.
The first two methods can be applied in two different forms. The final five
transformations are illustrated in Fig. 3.6. Any of them can be used to eliminate
an isolated NSP problem. The four nodes related to the forbidden subgraph are
named s, v,v’,t, accordingly to their role to simplify the references in the text.

Up synchronization: An SP branch is resynchronized changing the leaf of the
branch for an ancestor of the original leaf. This transformation can be
applied to two different SP branches related to the forbidden subgraph
(v,t) or (s,v).

e (', resynchronizing (v,t): New dependences are created from the
nodes in the SP branch represented by (v,t) to v' and, thus, to nodes
in the SP branch represented by (v, ). New dependences added are
defined by:

{wiv<w=<t}<{w:v 2w <t}

e (', resynchronizing (s,v'): New dependences are created from the
nodes in the SP branch represented by (s,v') to v and, thus, to nodes
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Figure 3.5: Example graphs homeomorphic to the W forbidden subgraph

in the SP branches represented by (v,t) and (v,v'). New dependences
added are defined by:

/ / /
_ / {w:v=<w <}

{w:s<w=<v}< { (W v =< <t}

Down synchronization: An SP branch is resynchronized changing the root
of the branch for a descendant of the original root. This transformation
can be also applied to two different SP branches related to the forbidden
subgraph (v,t) or (s,v").

e (@', resynchronizing (s,v’): New dependences are created from the
nodes in the SP branch represented by (s, v) to nodes in the SP branch
represented by (s,v’). New dependences added are defined by:

{fwis<w=<v}<{w:s<w <}

e (', resynchronizing (v,t): New dependences are created from the
nodes in the SP branches represented by (s,v’) and (v,v’) to nodes
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Down synch

Across synch

Figure 3.6: Methods for resynchronization of graphs homeomorphic to W

in the SP branch represented by (v,t). New dependences added are
defined by:

{fw:s<w=<v'}

!, ]
{w:v<wjv’}}<{w'v<w < t}

Across synchronization: In this third more general transformation, the three
SP branches (s,v’), (v,v'), (v,t) are splited in two parts. The first part of
the three branches is resynchronized over a new zero loaded node. Edges
from this node to the second parts of the three branches are added to
connect the graph. Let 51,552,535 be the subgraphs corresponding to the
three SP branches:
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Let Ay, As, A3 be the sets of nodes in the first part of the three branches,
and B, By, B3 be the sets of nodes in the second part of the three branches.
The first part will contain at least the root of the branch, and the second
part will contain at least the leaf of the branch:

A;,B; CS;: AjUB; = S;;A;NB; =0;Yw' € B, w' £ w € A;
The transformation works adding the node and dependences defined by:
V=V Uu{c}
weE A <c=<w € B;

It is possible to eliminate any NSP problem (or combinations of them) by
applying several up/down synchronizations in order to eliminate local problems.
With no information about the workload of the implicated nodes it is not possible
to decide when up or down synchronization may incur in a higher penalty in the
critical path. On general graphs, the up/down synchronization may serialize big
subgraphs with high probabilities of many added dependences.

The across synchronization can be applied in only one way in the context of
the basic NSP problem or forbidden subgraph elimination. However, when the
edges represent non-empty SP branches, we must propose a rule or strategy to
decide which nodes will be in the first and second parts of the branch. In Fig. 3.7
we show an example of two different strategies for cutting subgraphs during
an across synchronization (dotted edges represent original graph edges which
degenerate in transitivities, and can be eliminated). The decision relies again in
the information we have about the workload of the nodes in these subgraphs. If
properly applied, across synchronization may derive in lesser amount of added
dependences compared with up/down synchronization, especially when applied
to combined NSP problems, as the ones presented in next section.

3.3.3 Combinations of NSP problems

When a graph presents several NSP problems, the induced forbidden subgraphs
may be composed. (In [14] three composed forbidden subgraphs are studied to
decide which nodes must be chosen to minimize the reduction sequence. Some
of those graphs are somehow related or inspiration for our resynchronization
solutions).

We present here different compositions of the basic NSP problem suitable
to be resynchronized with the three previous methods. Further combinations of
these compositions may reproduce any NSP graph topology.

To simplify the mathematical notation of precedences, for the following de-
scriptions we assume there exists a source and a target node s,¢ € V that are
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Figure 3.7: Example of different strategies for across synchronization
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respectively before and after all nodes related to the NSP problems in the com-
bination (denoted by W C V):

s<{w:weW}
{w:weW} <t

Series NSP composition: There exists two similar problems, characterized by
a series composition of several v or v' nodes.

Probleml: W ={v,v},v}}; v =<v] < vhv RN v
Y1

Problem2: W ={v1,v9,v'}; 01 < vy < 0501 =\ {v2} v

This combination can be eliminated by several up/down synchronizations.
Both problems can also be eliminated by a combined across synchroniza-
tion. See in Fig. 3.8 an example of each type of transformation where
G’ and G" represent solutions with up/down synchronizations respectively,
and G" the across synchronization solution.

G G, GH Gi!l

0‘0

Figure 3.8: Resynchronization of graphs homeomorphic to Series-NSP
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Parallel NSP composition: There exists two similar problems, characterized
by a parallel composition of several non-dependent v or v nodes.

Probleml: W = {v,v],vh}; v < vj;v < vh;v| =40
Problem2: W = {vy,v9,v'}; v < 0’509 < 05014509

The composition can be eliminated by several up/down synchronizations.
Both problems can also be eliminated by a combined across synchroniza-
tion. See in Fig. 3.9 an example of each transformation where G’ and G”
represent solutions with up/down synchronizations respectively, and G"
the across synchronization solution.

G, GH Gi!l

)
0
Figure 3.9: Resynchronization of graphs homeomorphic to Parallel-NSP

Chain NSP composition: An NSP problem is chained with another NSP prob-
lem when the v’ node of the first of them is inserted between the v and ¢
nodes of the second.

! ! ! ! ! ! !
W = {v1,v9,v],05}; v1 < v];02 < V];V2 < Vg U] FE V25 U] S Uy

Several problems may be consecutively chained. Such a chain of NSP prob-
lems can be eliminated by a full across synchronization. See an example
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of two chained NSP problems and their resynchronization with across syn-
chronization in Fig. 3.10.

Up/down synchronizations may be also used to eliminate a chain of NSP
problems. However, it is a complicate operation that must be done in sev-
eral phases, each of them with several choices for up/down synchronization.
For example, a chain of two NSP problems has three NSP problems. The
two original ones and the problem originated by the chain composition. We
must eliminate first the local problems (each of them with up or down syn-
chronization), before the problem originated by the chain is exposed and
can be eliminated itself (with two up or two down synchronization possi-
bilities). Apart from the amount of choices, other problem associated with
this up/down synchronizations is that the chained problems, will be com-
pletely serialized, probably loosing a big amount of the original parallelism.

G G’

Figure 3.10: Resynchronization of graphs homeomorphic to 2 Chained-NSP

Crossed NSP composition: Two NSP problems are crossed when both o
nodes are inserted between the v and ¢ nodes of the other problem. Multi-
ple NSP problems may be crossed with one or several of the others to form
multiple crossing NPS compositions.

! ! ! ! ! ! ! !
W = {v1,v9,v],v5}; v1 < v7,09;V2 < V], V5; V] % V2; V] %5 U,

A collection of crossed NSP problems can be solve with across synchroniza-
tion. See an example of this resynchronization on a crossed composition of
two NSP problems in Fig. 3.11.

As in the chain problem, many choices for up/down synchronizations exist,
but finally they serialize all the v nodes, and all the v’ nodes implicated in
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G G’

Figure 3.11: Resynchronization of graphs homeomorphic to 2 Crossed-NSP

the crossing, leading to a high loss of the original parallelism due to added
dependences.

For simple combinations of NSP problems (series or parallel NSP problems)
any technique may be appropriate, and no clear clues about which one to choose
can be given without workload information or full topology inspection. For com-
plex combinations (chain and crossed NSP problems) we detect that if up/down
synchronizations are used, the serialization of nodes increases with the number
of local NSP problems implicated. For these problems it seems more appropriate
to try the across synchronization method. However, the cutting strategy must
be carefully selected, as it could have an important impact on the results.

3.3.4 Simple SP-ization techniques

We present here two simple graph transformations that correspond to SP-ization
techniques. They introduce the idea of SP-ization and motivate the presentation
of our complex algorithms in the following sections.

Technique 1: Serialization

This first technique is a trivial example of what an SP-ization can be, but useless
for practical purposes. It consists in a full serialization of the graph nodes,
transforming the partial order defined by the graph in any total order that honors
the original partial order. The result is a series graph, that is also SP.

Definition 3.3.3 Let <! be any topological order of G = (V, E). Then, an SP-
ization Ts can be defined by:
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Ty(G) = (V,E');
E' ={(v,w) : v <" w; Be,v <" ¢ <" w}
O
An example of the application of this technique is shown in Fig. 3.12. With
this transformation most of the information provided by the original dependences

is lost, and so many new dependences are added that all parallelism expressed in
the original graph disappears.

One topological order: 1, 2, 4, 6, 5, 7, 10, 8, 9, 3, 12, 11, 13, 15, 14, 16, 17, 18

Figure 3.12: Technique 1 - Serialization based on topological order

Technique 2: WSSynch (Simple layering synchronization)

The second technique consists in a full barrier synchronization of node layers.
For this technique the information provided by the graph dependences is used
only to determine the layers with a wide or breadth first search of the graph.
Thus, the name WSSynch (Wide first Search Synchronization). The wide first
search of a graph visits the nodes in [evel or depth order. Each layer contains
the nodes with the same depth.

Definition 3.3.4 Let G = (V, E) be a graph, with a mazimum depth level k =
D(G). The Wide first search layering Lys(G) is a partition of the graph nodes
according to:

['WS(G) =PG = {ll,lg, ...,lk}; li = {’U H d(U) = i},i =1...k
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Based in the previous layering definition, we define the WSSynch or layering
transformation as follows. An example of the application of this technique is
shown in Fig. 3.13.

Definition 3.3.5 Let G = (V,E) be a graph, then an SP-ization T, can be
defined by:

Tp(G) = (VI,E,)§
Lws(G) ={li,lo,...It}
V' =V U{bi,bay....,bp_1}
E' = {(v,b;) :v €l;} U{(b;,v') : v €li11}

|

The technique does not exploit the possible short distance of the graph to an
SP form. The number of dependences added can be really high for graphs with
low reduction complexity u(G). Specifically it destroys the SP subgraphs of G
that could be preserved.

The advantage of this technique is that there exist fast algorithms with low
time complexity bounds O(maz(n,m)) to compute the level of the nodes and
the layering (see e.g. [29]). Moreover, the result is the only possible SP-ization
for many specific regular structures related to common applications (see 4.2). In
fact this technique has been previously exploited with modeling techniques for
scalability and performance analysis of common parallel structures [130]. At the
same time it can be used to trivially map such structures to the BSP model of
computation.

Figure 3.13: Technique 2 - Full barrier synchronization based on layering
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Other layering techniques not based in wide first search (or node level) are
possible, and for some graphs the increase of the number of dependences can be
lesser. However they are specific for the graph topology.

3.4 Algorithm 1: Local exploration

We present here our first full SP-ization algorithm, introduced in [83] and fully
explained in [82]. It was the result of our introductory exercises to the NSP
to SP transformations, and it was quickly superseded by our second algorithm
presented in section 3.5. Thus, a formal proof of correctness was never devised.
Instead, an implementation was heuristically tested with about twenty thousand
random graphs with up to hundreds of nodes. Its main interest is the local
strategy used. The algorithm searches for the less complex or more local NSP
problem combinations, to solve them before continue in an inside-outside style.
The technique uses a mixed approach of up and across synchronizations. The
core of the algorithm is the search technique that identifies the nodes related to a
local NSP problem. Depending on the input order (node labeling) the solutions
can be different. In this section we will present some new notations used in the
algorithm, a formal definition of the transformation, and a full explanation of
the algorithm strategy with an example.

3.4.1 Notations

Definition 3.4.1 We classify nodes in three broad categories in terms of their
synchronization role in the graph:

Fnodes(G) = {v € V : |Succ(v)| > 1}

Jnodes(G) = {v € V : |Pred(v)| > 1}
JFnodes(G) = Fnodes N Jnodes
O
The algorithm gathers information of NSP problems and their composition
from a minimal SP reduction ([G]) of the original graph. During the computa-
tion of [G], several series or parallel reduction operations are applied to reduce
SP branches to a single edge (see section 3.2.1). We use an annotation sys-

tem to keep track of the ending edges of an SP branch, to modify them in the
resynchronization phase.

Definition 3.4.2 We associate a Set of edges Z to any edge in the graph:

7 Ews2F
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After a series reduction operation, let e be the new edge introduced by sz, and
(s,v), (v, t) the edges that disappear, then

Z(e)=Z(); e = (v,t)

After a parallel reduction operation, let e be the new edge introduced by Gg(v,v')
then
Z(e) =U{Z(e) : ' = (v,v)}

3.4.2 SP-ization technique

Here, we define formally the transformation applied by the algorithm. It is based
on the application of a resynchronization operation on a collection of nodes re-
lated to a combination of NSP problems. The strategy we propose now works
properly when the input is the transitive reduction G~ of the graph to be trans-
formed. KEdges which represent transitive dependences confuses the algorithm
and makes it serialize unnecessary nodes. Thus, a previous phase must compute
the transitive reduction of G.

We define the handles (F,J) of an NSP problem, as a pair of node sets with
the properties to be defined below. The F' and J sets will contain the v and
v’ nodes related to an NSP problem combination, which is suitable to be solve
by one across synchronization. We present first the properties of these sets, and
then the search strategy to find them.

Definition 3.4.3 Let G = (V,E) be an STDAG, and [G] = (Vr, ER) its mini-
mal SP reduction. (F,J) is a pair of node sets (F C Vg, J C Vg), called handles
with the properties: (a) All nodes in F are connected with at least one node in
J, and all nodes in J are connected with at least one node in F; (b) all nodes in
F' have all their successors in J, except successors that are descendents of other
nodes in J, and successors that are also in F; (¢) all nodes in J have all their
predecessors in F, except predecessors with an ancestor in J.
Let us denote the nodes in (F,.J) sets with f € F;j,7 € J. Then,

J C Jnodes([G]), F C Fnodes([G]);
V£,3j: (£,) € En,
Vi, 3f : (f,5) € B,
VIVt € Suce(f);te JVv I, <t
Vj,Vs € Pred(j);s € Fv 35,5 < s
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The search strategy to find a pair of (F, J) sets can be describe as follows (all
the graph operations are related to the minimal reduction graph [G]):

1. Select an initial F' node related to an NSP problem. The only condition is
that it must have a successor that is a J node.

fo € Fnodes([G]) : 3j € Succ(f),j € Jnodes([G])

2. Create empty set pairs. One for exploration (F’,J") and one for final nodes
(F,J). Put fo in the initial F’ set:

Fr={fo},J' =}, F={}J={}

3. DO UNTIL F’ = {}

(a) Locate successors of F’ nodes. The new J' set has those successors
which are not in J, and are not dependent on other J nodes:

J'={j" € Suce(f' € F'):Aj € J,j < j'}
(b) Eliminate J and J’ nodes dependent on other new .J' nodes:
J=J\{j:3"eJ,j' < j}
JIZJI\{j,:E‘jHEJ,,j”-<j,}
(¢) Move explored F' nodes to F:
F=FUF

(d) Eliminate F' nodes which has no more successors in J and J' due to
elimination:

F=F\{f:(JUJ)N Succ(f) =0}

(e) Locate predecessors of J' nodes. The new F' set has those predecessors
that are not in F' and are not dependent on any .J node:

F'={f'ePred(jet):f'¢F A €lj=[f}
(f) Move explored J' nodes to J:

J=JulJ



3.4. ALGORITHM 1: LOCAL EXPLORATION 115

At the end of this procedure, the (F,.J) sets have the properties defined previ-
ously. We define now a resynchronization operator that modifies G such that
the collection of [G] edges with its source node in F' and its target node in .J are
substituted for: (1) a new synchronization node, and (2) a collection of edges
from the nodes in F' to the new node, and from the new node to the nodes in .J.

Definition 3.4.4 Let G = (V,E) be an STDAG, and [G] = (Vr, ER) its mini-
mal SP reduction. For a given pair of node sets (F,J), let A = {(f,j) € Eg :
f € F,j5 € J} be the set of edges with the source in F and the target in J. We
define the resynchronization operator > as follows:

Go (F,J) = (V' E");
V=V ulir}
E' =FE\{Z(e) :ec A}
U{(s,r) : (s,t) € Z(e),e € A}
U{(r,t) : t e J}

d

To improve the SP compositional looking of the result, we may synchronize
the branches of any node in the F' set with its own dummy synchronization point,
and then, synchronize all dummy nodes over the general resynchronization point.
This similar, although more complex, resynchronization operator may be defined
as follows.

Definition 3.4.5 Let G = (V,E) be an STDAG, and [G] = (Vg, ER) its min-
imal SP reduction. For a given pair of node sets (F = {f1, f2,.., fn},J), let
A={(f,j) € Er: f € F,j € .J} be the set of edges with the source in F' and the
target in J. We define the resynchronization operator > as follows:

Gv>(F,J)= (V' E');
V=VU{r:i=0,..n}
E'=FE\{Z(e):ec A}
U{(rs,ro) :i=1,2,...,n}

{(5,71) = (5,) € Z((fund) € A)}

Ul(rond) 5 € 7}
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Definition 3.4.6 Let G = (V,E) be a graph, then an SP-ization Tysygs can be
defined by the recursive application of a resynchronization operator > for any
(F,J) sets until the result is an SP graph:

Tuigr (G) = (((G> (F, 1)) > (F',J')) ... »(F",J")) € SP

a

This strategy leads to some troubles in special situations that must be considered.
They are discussed in the following sections.

3.4.3 JF combinations

A JF combination is a topological feature of a graph characterized for dependence
relations described as follows (See an example in Fig. 3.14):

JFcombination = (f,7); f € Fnodes(G),j € Jnodes(G) :
Af', 4" f € Fnodes(G),j" € Jnodes(G);
fr=i=f=y

Figure 3.14: Example of JF combinations

In a JF combination, the relation 5 < f implies that all 5/ nodes such that
f < 4', will be erased from .J set because of transitive relation with other nodes
in the J set (j < f < j'). Consequently, f will have no successors in the J set
and it will be also erased from the F' set. The only nodes in handles sets will be
finally f" and j’.

However, detecting a JF combination as soon as possible could avoid some f
or j recursive exploration from nodes that we know they are going to disappear
from the set. Or even we can mix two different NSP problems as we explain in
the following section.
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3.4.4 Mixing problems through JF combinations

Sometimes, the topology of the graph presents a JF combination in which the
f node has two j nodes associated to different NSP problems. See Fig. 3.15.
Depending on the order in which the nodes are explored and introduced in the

Problem A

Problem B

Figure 3.15: Example of mixed problems through a JF combination

sets, we can add J nodes and F nodes from the different problems in the exploring
sets, before detecting and eliminating the JF combination. In the Fig. 3.15
example, if node f is added to F set and is explored, ji, j; are added to J set.
In the next phase, new nodes in .J set are explored to find their F' handles. The
exploration of ji will add nodes ¢,d to F, and j), exploration will add f' to F
set. In next phase the transitivity relation from f’ to 7, f, 7’ will be discovered
and f,j will be eliminated from their sets. But at this point, we have in F
set the non-dependent nodes c, d, f', that are related to two different local NSP
problem combinations named problem A, and problem B in the figure. If the
exploration begins with f’ or ¢, d instead of f, this situation does not happen. In
this case, the way the resynchronization is done is not incorrect but non-optimal.
In Fig. 3.16(a) is shown what is the result after resynchronizing problem A first,
and then problem B in a natural way. Fig. 3.16(b) shows how the algorithm
resynchronizes the branches when it mixes the problems.

Detecting and eliminating JF combinations as soon as possible minimizes the
probability of mixing the problems. Each time we add a new f or j node to the
sets, we can check for the transitivity relation from 7 nodes to f nodes. Thus,
the JF combinations are detected and the wrong f node eliminated. Although
this technique minimizes the probabilities of mixing the problems it may still
happen. The local search for J,F nodes, in which the algorithm is based, can not
avoid this problem.



118 CHAPTER 3. THEORETICAL APPROACH

Problem A

Mixed

problem B T R\ problems |

@ (b)
Figure 3.16: Solutions of a mixed problem through a JF combination

3.4.5 Example

We demonstrate the way our algorithm works with an example graph shown in
Fig. 3.17(a). Its minimal SP reduction graph, shown in Fig. 3.17(b), has the
edge annotations presented in Table 3.1.

Figure 3.17: Example NSP graph and its minimal SP reduction

The evolution of the J and F sets during the problem handle detection phase
can be seen in Table 3.2. The first column of this table (checkpoint number N)
describes the event sequence. The algorithm would then proceed as follows:

We can choose as initial F' node either nodes 3, 4, 5 or 7. All of them have
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[ e [ Z(6) |
(4,9) (6,9)
(5.9) (8.9)
(7.18) (10,18)
(3.17) | (12.17) (16,17)

Table 3.1: Edge annotations in the minimal SP reduction graph

SP branches to at least one J node. If we suppose that node 7 is the initial
NSP problem, we would add it to the F set and explore it to locate its related J
nodes 9 and 18, which should be included in the J set (checkpoints 1 — 2). In
checkpoint 3, we explore the J nodes just added in the previous step and their
related F nodes 4, 5 and 17 —which is taken as an F handle because it is also the
origin of an SP branch. In checkpoint 4, we explore the next unexplored node
in the F set, e.g. 4, and a new J node is obtained for the J set, namely node 7.
In checkpoint 5, we test transitivities in J set, which implies the elimination of
nodes 9 and 18, since node 7 represents their transitive closure and is the only
one kept in the J set. In checkpoint 6, we detect how node 7 is also present in
the F set, which represents a J-F combination to be ruled out from the F set.
In checkpoint 7, the F handle 17 is taken out from the F set because there is no
J node related to it in the J set. In checkpoint 8, we explore the next F node
(5) and introduce a new J node in the J set (11). As a consequence, a new F
node has to be added to the F set (3) after the exploration of this last J node;
when this new F node (3) is explored, a new J node is added to the J set (17)
which is then ruled out because of the transitivity relation with node 11. When
we reach this point, we are at checkpoint 11 and there are no more J or F nodes
unexplored, which concludes the search of the handles.

N F set J set
1 7 -

2 7 9,18
3 |74517 9,18
4 | 74517 | 9,18,7
5 |74517 7

6 45,17 7

7 45 7

8 45 7,11
9 453 7,11
10 453 711,17
11 453 7,11

Table 3.2: Detecting the problem handles
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After the resynchronization phase, both graphs, original and the minimal
SP reduction with the same transformation, looks like Fig. 3.18(a) and () re-
spectively. Computing the new minimal SP reduction graph, we obtain a trivial
graph, because it is already SP. No more algorithm iterations are needed.

@) (b)

Figure 3.18: Solving the NSP problem in the original and SP reduced graph

3.4.6 Complexity
Space complexity

We use no more than two graphs at the same time; the original one and its
minimal SP reduction. Any graph needs space for the nodes and for the edges.
The nodes space is O(n) and the edges O(m). During the algorithm work we
add a fixed amount of extra information in the nodes O(n), and we also add
annotations in the edges which represent SP branches. Annotations are non-
overlapping subsets of the edges from the original graph. Thus, the whole amount
of edges information is bounded by O(m).

On the synchronizations we are adding more nodes. For each F node that is
synchronized we add a new node. And one more node for each resynchroniza-
tion. The number of F nodes can be (n — 1). (All the nodes except the leaf).
The number of resynchronizations depend on the number of independent NSP
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problems, bounded by the number of F nodes, at most (n — 1). So the number
of solves we need is in the worst case (n — 1). (All the nodes except the leaf).

The number of final nodes on the SP graph is at most n + 2(n — 1) that is
O(n). The final graph is SP, and it does not contain redundant edges and/or
transitivities. Thus, the number of final edges is also O(n) (see lemma 3.2.9).
The final space complexity bound is:

O(n + m)

Time complexity

The complexity of the different operations that the algorithm does are:

e Computing the transitive reduction of the graph: Transitive edges
mislead the algorithm to resynchronize non necessary parts of the graph.
To improve solutions, transitive edges should be eliminated.

Transitive closure and reduction is a well studied problem. The typical
algorithm to compute transitive closure/reduction is Warshall’s algorithm,
based on Floyd’s, with time complexity O(n?). However, faster algorithms,
based on Strassen’s matrix multiplication algorithm have been devised to
obtain complexity O(n?8!). See for example [29)].

e Compute the minimal SP reduction graph: A node is series-reduced
only once, eliminating two graph edges and introducing another (reductions
for the whole graph are done in O(n)). When a node is series-reduced, it
is possible to check if the edge already exists in the graph, avoiding in-
cluding redundant edges and also parallel reduction operations. When a
series reduction is performed, the source and target nodes can be checked
to detect if the new change makes them available for series reduction recur-
sively. Considering this strategy the total number of checks and reduction
operations is done in O(n), but the annotations update may need O(m)
time complexity.

e Choose an NSP Problem: Any F node can be checked. For any checked
node we must traverse through any leaving edge looking for successors. In
the worst case, all edges of the graph are evaluated to detect an F node
with only J nodes as successors. Thus, the operation can be done in O(m).

e Identify problem handles: This process is repeated until the problem
is fully detected. We do not know how many nodes are related to the
problem as F nodes or as J nodes, and some nodes can be explored in the
two ways before the J/F problem is detected.

To compute the upper bound we consider that any node could arrive at
the F or J set, or both. Each time a node arrive at a J set we must check
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dependences in both directions. Dependencies for all the graph can be
previously pre-computed, during the transitive reduction phase. Thus, this
phase can be done in O(n).

The check for old F nodes implies looking forward the successors of all F
nodes in the set. As we consider that any number of nodes could be in the
set, in the worst case we must traverse all the edges in the graph. When
we look for predecessors of new J nodes, and successors of new F nodes we
use the same considerations, so finally we can explore all the edges in the
graph in both directions (O(m)).

Identify problem handles can be done in O(n + m).

e Solve problem: The resynchronization moves the SP branches involved
deleting their final edges (original edges from the graph) and adding one
new edge to the synchronization point for every SP branch. In the worst
case all the nodes minus one are in the F set, and all the leaving edges are
SP branches, so all the edges in the graph are reallocated in O(m).

Then, the algorithm adds one edge from the synchronization point to any J
node in the set. As no more than n —1 nodes can be J nodes, the operation
can be done in O(n).

All the operations described above are done once for any NSP problem. The
algorithm does several operations with a maximum order O(n + m). We do
not know how many non-related NSP problems may be in a graph. We may
assume a bad upper bound in which any F node is associated to a different NSP
problem. The final number of detection and resynchronization iterations would
be n — 1. In each resynchronization we add one dummy node, so the number
of nodes is growing in each iteration from n to 2n — 1. The number of nodes
is always O(n). The number of resynchronizations is O(n). The number of
operations for each resynchronization is O(n 4+ m). The time complexity of all
problems resynchronization operations is: O(n? +n x m). In a connected DAG,
O(m) > O(n). Hence, the time complexity is bounded by: (1) the transitive
reduction computation (optional but strongly recommended), and (2) the graph
resynchronizations O(n x m). Algorithm time complexity is:

O(n*® +n x m)

Considering that transitive reduction is more necessary as the number of
edges grows, and that O(m) < O(n?), when the product n x m is in O(n?) the
problem solving dominates the transitive reduction. On the other hand, when
n x m is in O(n?8'), the transitive reduction could be skipped with minimum
penalty for the algorithm solution. Thus, we conclude that the algorithm time

complexity is dominated by:
O(n x m)
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3.5 Algorithm 2: Local layering technique

In this section we introduce a new SP-ization algorithm with the following inter-
esting features [85]:

e A reduced time complexity: O(m + nlogn).

e Local resynchronization of minimum number of nodes, guided by global
topology information.

e It does not increase the critical path for UTC (Unit Time Cost) graphs,
keeping the nodes layering structure of the original graph.

e The solution of the algorithm is the same for a given topology independently
of the input order (node labeling).

The algorithm is based on a depth level search, solving local NSP problems
while it traverses the graph. At any time, the already processed subgraph is SP.
A tree representing the minimal series-parallel reduction graph of the processed
subgraph is used to help in the search for handles, transitivity checks and op-
erations that have lesser complexity bounds in a tree than in a generic DAG.
Evaluation of edges that express dependences across several layers is delayed
until the targeting layer is processed. A full implementation in JAVA language
could be provided by the author upon request.

3.5.1 Notations
Let G = (Vg, Eq) be the input graph:

Definition 3.5.1 We define d-edges as the subset of edges which source and
target have non-consecutive depth levels:

(u,v) € Eg :d(v) —d(u) > 1

Definition 3.5.2 A Layer is the subset of graph nodes with the same depth level:

L; CVG;LiZ{UEVG:d(v)Zi}
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3.5.2 Algorithm description
Initialization phase:

i. Transform the input DAG into an STDAG using the method presented in
definition 3.1.17.

ii. Layering of the graph. Compute a partition of Vi, grouping nodes with the
same depth level.

iii. Initialize an ancillary tree T' = (Vp, ET) to Lg. This tree will represent the
minimal series-parallel reduction of the step by step processed subgraphs.

Graph transformation:

For all layers (sorted) 4 from 0 to D(G) — 1:

a. Split layer in classes of relatives: Let us consider the subgraph S C G
formed by L; U L;1; and all edges from G incident to two nodes in this
subset. We construct the partition of this nodes into connected subgraphs.
We define relatives classes as the subsets of nodes that belong to the same
connected component of S and the same layer, as in Fig. 3.19.

U, U, U,
Wiﬁ LI
I-|+1
D, D, D,

Figure 3.19: Example of relatives classes induced between two layers

Py = {U1,Us,...,Uy} will be the up classes (of nodes in L;) and Pp =
{D1, Dy, ...,D,} will be the down classes (of nodes in L;y1). Each class
U € Py induces a class D € Pp that belongs to the same connected
component (U — D).

b. Tree exploration to detect handles for classes of relatives: We look in
the tree for handles. For each U class, the U-handle (h'(U)) is the nearest
common ancestor of all nodes in U:

H'U)={veVy:YweUnw =<, w}

W'(U)=he H'(U):Vh' € H(U) : d(h) > d(h')
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We define K (U) as the set of source nodes to the induced class D (it
includes U and source nodes of d-edges targeting D): Sources of edges
showing transitive dependence to D through the U-handle are to be dis-

carded from Kr(U):
Kr(U)={v e Vr: (v,w) € Eg,w € D,v A, h'(U)} U{h' (U)}
The handle node of class U, h(U) is defined as:
HU)={v e Vr:Yw e Kp(D),v <, w}

WU) =h e HU) :Vi! € HU) : d(h) > d(h')

We also define the forest of a class, as the set of complete sub-trees below
h(U) that include nodes in K7 (U):

SubF(U) ={u € Vr:v =<, u,(h(U),v) € Er,v <, w:wée Kr(U)}

In Fig. 3.20 we show a diagram of all concepts defined in this section.

o Normal nodes

@) Nodes transitive through h’(U)

O Nodes in K

—_— Normal edges or dependencies

- d-edges (Notin T)

Other branches of h(U)

Figure 3.20: Example of handles and forest for an U class
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c. Merge classes with overlapping forests: Classes with overlapping forests
are merged in an unique U and D class. They will be synchronized with
the same barrier.

VYU, U" € Py : SubF(U") N SubF(U) # 0
U=UUU;Py =Py \U
U— DU —-D;D=DUD";Pp=Pp\D
d. Capture orphan nodes: We define orphan nodes as the leaves of the tree
T that are not in any U class (they are nodes in layers previous to i with

only d-edges to layers further than 7 + 1). These nodes are included in the
U class of the forest they belong to.

Vo € SubF(U),v € L(T),v ¢ U;U =U U {v}

e. Class barrier synchronization: For each final U — D classes:
e Create a new synchronization node by in the graph and the tree.
Vo = Ve U{by}
Vr =V U{by}

e In G, eliminate all edges targeting a node in D. Add edges from every
node in U to by and from by to every node in D (barrier synchroniza-
tion).

Eg = Eg\{(v,w):w € D}
Eq = EgU{(U,bU) NS U}
FEq=FEqU {(bU,w) Tw e D}

e Substitute every d-edge (v, w) with source v € SubF(U) and targeting

anode w € Ly : k > i+ 1 (a further layer) for an edge (by,w). This

operation eliminate d-edges from the new synchronized SP subgraph,
but avoiding the loss of dependences in the original graph.

dE(U) ={(v,w) € G:v € SubF(U),w € Ly, k > i+ 1}
Eq=FEqsU {(bU,w) : (v,w) S dE(U)}
Eg = Ec \ dE(U)

e Substitute the forest SubF(U) in T for an edge (h(U), by) represent-
ing the minimal series-parallel reduction of the new synchronized SP
subgraph.

T=T\SubF(U)

Ep = EpU{(h(U),bv)}
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3.5.3 Example

An example of the algorithm applied to a given graph is shown, step by step,
in Fig. 3.21,3.22,3.23. For each step, the first and second columns present the
graph and tree respectively, as a result of the previous step. For step 1 we present
the original graph with a layering diagram and the root initialized tree. The third
column is a diagram of the exploration phase on the tree. U and D node classes
are shown with different grey shades, showing the graph related edges (not in
the tree) by dashed lines.

We also mark with names the orphan nodes, d-edges to further layers and the
transitive/non-transitive property over the U-handle, of the d-edges arriving at D
classes. U-handles are marked with A’'(U) and final handles with h(U). Forests
under each handle are surrounded by trapezoids. New added synchronization
nodes are represented with smaller circles.

We comment now the remarkable algorithm features in the example. Step
1 presents a case with only one U class with one node in the U class (handle)
and two nodes in the induced D class. A new node 19 is added to the graph to
synchronize over the nodes in the D class. In step 2, there are two U class to
synchronize, being the handles the nodes in U classes. A d-edge appears from a
node in the second class, and it source node 3 is changed in the original graph to
the new synchronization node 21. Exploring phase in step 3, detects node 20 as
the U-handle of the first U class as the nearest common ancestor of all nodes in
U class (4,5). However, a d-edge to a node in the induced D class (21,11), which
source node 21 is not transitive through the U-handle node 20, forces to explore
further. The handle for class 1 is not equal to the U-handle, but the nearest
common ancestor of nodes 20 and 21, namely node 19. Moreover, forests under
the handles of classes 1 and 2 overlaps in node 13, and they are merged and
synchronized together. Notice how the orphan node 12 is included in the merged
U class and synchronized over the new node 22. Step 4 presents a situation
where two U classes have the same handle node 22, but non-overlapping forests.
Thus, they are not merged, but synchronized with different nodes 23 and 24. In
step 5 there is only one U class, because nodes 9 and 10 have only d-edges to
further layers. The U-handle is the same node 16 in U class. Nevertheless, there
are d-edges from previous layers. Edge (22,17) is discarded due to its transitive
property through the U-handle 16. However, edge (23,17) is not transitive. Thus,
the handle node is the nearest common ancestor of nodes 16 and 23, namely node
22. The forest include now orphan nodes 9 and 10. In last step 6, there is only
one U class and two discarded transitive edges. The resulting graph is shown
together with the final tree, that is always a series graph in which each edge
represents the minimal series-parallel reduction of a full SP subgraph.
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Figure 3.22: Example of algorithm 2: Steps 4,5
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3.5.4 Correctness

Since any tree can be easily transformed to a trivial SP STDAG, any graph
which minimal series-parallel reduction is a tree, will be SP. As can be easily
shown by induction on the depth of the STDAG, the minimal series-parallel
reduction graph at each step is always a tree and, thus, has the SP property.
We define TD AG as the subset of D AG's that are one-rooted connected trees.

Proposition 3.5.3 A tree is SP:

TeTDAG =T ¢eSP

Proof: The STDAG of T (called closure of T) is the original T with an added
leaf by connected to all the leaves L(T). Applying series reduction to all originally
leaves of T and parallel reductions where there were several leaves with the same
parent, the result is equal to the closure STDAG of T, being T' the tree obtained
eliminating L(T) from T. Proceed recursively until only the root of T and the
new leaf by remain and the reduction is the trivial graph. O

Proposition 3.5.4 A graph G which series-parallel reduction is a tree is SP.

Proof: Compute the series-parallel reduction of G until it is a tree. As proved
previously the series-parallel reduction of the closure of a tree is the trivial graph.
Thus, the STDAG of the original graph can be series-parallel reduced to the trivial
graph and is also SP. O

Correctness proof:

1. The result does not loose dependences: No node is eliminated from the
graph. During synchronization, all times an edge (v, w) is eliminated it is
substituted by two edges (v,by) and by, w). Thus, the original depen-
dence is transitively keep through by. All times a d-edge (v,w) : v €
SubF(U),v € Lj,j <iAw € Li,k > i+ 1 is moved down to the syn-
chronization node, the original edge disappears and another edge (by,w)
is added. After adding edges from U to by, Yu € SubF(U),u < by and
v < by < w.

Thus, during the synchronization phase neither, the substitution of edges
or moving down d-edges eliminate original dependences in G. No other
edge alteration is done in G.

2. The result is SP: We call S; the subgraph of G that includes all nodes in
layers Lg, L1, ..., L; and all G edges incident to both nodes in S;.
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When the algorithm begins (for ¢ = 0) T is initialized with the root of G.
Sy is a one node tree. For ¢ = 1 the closure of T' and Sy is computed and
nodes in Lj are hanged from the new synchronization node. T' and S; are
trees and, thus, they are SP.

In each subsequent iteration (for i =i + 1), we compute Py, Pp and their
handles. Then we merge classes with overlapping forests. Each forest is
composed by trees that represent the series-parallel reduction of a subgraph
of S;. Eliminating in G edges from U to D and d-edges from SubF (U) for
all classes, S; gets disconnected from the rest of the graph, being a tree (or
a graph that is a tree after series-parallel reductions). New synchronization
nodes and edges are added to closure every tree in 7" and G included in a
forest of an U class. Thus, after synchronization, S;y; is a tree or a graph
that is a tree after series-parallel reductions. S;y; is SP. T' represents the
series-parallel reduction of S;1.

Proceed by induction until the last iteration. In last iteration (for i =
D(G) — 1), Lj4q is formed by the only one leaf of G. There is only one U
class and one D class. All resting sub-trees in T' (and G) are closed together
with only one synchronization node and only one node (the leaf of G) is
added hanging from that new node. T, that represents the series-parallel
reduction of G is a series of nodes, its series reduction is the trivial graph.
Thus, G is SP.

3.5.5 Critical path property for UTC graphs

An interesting feature of the algorithm is that it does not increase the critical
path value if the original graph has unit time cost per node. Transforming a graph
to SP form, this property minimizes the possibilities for critical path increment
when no knowledge of the task load distribution is available.

Proposition 3.5.5 For an UTC (Unit Time Cost) input graph G, the result G’
is not UTC (nodes added by the algorithm carry no load), but despite the added
dependences, the critical path is not increased.

Proof: For UTC graphs, the critical path value of G is equal to the mazimum
number of nodes that can be traversed from a root to a leaf (cpv(G) = 1+ D(Q)).

The algorithm adds zero loaded synchronization nodes between layers. The
only way of increasing the critical path is due to added dependences that make a
node from a layer v dependent on a node from layer j, being 7 > 1. However, the
algorithm keeps the layers structure.

Moving d-edges sources to a node in o layer previous to the target node layer,
does not change the depth level of any node. Substituting edges from nodes in U
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classes to nodes in D classes to include by nodes keeps the depth level of U nodes
and adds one to the depth level of every node in D classes.

In the resulting graph, all even layers are populated by zero loaded nodes and
odd layers by nodes in the original layers. The longest path from the root to the
leaf alternatively crosses nodes with unit and zero time cost. The number of unit
time cost nodes in the longest path is at most 1 + D(G), and, thus, the critical
path value in G' is the same as in G. a

3.5.6 Complexity
Space complexity

Let n be the number of nodes and m the number of edges in the original graph.
The number of nodes in the graph increases with one more node for each U class.
Every node appears just once in an U class over the full algorithm run. Thus, the
total number of nodes is upper bounded by 2n. The number of edges is upper
bounded because the processed subgraph (after each iteration) is SP, and the
number of edges in an SP graph is bounded by m < 2(n — 2) (see lemma 3.2.9).
Other ancillary structures (as the tree) store graph nodes and/or edges. Thus,
space complexity is:

O(m +n)

Time complexity

STDAG construction can be done in O(n) and getting layers information in O(m)
with a simple graph search.

Classes of relatives for two consecutive layers can be computed testing a
constant number of times each edge. Thus, all the classes along the algorithm
run are computed in O(m).

Exploration of the tree for handles can be self-destructive: Nodes are elimi-
nated during the search. While searching for the handle of a class, all the forest
can be eliminated and orphan nodes and other classes to be merged detected (see
section 3.5.7 for a description of such an implementation).

Check and eliminate a transitive edge can be done in O(1) if appropriate data
structures are used for the tree [21], but assuming tree modifications are done in
O(logn). O(n) nodes and edges are inserted and eliminated in the tree. Thus,
all tree manipulation has a time complexity O(nlogn).

The synchronization phase adds O(n) nodes, eliminate O(m) edges and add
a bounded number of edges (O(n) because it is an SP graph). The movement of
d-edges can be traced in O(nlogn) with a tree-like groups joining structure to
avoid real edge manipulation (see 3.5.7 for details).
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Thus, time complexity is:

O(m + nlogn)

3.5.7 Implementation

We propose an implementation for the tree exploring phase. This implementa-
tion is based on a self-destructive search of the tree that eliminates the already
used forests from the tree and detect handles with only one check per node.
This implementation is needed to bound the time complexity as explained in
section 3.5.6.

Searching for handles: For any given U class, we create an exploration struc-
ture call ezplorers (E). This structure stores nodes in sets indexed by depth level.

E = (m, VE); meN, Vg = {Vl, Vo, ..., Vm}
We initialize it with the nodes in any chosen U class.
YveU: Vd(v) = Vd(v) U {v}

m =maxd(v):v €U

For all nodes in F with maximum depth, we eliminate them from the tree,
and we add the parent of the eliminated node to the explorers structure (avoiding
repetition by marking the parent node when first visited).

To eliminate a tree node, we check previously if it is a leaf. If it is not,
we proceed to eliminate all sub-trees hanging from it. The leaves of these sub-
trees will be orphan nodes (that we immediately add to U) or nodes in other U
classes. In this last case, both classes are merged, adding the new U nodes to
the explorers structure.

When the explorers structure has only one node, this node is the U-handle
R'(U). Then we check the transitive condition of all d-edges arriving at D in the
tree with A'(U) to compute K/.(U). Non-transitive d-edges sources are added
to explorers and the search is continued until the structure has again only one
node. This last node is the handle A(U), and is marked in the tree (a node can
be handle of several classes at the same time).

During exploration, a node that is processed to be eliminated can also be
marked as handle of other previously explored class or classes. In this case these
classes are also merged with the one being explored.

When this exploring operation is performed for all U classes, all handles have
been detected and marked, related classes already merged, and forests SubF (U)
deleted from the tree.
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Tracking of d-edges: During the elimination of tree nodes we keep track of
d-edges from these nodes to further layers. Each class maintains a set of these
source nodes. When classes are merged, these sets are also merged. When a class
is synchronized, this set will provide information for d-edges to be moved to the
new synchronization node.

To keep track of d-edges movements without performing modifications in the
graph, we use a modified version of a disjoint-sets data structure with union by
rank and path compression (see e.g. [47]). The structure will map any node label
to the node label of the final source of the associated d-edges. A joining operation
of a pair of node labels (7,7) will indicate that d-edges with source i are to be
mapped to source node j. The structure has the property that for any sequence
of joining operations (i1, j1), (42, j2), .-y (in, jn) Where iy # iy # ... # i, all joining
operations take O(nlogn) to be performed, and any mapping query takes O(1).

Definition 3.5.6 We define the Joining structure J = (f, W, ,S_"), where I, W
are arrays of indezes and S is an array of sets of node labels (we define N as the
set of all possible node labels). Let n = |Vg|:

N ={i:N;i € [1..2n]}
T N2
S:8%" 8 C {v: N}
The J structure is initialized as follows:
I =iy W; =05 S; = {i}
It supports a joining operation indicating that i must be mapped to 7 defined as:
Jth(i,§) s J = I T = I,W,8),J =, W',5;
IEWz‘) = Iw;)
big:{ W; Z'f|5Wi|_Z |Sw, |
W,  otherwise

_ Wi aif [Swyl| < |Sw;]
small_{ W, otherwise ’

W = W]' = big
Shig = Stig U Ssmall
Vk € Ssman : Wi, = big
The query function is defined as:
J: Vg =V J(@i)=W;
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3.5.8 Improvement: Unnecessary synchronization nodes

Some synchronization nodes may be eliminated. In situations where the U class,
the induced D class, or both, have only one node, the new synchronization node
is not necessary. The lonely node can play that role. This reduces the number of
nodes and edges added, producing a completely equivalent graph result in terms
of structure and dependences between nodes from the original graph.

We modify the algorithm synchronization phase along the following lines. For
each final U — D classes:

e Detect/create synchronization node, and eliminate/add edges:

1. U ={u}, by = w:
In G, eliminate all d-edges targeting a node in D.

E¢ =FEq\{(v,w) :w € D,d(v) < i}

2. Else if D = {d}, by = d:
In GG, eliminate all d-edges targeting a node in D.

E¢ =FEq\{(v,w) :w € D,d(v) < i}

3. Else (normal case where |U| > 1,|D| > 1): Proceed as in the original
algorithm creating a new synchronization node by, eliminating in G
all edges targeting a node in D, and adding edges from every node in
U to by and from by to every node in D (barrier synchronization).

e Substitution of d-edges with source v € SubF(U), as in the original algo-
rithm.

e Substitute the forest SubF'(U) in T for an edge (h(U), by), as in the original
algorithm.

In Fig. 3.24 we show the solutions obtained with the normal and the improved
algorithms for the same graph example used previously. The dependences struc-
ture created on the original graph nodes is the same for both solutions, although
the improved algorithm uses less nodes and edges.

3.6 Measuring the SP-ization impact

We discuss now methods to evaluate the SP-ization impact in terms of structural
modification of the original topology and potential loss of performance after the
transformation. We study different possible alternatives of the transformation
impact. The objective is to propose a measure which allows us: (1) to evalu-
ate how different SP-ization techniques perform on a given graph, in order to
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Normal Algorithm Improved Algorithm

Figure 3.24: Solutions obtained by the normal and improved algorithms

compare the techniques themselves, and (2) to study, for an ideal transformation
algorithm, which topological or workload parameters of the graph are related to
the potential parallelism or performance loss induced by the added dependences.
After proposing a measure, we try to relate the potential transformation impact
to simple topological graph parameters as the depth level, the degree of paral-
lelism or the synchronization density (see formal definitions on section 3.1.3).
Analytical models and experimental measures are discussed.

3.6.1 Potential performance impact

In this section we focus into the analysis of the potential impact of an SP-ization
in the final performance of the application through critical path value (¢pv) anal-
ysis. We say potential because we are applying transformations at the program-
ming level of abstraction. The program will suffer subsequent transformations in
order to optimize and map it to a specific machine. The transformation path will
be quite different in NSP and SP cases, leading to unexpected benefits or losses
in the final performance. However, we are interested in the potential impact of
the programming high-level transformations, as it will be an important part of
the final performance effect.

We use the critical path value c¢pv to measure the performance of an ap-
plication, modeled as a task graph, for a given workload distribution 7 (see
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section 3.1.4). Thus, for the analysis of the performance degradation of an ap-
plication when programmed in an SP PPM, we compare the cpv of the graphs
that model: (1) the original synchronization structure of the application and (2)
the structure produced by an SP-ization.

Definition 3.6.1 Given two graphs G,G" modeling the same application, and a
load distribution T, we define the Relative critical path difference between the two
graphs G,G' or v .(G,G"), as:

cpv(G')

77(G7 GI) = Cp’U(G)

The mean of the relative critical path difference between two given graphs G, G,
for several workload distributions, is defined as:

7(G,G") = En: 7(4,6)

- n
=1

The upper bounds of the performance loss correspond to very unlikely cases
of highly unbalanced computations, where pathological workload distributions
appear. However, parallel applications are designed with load-balance and regu-
lar work distribution in mind. Also for dynamic codes, where structure and task
workloads are generated by processes taking random or data dependent choices,
an average cost study is more appropriate [122].

The average cost will be studied as a function of the topology characteristics,
workload model and SP-ization technique used for the transformation.

Definition 3.6.2 Let T be an SP-ization technique, we define:
VT (G) = 4,(G,G) : T(G) = G
(@) =7(G,G"): T(G) = G

From now on, we will use v as 77 when the transformation technique used is
obvious from the context. As this measure is dependent on the transformation
applied, it can be also used to evaluate and compare how different transformation
techniques may affect performance (see section 3.6.3).

This indicator, vy, is defined for a given graph and transformation technique.
Thus, it is an experimental measure. Several v measures may be distinguished
depending on the level of detail or abstraction level at which the graph model of
a given application is derived (see Fig. 3.25). A program is an expression of an
algorithm to solve a problem in an specific PPM. At this first level, the graph
represents the synchronization structure that the program creates; or may create
for a given input data in case of dynamic applications (see section 2.6). When a
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Figure 3.25: Implementation trajectory. Abstraction levels

program is mapped to a given machine, with a fixed number of resources (such
as processors), the graph structure may change. We say that these modified
graphs are modeling the application at mapping level. Graph models may be
constructed even for lower levels of detail, including even specific communication
and synchronization tasks. Then, they are modeling applications at implemen-
tation or machine level, where the underlying communication system is relevant.
Thus, we distinguish several v levels: v, for programming level; 2 for mapping
level; and 73 for implementation level.

Our study is mainly focused at ;. Transformations made to an application
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by compilers and implementation systems during the mapping and the implemen-
tation phases are difficult to predict and in general are favored by a restricted
PPM as discussed previously. Thus, our interest is to determined (analytically
or experimentally) the potential performance degradation at programming level.
How, or how much, the underlying technology may improve 7; estimations is
not part of this work. However, for experimental measurement of v a sufficient
level of detail should be considered in the graph model to assure enough accu-
racy. Thus, sometimes it will be necessary to measure 75 or even <3 values with
mapping or implementation level graphs. Application modeling with graphs at
different detail levels is discussed in sections 4.2.2 and 4.2.3.

To determine the accuracy and relevance of « predictions, we must check
our results against measurements of real performance when applications are im-
plemented through different PPMs. We define I' as a measure of the real per-
formance degradation when the same algorithm or application is programmed,
implemented and executed through different PPMs.

Definition 3.6.3 Let imp,, imp, be two different implementations of an applica-
tion or kernel algorithm for a given machine; and t(imp,),t(imps) the execution
times of these implementations as measured in the real machine. We define the
Relative real performance degradation I' as:

t(impy)

1

A full experimental framework, comparing I' measurements with more ab-
stract level v predictions, is presented in chapter 4.

3.6.2 Structural impact

In this section we explore measures of the structural impact of an SP-ization
in the graph topology and we will try to relate them to the critical path value
increment represented by 7. A first approximation to a measure of the impact
of an SP-ization in a graph may be the distance to SP form (as defined in sec-
tion 3.2.2). Another could be the number of local barrier synchronizations added
by the transformation. However, these indicators are not good measures. The
loss of parallelism is produced by the added dependences that serialize poten-
tially parallel tasks, and the number of dependences added by each technique
for a local resynchronization can be completely different even if the number of
resynchronizations is the same. The possible impact on the final performance is
related to the probability of a critical path increase, induced by new dependences.

Generally, as long as we do not have information about the exact workload
of the graph nodes, our first proposal for a measure to represent the probability
of critical path increase is the number of added dependences itself. The number



3.6. MEASURING THE SP-IZATION IMPACT 141

of node dependences in a DAG is the number of edges m in the transitive closure
G*. Hence, the number of added dependences is the difference in the number
of edges between the transitive closure of the SP transformed graph and the
transitive closure of the original NSP graph. The edges from/to new nodes
eventually introduced by the transformation does not account for the number of
added dependences.

Definition 3.6.4 The transformation distance (G, T) produced by the SP-ization
T in the graph G is the difference of the number of edges (only related to nodes
in V') between the transitive closure of G' and G.

G=(V,E), Gt =(V,E"),
G'=T(G)=(V',E), G"=(V"EY,

9(G,T) = |{(v,w) € B :v,w € V}| — |ET|

This transformation distance can be used to compare how different SP-ization
techniques perform for a given graph topology without knowledge of specific
workloads. The Fig. 3.26 shows an example graph of low synchronization density
transformed with four different techniques: Layering; both algorithmic techniques
proposed in chapter 3 (Algorithm1,Algorithm2) and a manual solution obtained
by applying down synchronizations guided by personal experience. The node
labels show the number of dependences from other nodes. Dark nodes are added
for synchronization and they are not considered in the dependences count. The
transformation distances obtained, point to the manual solution as the transfor-
mation with the lower structural impact (@ = 1.5). However, an important graph
parameter, the maximum depth level (D), has been duplicated. Our transfor-
mation algorithms are the second option (f = 1.64), while layering technique
has a great structural impact (0 = 1.93). However, our second algorithm does
not increase the maximum depth level of the original graph (always discarding
new synchronization nodes), while the first algorithm technique does increase it.
In fact, the maximum depth level value is an important parameter for critical
path values in a graph, (see discussion about the transformation algorithms in
section 3.6.3).

In Fig. 3.27 we show the results obtained in an experiment conducted to
relate the € indicator with the mean increase of the critical path value (cpv). We
select random workloads with four different Gaussian random distributions (see
section 4.1.1):

(v € V)~ N(p,0): p=1.0,0 € {0.1,0.2,0.5,1.0}

The different deviations represent different load balancing situations. From very
well balanced (o = 0.1) to highly unbalanced (o = 1.0). For each example graph,
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Figure 3.26: Measuring transformation distance (0)

and each Gaussian model, we measure the mean cpv produced when drawing
1000 different random workloads. The results indicate that for this specific low
S (synchronization density) topology, the techniques that do not increase D value
have lower impact in the critical path value in balanced situations. In these cases
all nodes have very similar load values, and the number of nodes in the critical
path becomes a key factor. However, when the loads are highly unbalanced and
random distributed, the techniques that minimizes § may obtain better results.
All these results, although typical, may not be extended to any other topology.

Thus, we conclude that the structural impact of a transformation technique
alone, measured as the relative number of added dependences 8, is not a good
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Figure 3.27: Experimental ¢pv measurements for the example graph

indicator of the potential performance impact. Other factors, as the maximum
depth level D or the workload deviation are as important as € to determine the
potential increment of the critical path value of a transformed graph.

For low deviated workloads the D parameter is a key factor of critical path
value increase. Thus, keeping the original c¢pv for UTC (Unit Time Cost) graphs
is an interesting design principle for SP-ization techniques (see 3.5). For more
unbalanced workloads, no relation between the increment of the critical path
value and a combination of structural impact parameters have been yet found
for any graph topology or size. It is still an open problem.

3.6.3 Algorithms comparison

In this section we compare the techniques and algorithms previously described.
Complexity, suitability for any kind of graphs, and mean increment of the critical
path value 7y are to be considered to evaluate the applicability of these techniques.

The first technique presented in section 3.3.4, which serializes all nodes in
topological search order, is not suitable for parallel computing purposes, as all
the parallelism is lost after the transformation. For simplicity we will refer to
the other three techniques as Layering, Algorithml and Algorithm2. Results are
summarized in Table 3.3.

Experimentally transforming many structures from highly regular applica-
tions (see section 4.1.3), we have found that, for these highly regular struc-
tures, the three techniques obtain similar results. Nevertheless, the SP forms
obtained differ for more irregular structures. While the simple layering tech-
nique (Layering), has the lower time complexity bounds it does not offer good
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Figure 3.28: Comparison of algorithms increase in ¢pv for random graphs sample

results for irregular structures. Algorithm2 minimizes the expected critical path
value increases as compared with the layering technique due to the capability
to exploit local resynchronizations instead of using only global barriers. Exper-
iments with random generated topologies and workloads have been conducted
to compare which algorithm produce SP approximations with lower expected
critical path value increment (see section 4.1.2). We study mean values of the v
indicator (as defined in section 3.6.1). All our experiments with different graph
sizes and workload models confirm the 7 trends for each algorithm. For example,
Fig. 3.28 illustrates how Algorithm2 typically finds better solutions for two dif-
ferent samples of 128 and 256 nodes graphs respectively. The size of each sample
is 1000 graphs. The synthetic random workload model used for this example is
highly deviated 7(v) ~ N(1,1). Details about the experiments design and more
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results are shown in section 4.1.

Specifically, for synchronization density S values below 2, the highly unstruc-
tured graphs are much better transformed by Algorithm2. For small S values, the
distribution of the loads across the same topology has an important impact on -,
incrementing the dispersion of the results for any technique considered (see dis-
cussion about Fig. 4.6 in section 4.1.2). For these random irregular graphs both
full SP-ization algorithms offer very similar results (if not the same). Neverthe-
less, the Algorithm1 presents higher time complexity and could generate different
results depending on the input order of the graph nodes. The second SP-ization
algorithm (Algorithm2) presents interesting improvements: Its time complexity
is tightly bounded, the output is always the same, and it ensures no critical path
value increase for UTC graphs. Hence, we consider Algorithml superseded by
Algorithm2 for general purposes.

We conclude that for highly regular applications, the solution obtained with
a layering technique (or bulk synchronous parallelism) is similar to a nested-
parallelism solution, but the layering technique computes the solution faster. For
more irregular problems, nested parallelism is more appropriate and Algorithm?2
may obtain better results than the Layering tecnique at only a logarithmic time
complexity increase on the number of graph nodes.

Algorithm Space Time UTC-cpv  Regular graph Irregular graph
Layering O(m + n) O(m + n) Yes Good Bad
Algorithml | O(m + n) O(m x n) No Good Good
Algorithm2 | O(m +n) O(m + nlogn) Yes Good Good

Table 3.3: Algorithms comparison

3.6.4 Analytical models

Deriving an analytical model for the potential performance degradation, due to
the loss of parallelism introduced at the high abstract level of programming, is
not an easy task. We must derive approximation models for the critical path
value of SP and NSP DAGs.

For SP graphs, analytical upper bounds and mean expected value of cpv may
be derived under certain conditions. In absence of any workload information, we
assume the simplified case where the load in each node is an i.i.d. (independent
identically distributed) random value with a given distribution:

T(v € V)~ D(p,0)

In this case, we may apply order statistics results [95] to estimate the expected
value of the parallel composition of m tasks. Results for serial composition (ad-
dition of i.i.d. variables) can be found in simple statistics literature (see e.g. [10]).
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Original NSP graph Transformed SP version

Figure 3.29: Neighbor synchronization example

Thus, the serial composition of n layers, each of them formed by m parallel tasks,
is easily derived. Thus, for very simple and regular SP graphs, we can derive for-
mulae for the expected cpv. However, when the parallel sections have different
number of tasks, the formulae may not be so easily derived.

Unlike in SP graphs, general cost estimation is analytically intractable un-
less the workloads have a negative-exponential distribution [164]. However, as
task workloads are close-to-normally distributed (partly as result of the Central
Limit Theorem), negative-exponential workload distributions are extremely rare.
Thus, a full accurate analytic cost model is not possible. We can try to derive
approximations to the cpv of NSP DAGs. In [183] we presented an study about
the approximation of the cpv of two example regular NSP DAGs (pipeline and
neighbor synchronization structures). These examples represent the basic mod-
els of regular structures, with D layers of P tasks, connected with non-transitive
edges in an almost perfect distribution of S edges per node (S = 2 for macro-
pipeline and S = 3 for neighbor synchronization). See section 4.1.3 for a full
characterization of this important class of graphs and applications. The SP ver-
sions of these graphs are easily obtained with the Layering technique, applying
full barrier synchronizations. For these regular structures our resynchronization
algorithms (Algorithm1, Algorithm2) obtain similar solutions. In Fig. 3.29 we
show an example of the original NSP neighbor synchronization structure and its
SP approximation. A full discussion of experiments with these regular structures
is presented in section 4.1.3.

Although other random distributions may be used, in the following discussion
we will assume all nodes exhibit an i.i.d. Gaussian distribution.

7(v € V)~ N(u,0)

In the SP version, the formulae for the critical path value of a layer (a parallel
composition of P nodes), and the full graph (series composition of D layers) are
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approximated by [95]:

cpup = p+ o+/21log(0.4) P
Fosr = Dl + 0y/210g(04) D)

For normal distributions the approximation error is in the percent range.

To apply the same order statistics approach to the NSP original graph, we
approximate its cpv with the cpv of a virtual core SP DAG. This virtual core is
related with the synchronization density and width of the original graph. The
core is composed by the same number of layers as the original graph D, synchro-
nized by barriers; but the width of the layers differs. We compute the theoretical
width of the core graph P’ as a function of the original P and S parameter values.
Notice that the core does not really exist, and the P’ value may be a non-integer
number:

P'= S +log(P/2)

Again, order statistics are used to derive a formulae that approximates the cpv
of the original NSP graph from the core graph:

TPosr = Din+ o/210g(0.4(S + log(P'/2)))

The approximation error is now higher as a result of the core approximation of the
NSP graph. Making simple substitutions we obtain a 7y approximation that agrees
with our experiments within 10% and 25%, depending on the example graph, and
has similar asymptotic behavior. A coarse, but meaningful simplification of the
formulae for (typical) large P values is given by:

7N,u—i—a log(P)
w4 o+/log(S)

Indeed, for graphs representing this class of regular applications, the asymptotical
influence of P is clearly logarithmic, while the effect of S is inverse, which is in
perfect agreement with the results presented in section 4.1.3. The effect of the
workload distribution is also in agreement with our measurements (considering
the typical cases where P > S).

Unfortunately, these analytic approximations may not be safely extended to
any other, specifically more irregular topology, which limits the generality of the
analytical study.

3.6.5 Conclusions about SP-ization impact

In this section we have propose a general measure vy, based on critical path analy-
sis, for the potential performance impact of an SP-ization on a given graph. The
SP-ization techniques studied in previous sections have been evaluated in terms
of their behavior and impact on different graph classes. The study shows that
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our Algorithm2 is a good general-purpose SP-ization technique, only matched by
the simple Layering in specific highly regular structures, where both solutions are
similar, but the time complexity bound of the Layering technique is even lower.
No structural impact measure, obtained only from the topology of the original
and transformed graphs, has been yet found to be directly related to the cpv
alteration, representing the modeled application performance. More complex
models, based on other topological parameters (D, P, S), are more promising but
still not accurate enough. Moreover, even when simple random distributions
are considered for workload distributions, general analytical models for the cpv
modification are not possible; formulae for NSP graphs c¢pv cannot be derived
for stochastic workloads. Approximations for some regular structures have been
presented, but they cannot be extended for any graph topology. Thus, in many
cases, only experimental work may give us an idea of the impact of a transfor-
mation for given graph classes. Fortunately, experimental measures are simple
(measuring cpv of original and transformed graphs). Nevertheless, modeling an
application with a graph may be done at different levels of implementation de-
tail with different accuracies. Predictions obtained with graph models should be
compared with measures obtained with real applications to determine if general
tendencies are preserved.

3.7 Summary

In this chapter we have presented a theoretical approach to the NSP vs. SP com-
parison problem. Application synchronization structures have been represented
by graphs. Thus, we have used graph theory to formally define and study the
characteristics of SP and NSP structures. Simple methods to resynchronize local
NSP structures have been studied. Furthermore, algorithms to resynchronize full
graphs have been presented. These algorithms try to minimize the potential loss
of parallelism created by new added dependences. Our last algorithm presents
interesting features (no increment of critical path for unit time cost graphs, and
tighter time complexity bounds), that make it useful for experimental or produc-
tion work.

We have also introduced a study about measures of the NSP to SP transfor-
mation impact in terms of structural modification of the graph, and critical path
value increment. In the absence of experimental workload information, a graph
should be provided with stochastic workloads. Order statistics are a useful tool
for deriving the mean cpv of simple SP graphs, due to their compositional nature.
Although similar ¢pv analysis is intractable for NSP graphs, some analytic ap-
proximations to the ¢pv modification are possible for typical regular structures.
This analytic formulae predicts the asymptotical behavior of the cpv after a sim-
ple transformation, as a function of basic graph and workload parameters. The
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results, which are in agreement with experimental results presented in the next
chapter, give us an idea of the general tendencies of performance when regular
applications are programmed in an SP PPM. Unfortunately, this kind of analysis
cannot be extended to generic, more irregular NSP graphs. As a consequence,
a further experimental study is necessary to state if the predicted performance
behavior for regular structures can be extended to other application classes. This
study is presented in the next chapter.

The theoretical study of the NSP structures has shown serious limitations
derived from their inherent complexity. SP compositional nature and limited
dependences complexity present many advantages for analytical study. This is
the origin of the many good properties of the SP PPMs, in terms of formal
software development techniques, analyzability, and program cost modeling.

Our theoretical study of the NSP and SP task graph structures has pro-
duced interesting results and tools (like the transformation algorithms), as well
as a deeper insight about the problems associated with NSP structuring. It has
also provided clear directions in which way to conduct the experimental study
presented in chapter 4.
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Chapter 4

Experimental study

“My attention, for the last three years, had
been repeatedly drawn to the subject of
Mesmerism; and, about nine months ago it
occurred to me, quite suddenly, that in the
series of experiments made hitherto, there
had been a very remarkable and most
unaccountable omission.”

The Facts in the Case of M. Valdemar, 1845
EDGAR ALLAN POE

In this chapter we describe the work we have carried out to experimentally
measure the expected performance impact when applications are programmed in
SP restricted PPMs, compared with more generic (NSP) solutions. The space of
NSP graph topologies is immense and impossible to check exhaustively. More-
over, most NSP graphs do not represent any useful parallel application. Thus,
we direct our search in two directions to cover the most interesting applications
in parallel programming. We propose two experimental frameworks based on:

1. Synthetic graphs: We construct sets of graphs representing a random sam-
ple of the NSP graph space, and randomly interconnected regular topolo-
gies. We measure the effect of SP-ization for simple graph parameter values.

2. Empirical graphs: In this framework we focus on graphs obtained at differ-
ent abstraction levels from real parallel applications, covering the relevant
NSP SA classes. We are guided by the examples and classification of ap-
plications SA presented in section 2.6.

Our main interest is the overall effect of programming applications located in
the NSP classes using SP models. We are first trying to establish if the perfor-
mance effects found in the theoretical study are general effects, and if they can

151
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be extended to all application classes when an “ideal” transformation algorithm
is used. The mean critical path analysis is our basic experimental tool to mea-
sure the performance in our graph models. An extended analysis of performance
effects follows. This study covers several phases. We investigate empirical pre-
diction mechanisms for the expected performance effects when using SP forms to
represent generic NSP synchronization structures. For simple graph structures
we can further study the expected performance effects of simple application modi-
fications, as scaling up, adding more iterations, or changing local synchronization
patterns when the application is in SP form. Thus, in our study we have selected
simple graph parameters (see definitions of P, D, S in section 3.1.3) to study
the impact of SP-ization techniques in graphs which present different topological
characteristics. We experimentally relate their values with the potential and real
performance loss of applications when mapped to an SP form. After study the
synchronization structures of simple applications in the more abstract level, the
problem of extending the study to real applications is tackled. This study in-
cludes an important methodology section about how to model applications with
graphs at different detail levels, and how to transform them to SP form with our
techniques, measuring the potential performance loss with critical path analysis
(see section 3.6). Thus, the exploration of the SP-ization effects is open to repre-
sentative graphs of more irregular application classes. Indeed, we investigate the
propagation of the P, D, S predicted effects on 7, to the lower run-time level T,
before benefits of SP programming are exploited. We also research the effects of
load balancing and other common parallel programming techniques for irregular
applications when an SP programming framework is used. We compare results
obtained in more abstract levels, with performance measures of the equivalent
real applications, running in different parallel architectures.

4.1 Synthetic graphs

In this section we present the first experimental framework. This part of the
study is oriented to evaluate the mean performance effects of our “ideal” SP-
ization transformation on random, irregular topologies, representing a sample
of the whole graph space. We test if the v tendencies related to the simple
graph parameters P, D,S derived from the theoretical study (see section 3.6),
are general effects found in generic graphs.

The experiments are based on constructing sets of synthetic DAG topologies,
generate different synthetic workload distributions for the nodes, and compare
the ¢pv in the original graph with the cpv of an SP approximation generated with
a suitable SP-ization technique. After the experiments we relate ¥ measurements
to topology and workload characteristics.

The phases of each experiment may be summarized as:
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1. Generate a synthetic topology G(V, E).

2. Transform G to SP form: G' = T(G). (We apply Algorithm2, which uses
no workload but only topological information).

3. Repeat:

(a) Generate a synthetic workload distribution for the nodes in the origi-
nal graph:
T(v),v €V

(b) Copy the same workload information to the transformed graph. Nodes
introduced by the transformation have zero load:

, n_ | tw) ifveV
T(vev)_{o ifogV

(c) Compute comparison indicator:

_ cepv(@)
= cpv(G)

In the following sections we present techniques to generate synthetic workloads
and topologies. Different topology sets are presented and analyzed.

4.1.1 Workload modeling

Synthetic workloads must be supplied for the nodes in the generated graphs.
No specific patterns or regularities between topology and distributions should be
used in this part of the experimental framework. Thus, the fairest assumption is
to consider each node workload 7(v) to be an i.i.d. (independent identically dis-
tributed) random variable. Considering that we will use graphs with big number
of nodes, we will assume Gaussian distributions for the workloads:

7(v € V)~ N(u,0)

The relative increment of the critical path value is not affected by propor-
tional modifications of the mean and deviation parameters. Consider the example
graphs in Fig. 4.1. G’ is an SP approximation for G. The number inside each
node represent the workload 7(v) of that node. The new grey node in G’ has been
introduced by the transformation technique. Thus, it is only a synchronization
point with no load 7(v) = 0. For the loads in the example we obtain the fol-
lowing mean and deviation values: T = 1.1667,s,_1 = 3.1047. The critical path
values are 4 and 5 for G and G’ respectively. Thus, the relative increase of the

critical path is v, = % = 1.25. Consider now the same graphs, but assume



154 CHAPTER 4. EXPERIMENTAL STUDY

G (1) G
(09 (09
oo @‘@

(0)
@ O @’@
(W @)

cpv(G) = 4t cpv(G’) =5t
Y =125

Figure 4.1: Example of relative critical path value increase

a workload distribution where 7/(v) = 7(v) x 2. The mean and deviation are now
doubled: T = 2.3333,s,-1 = 6.2093. The critical path values will be 8 and 10
for G and G’ respectively. The relative increment is the same: v, = 1.25. This
example illustrates that the exact values of the workload distribution parameters
i and o are not so important on themselves. Their ratio is much more relevant.
Thus, we define a unique parameter for task workload variability:

Definition 4.1.1 We define the relative deviation or variability (s) of a random
workload distribution as the proportion between the deviation and the mean:
o

§=—
1

For our experiments we decide to generate different workload distributions
based on different ¢ values, representing from well-balanced computations to
highly irregular workloads:

¢ €{0.1,0.2,0.5,1}

For simplicity, we always fix the mean to a constant and change the deviation
accordingly to selected ¢ values. To make the result analysis more intuitive, we
choose 1 as the fixed constant mean, being the corresponding final deviations
equal to the chosen variabilities:

pw=1;0€{0.1,0.2,0.5,1}

For each generated topology and each ¢ value, we draw 25 random workload
distributions (with 25 different seeds for reproducibility of experiments). The
critical path is measured in both topologies, G' and G’, with each workload, and
mean 7y computed.
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4.1.2 Random sample of the graph space

In the first experiment sets we test a sample of random task graphs, with no
specific topological restrictions, to obtain an idea of the general trends of SP-
ization effect in performance.

Most DAGs in the graph space do not represent typical parallel applications
(scalable computations with replicated patterns), but irregular structures that
can only be generated by the most unstructured, dynamic and data dependent
programs. Our experiments will show general trends that will be improved when
more realistic topologies are studied (see following sections).

Random topology generation technique

To sample the NSP topology space we want to generate graphs with similar
probabilities for any topology to be selected. After considering several methods,
we have chosen a standard task graph generation technique originally devised
for graphs representing heterogeneous parallel applications [7, 181]. In this tech-
nique, every possible edge has the same probability to exist in the graph. To
assure that a DAG is generated, the nodes are numbered, and only edges with a
source node number lower than the target number are considered.

Formally, let V' = {v1,v2,...,u,} be the set of nodes in G and p the edge
probability factor. Then, this technique produce edges in the graph with the
following probabilities P:

Pl(v;,vj) € E] =p, if1<i<j<n
Pl(vi,v;) ¢ E]=(1-p), if1<i<j<n
Pl(vi,v;) ¢ B] =1, ifi >

The parameter p will let us direct the search of the whole DAG space along
the edge density axis (measured by the synchronization density S). For a given
p, the mean number of predecessors/successors becomes larger with the number
of nodes in the graph. However, the maximum number of edges for a given n
is n(n — 1)/2. Thus, we can select p as a function of n to generate graphs with
approximately the same synchronization density independently of the size:

nS

P= n(n—1)/2

The complexity bounds of this generation technique is related to the graph
size. This technique traverses all possible edges in the graph, checking randomly
if the edge is or is not added to the graph. Thus, the time complexity of the
technique is ©(n(n — 1)/2). It uses only the space needed to store the graph.

This technique may generate non-connected graphs, especially for low p val-
ues. Recall in section 3.3.1 that SP-ization techniques work on STDAG graphs.
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We use the technique presented in definition 3.1.17 to build a 2-terminal DAG,
possibly adding two new synchronization nodes, to connect the generated graph.
The original disconnected subgraphs are then parallel sections of the final STDAG.

Chosen parameter values

We generate graphs for a wide range of node numbers. From small ones (32
nodes) to big ones (1024 nodes):

n € {32,64,128,256,512, 1024}

For each size, we want to test topologies ranging from very low to very high
synchronization densities. The maximum synchronization density is limited by
the graph size. For small graphs, the highest S values are to be discarded.

S €{0.5,1,1.25,1.5,1.75,2,2.5,3,3.5,5, 7.5, 10, 25, 50, 100}

For a given pair of (n,S) values we compute p and generate 100 topologies
based on a set of 100 seeds in order to guarantee reproducibility of experiments.
Thus, more than 1000 topologies are generated for each graph size.

Results

In this section we present remarks obtained from results observation. Except
when it is otherwise stated, the points in the plots represent the 7 for all the
topologies which = axis parameter is in a narrow histogram slot. They are drawn
as curves to show tendencies, and for clarity when several curves are drawn in
the same plot.

1. General under-logarithmic effect related to graph size:

In Fig. 4.2 we show the general under-logarithmic v tendency on the number
of nodes. This tendency is similar to the one predicted with the theoretical
approach in section 3.6. Nevertheless, each point of these curves represents
the mean values of v for hundreds of graphs with very different shapes,
leading to high deviations. A more detailed study is needed. We want
to know if, as in regular structures, this tendency is specifically derived
from P and S parameters. And if it is possible for a given graph size, to
more accurately predict the v values as a function of P, D,S or related
parameters.

2. Topological parameters dependence on S:

As we show in Fig. 4.3, in these irregular random topologies, the P and
D parameters are highly correlated with S. If S is low, many nodes or
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Figure 4.2: General v tendency on graph size

subgraphs are disconnected after the first stage of the generation technique
is applied. Thus, they are parallel sections of the constructed STDAG
(high P and low D). As S increases, the probability of more nodes and
subgraphs to be serialized is higher (low P and high D). Thus, the research
is focused to the synchronization density related parameters.

In these examples we measure the parameter S after transforming the
generated DAGs to connected STDAGSs (the graph that is actually trans-
formed). Although S is similar to the original edge density, it is slightly
modified due to added edges when connecting the graph in an STDAG
form. For very low values of edge density, many edges are added to con-
nect the highly sparse generated graphs.

. Correlation with ¢ (workload model):

The plots in Fig. 4.4 show 7 values obtained for medium (a) to big (b) sized
random graphs transformed with Algorithm2. Each curve on the same plot
corresponds to a different workload model, with ¢ values from unbalanced
computations ¢ = 1 to highly balanced computations ¢ = 0.1. The work-
load balance is a basic factor for the impact of SP-ization. Low values of
¢ minimize the impact of SP-izations because accumulated path values are
very similar along the graph. Thus, new synchronizations have few proba-
bilities of serialize parts of two highly different loaded paths. For random
workload models with high ¢, unbalanced task loads are spread randomly
across the whole graph. Thus, added dependences may serialize highly un-
balanced accumulated loads, modifying the critical paths and increasing
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Figure 4.3: Dependence of topological parameters on S

their values.

In the plots, it can also be appreciated how the Algorithm2 SP-ization
offers good solutions for graphs with an S value lesser than 2 (see also
section 3.6.3).

. General dependence on Rj:

The plots in Fig. 4.4(a) and (b) come from graphs with different number
of nodes. The curves obtained for different sized graphs with the same
workload model, differ not in the shape, but in the slope. We use the
parameter Ry = |E|/|V|?, that measures the relative number of edges in a
graph of |V| nodes, to predict the behavior of vy more independently of the
graph size. In Fig. 4.5 we present smoothed curves for mean 7 relative to Ry,
for all graph sizes tested and normal workload distribution (¢ = 1, N(1,1)).
Curves drop to the left due to the improved results obtained with Algorithm?2
for S values below 2. For bigger graph sizes, the R, point that correspond
to S = 2 is lower. Thus, the maximum v value for a given graph size is
found approximately in a value of R; = 2/|V|.

Maximum dispersion of values around S = 2. Less predictability:

In Fig. 4.6 we show one point for the 7 value of each different topology
(mean of 25 different workloads). As we may appreciate, the maximum
dispersion of the points is found around an S value of 2, where the %
values are also the highest. This indicates that our predictions based on %
values are less accurate for the topologies with S values near 2. Topological
structures with S = 2 present many different ways to be transformed to
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Figure 4.4: Dependence of v on S and ¢

SP form. Only algorithms that make use of the workload information on
the nodes may find the best topological transformation. In the class of
algorithms which work without workload information, our Algorithm2 finds
a compromise solution by preserving the cpv for UTC graphs and looking
for local synchronizations where possible.

For low deviations (¢ = 0.1), the dispersion trend is the same, although less
noticeable than for high deviations (¢ = 1). The reason is the increased
probability of regular workload distribution across the topology. The higher
the relative balance of the workload, the lower expected -y values and the
higher accuracy of our predictions.
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Figure 4.5: General trend dependence on Ry

We conclude that for random graphs with n nodes, and a complete ran-
dom workload distribution, the general trends of SP-ization impact at program-
ming abstraction level (y) may be predicted depending only in basic parameters:
Topological (graph sizes |V| and |E| to compute R,) and workload based (s).
Predictions are more accurate the further the S parameter is from value 2.

4.1.3 Meshes

Most random topologies may represent highly dynamic or even no real parallel
application at all. However, parallel application design methods and paradigms
tend to produce topology and workload regularities to exploit program scalabil-
ity. A typical parallel program is designed in a way that increasing the number
of processors more similar parallel tasks are executed to compute a smaller part
of the result. Many tasks represent running instances of the same code pieces,
working on different data. Thus, a high correlation between the execution time
of tasks and their topology role is found in most parallel applications. Unfortu-
nately, it is not possible to realize such a correlation only from the task graph
topology. Nevertheless, many applications present, after mapping, high regular
structures that replicate computation layers, as wide in tasks number as proces-
sors are available.

Consequently, we introduce a new collection of experiment sets based in graph
meshes of tasks, organized in equal sized layers, connected by random and repli-
cated synchronization patterns. Motivation for the importance of these struc-
tures is found in most applications inside the (NSP,NME,NDS) SA class (see
section 2.6).
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Meshes: definitions and notations

We introduce here the definitions and notations needed to understand how to
build a synthetic graph mesh from simple parameters.

Definition 4.1.2 We define a Mesh to be a DAG built by a collection of D
ordered and numbered subsets of nodes (call layers) of equal size P, with edges
only between consecutive layers:

M =(V,E): L=PV;|L|=D;|L;|=PVYi=1,..D;
V(v,w) € E;v € Lij,w € Lj;

Mesh sizes are defined by P (layer size) and D (number of layers) parameters
directly. The edges of a mesh will be defined by a function that maps a node j
in a layer 4 to nodes ji, j2, ..., jn in layer ¢ + 1. Both, random and deterministic
functions are possible.

Definition 4.1.3 Let M = (V, E) be a mesh, L = PV the layers of the mesh,
such that |L;| = P : 1 = 1,2,..,D. Let{ : v € L; = N;¢(v) € [1,P] be a
numbering of the nodes in a layer. We define a Synchronization Function (p) as:

p:&—E%acll, P

This function defines the set of edges between each consecutive pair of layers in
the mesh:

E={(v,w) :v € Lj,w € Liy1;(w) € p(§(v))}

In Fig. 4.7 we show an example of a mesh generated by P =4, D = 3 and a
deterministic p, different for each £(v).
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Figure 4.7: Example of a mesh graph defined by P, D, p

Topological parameters

Synthetic meshes may be constructed depending on D, P and p. The first two
parameters define the graph sizes and the third the interconnection pattern.
The synchronization density S is equal to the mean arity of the synchronization
function. All these three parameters may be modified while the others are fixed.
Thus, we can explore the effect of each one independently of the others.

In meshes, the edges have source and target nodes in consecutive layers.
Thus, a mesh have no transitive edges: (v,w) € E = fh €V :v < h < w.
The consequence is that graph meshes are equal to their transitive reductions
M = M~, and S parameter is a highly reliable indicator of the amount of
dependences propagated through a node, layer by layer.

Random meshes

In our first set of experiments with meshes we want to check the effect of P, D, S
parameters on +y, for random synchronizations between layers. The random mesh
generation technique chosen is based on creating the same number of outgoing
edges for each node [181]. The number of edges per node is determined by the
value of S parameter. The successors will be randomly selected among all nodes
in next layer, based on an uniform random distribution U[1, P].

To assure connectivity in the graph and a correct layer organization (nodes in
the same layer must have the same depth level), the first outgoing edge for any
node will be the edge (v,w) : {(v) = &(w). Only S — 1 edges will be randomly
selected. When S is not an integer, we create edges such that all nodes has
|S] or [S] outgoing edges, and the mean number per node in the layer is as
approximated to S as possible.

Formally, the procedure to create random meshes may be described as follows:
Let A be the set of node numbers in a layer, and B a random subset of A with
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the cardinality:
A=][1,P]CN,
BCA:|B|=|Px(S—|S])]

The synchronization function selected to build random meshes is:
plE(v) = {€(0)} U fei ~ UL Pli =1,..., 5}
{151 &) ¢B
| [S—1] ifé(v)eB

For example, let us suppose a mesh with P = 10 and S = 2.36. The cardinal-
ity of the B set will be |[B| = |10 x (2.36 — 2)] = |3.6] = 3. Let us suppose that
B set is randomly selected to be |B| = {4,8,9}. The s value, that represents the
number of randomly chosen edges for a node, is computed as:

{1 if¢(w) €{1,2,3,5,6,7,10}
T 2 if&(v) € {4,8,9)

Thus, all nodes will have one predetermined edge (£(v),&(v)), seven of them
will have one random edge and three of them will have two random edges
(&(v),U][1, P]). There will be 23 edges between each layer. The final synchro-
nization density for one layer will be S =23/10 = 2.3 = 2.36

Chosen parameters

We experimentally test sets of synthetic topologies with up to thousand nodes
with the following parameter values and motivation:

1. Square meshes, to detect the effect of S alone, for a given graph size:

(P, D) € {(8,8),(16,16), (24,24), (32,32)}
Se{1.1,1.2,14,1.6,1.8,2.0,2.5,3.0,3.5,5.0,7.5, 10, 25}

2. Fixed P, to detect the effect of D:

P =16
D € {4,8,16,24, 32,64}
S e {1.1,1.2,1.4,1.6,1.8,2.0,2.5,3.0,4.0,5.0,8.0,12.0}

3. Fixed D, to detect the effect of P:

P € {4,8,16,24,32,64}
D =16
Se{1.1,1.2,1.4,1.6,1.8,2.0,2.5,3.0,4.0,8.0,12.0, 16.0, 24.0, 32.0, 48.0}
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The Layering and the improved Algorithm?2 transformation techniques obtain sim-
ilar results for § > 2. In Fig. 4.8 we show an example of how both transformation
techniques obtain similar results when the high synchronization density prevents
our algorithm to create small local synchronizations, but forces full barriers be-
tween layers. This effect always appears for S values higher than 2. Thus, for
these kind of graphs we can use the faster Layering technique safely. We ex-
tend our study to huge graphs with up to hundred thousand nodes, that can be
manipulated in reasonable time with the Layering transformation technique:

1. Square meshes, to detect the effect of S alone:

(P, D) € {(100,100)}
S € {2,3,4,5,10,20,30, ..., 100}

2. Fixed P, to detect the effect of D:

P =100
D € {10,25, 50, 75, 100, 200, 300, ..., 1000}
S e€{2,3}

3. Fixed D, to detect the effect of P:

P € {10, 25,50, 75,100, 200, 300, ..., 1000}
D =100
S € {2,3}

In all cases the workload distributions are computed as described in 4.1.1.

Results

The experiments show the following results:

1. Decreasing impact for higher S values:

The effect of high synchronization density values (S > 2), is similar as
discussed for random topologies in section 4.1.2. In Fig. 4.8 we show this
effect for different values of S in a 16 x 16 random mesh. Increasing values
of S indicate more dependences already in the graph and shorter distance
to an SP form. Thus, the impact of SP-ization is quickly diminished when
S increases.

In complete random topologies (see section 4.1.2), P and D presented a cor-
relation with S due to the random sampling technique. Specifically, values
lower than 2 indicated few layers and a collection of sparse nodes. Thus,
the graph distance to SP form was short and v was quickly decreasing with
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Figure 4.8: Effect of high S values in random meshes

smaller values of S. However, in meshes we are fixing P and D parameters,
and changing S independently. In Fig. 4.8 and Fig. 4.9 we may appreciate
the different behavior obtained with Layering and Algorithm2 transforma-
tion techniques for random meshes. When Layering is applied, v continues
the same exponential like increasing tendency for very small S values. The
application of our improved Algorithm2 transformation technique cancels
the exponential growing tendency, and it achieves even decreasing results
for low deviated load distributions. However, it does not achieve the high
diminishing effects like in random topologies. In the plots of Fig. 4.9, we ob-
serve the v decreasing effects only for very small values of S and especially
for low P values. The reason is the small distance from these graphs to SP
forms. Recall the random meshes generation technique used. It creates a
base SP mesh graph with S = 1 and adds extra randomly chosen edges.
The number of added edges for each layer is an integer number computed
as: |P x (S —1)|. For small values of the parameters very few edges or
even no extra edges are added to the base SP graph, leading to 7 values
close to or even 1.

. No applicability of R, parameter alone:

A side effect of the previous discussion is that R is not a good indicator of
the potential impact of an SP-ization in a random mesh. In random graphs
P and D were related to S. In random meshes this is not true. Thus, 7y
values are different for the same value of R if P and D values differ. Only
very general tendencies may be determined using the parameter R, alone.
We must further explore the effects of D, P parameters independently.
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Figure 4.9: v dependence on S,P and D in random meshes
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3. Limited effect of D:

In Fig. 4.10 we can see how v stops to grow at a certain value of D. Al-
though difficult to appreciate for small sized graphs, it can be also noticed
in Fig. 4.9. Let us consider the i;,-node in layer 5. Dependences from this

Random mesh (S=3, P=100)
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Figure 4.10: Limited effect of D in random meshes

node are propagated to other nodes across layers 7 + 1,5 + 2, ..., until all
nodes in a further layer j+c depends on the original node. At this point, an
SP-ization technique is not adding dependences from the is,-node of layer
j to any other node in further layers 5 + d,d > ¢, because all of them were
already dependent on it. The speed by which dependences are propagated
to next layers is dependent on S. The number of nodes in a layer is P.
The limiting effect should completely appear for D > P/(S — 1). The ob-
servations show that in general it appears even before. In the original NSP
graph, the number of dependences propagated from the iz,-node in layer j
to other nodes in layers j+ 1,542, ..., is growing through each layer. Thus,
the diminishing effect is beginning to work since layer j + 2, reaching the
maximum at layer j + c.

This limiting effect is canceled in special cases of unbalanced synchroniza-
tion structures described and discussed below.

Logarithmic like effect of P:

In Fig. 4.11 (and also in Fig. 4.9 in a smaller scale) we may appreciate that
for fixed D and S values, the SP-ization impact increases with a logarithmic
like function of P. This effect presents similar slopes for all mesh topologies
with the same S value, and a D value enough to achieve its limiting effect
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Random mesh (S=3, D=100)

Figure 4.11: Exponential like effect of P in random meshes

(see previous discussion about D effect). The slopes are lower for examples
with higher values of S, as expected.

5. Workload effect:

As it may be appreciated in Fig. 4.10 and Fig. 4.11, the most relevant fac-
tor for the SP-ization impact is the variability of the workload ¢. Graphs
representing balanced computations (¢ < 0.2) present almost no relevant
effect when transformed to SP form. When computations are highly un-
balanced (¢ = 1), the probability of serializing highly loaded nodes during
the SP-ization increases. The effect is highly predictable when the loads
are randomly distributed, as the probabilities increase with equal chances
across the same topology.

Unbalanced synchronization meshes

Motivated by the study of strange «y effects in specific application mesh topologies
(as e.g. static macro-pipelines, see section 4.2), we have found a new topological
characteristic, with an important impact on . This characteristic is not directly
related with the parameters we have studied previously. This study reveals more
details about the deep relation of v and the way dependences are propagated
across layers through the edges.

The problem appears in meshes were the edges are somehow oriented in the
width axis, such that dependences from some nodes are not propagated to any
other part of the graph equally. Let us consider the example in Fig. 4.12. The
nodes in the right side of the graph do not propagate dependences to the left
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Figure 4.12: Example of unbalanced synchronization mesh

side of the graph, no matter how many layers are considered. This orienta-
tion is graphically dependent on the numbering £ chosen. We must introduce
some more notation and terminology to formally characterize this new problem.
Because this orientation effect barely appears along several layers in random gen-
erated meshes, we focus our study to analytical measurements in meshes with
deterministic p functions.

Definition 4.1.4 For meshes with a deterministic p function, we define the Syn-
chronization characteristic graph of a mesh Q(M) as a directed graph (possibly
cyclic), build as:

QM) = (Vq, Eq) :
Va=1L;
Eq = {(v,w) :v,w € L;,§(w) = p({(v))}
For deterministic p functions, the synchronization characteristic graph is
unique for a given P value, and a change on the nodes numbering function &,

will produce an equivalent homeomorphic graph. An example of the € graph for
the example in Fig. 4.12 is shown in Fig. 4.13.

pP)={1,2}
P2)={2,3}
OROBONBO PR)={3,4}
P ={4}

Figure 4.13: Example of synchronization characteristic graph

When the synchronization characteristic graph of a mesh is disconnected, it
indicates that two different subgraphs are composed in parallel. Each subgraph
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should be studied separately. The Algorithm2 transformation technique detects
the connected components as local NSP problem combinations and synchronize
them separately. However, Layering technique would resynchronize both sub-
graphs together with full barriers in a non-efficient way. For connected €2 graph
we study the presence of nodes that cannot be reached from other nodes.

Definition 4.1.5 We denote by synchronization balance, w(M), the proportion
of edges found in the transitive closure of the synchronization characteristic graph

of a mesh M. Let be Q(M)* = (Vq, E}) be the transitive closure of Q(M):
w(M) = |Eg|/|Val*

This value, that will be in the range w(M) € [0, 1], indicates the proportion
of nodes that are propagating dependences to other nodes independently of the
number of layers traversed. The value 0 is only possible for completely discon-
nected layers. The value 1 is found in graphs were all nodes can be reached from
all other nodes. In Fig. 4.14 we show the transitive closure and the synchro-

P ={12}
O @ @ @ P@={23)
N Nt N PR ={3.4}
N A VLTS P@)={4}

W(M) = 0.625

Figure 4.14: Example of w(M) measure with the Q graph

nization balance value for the previous example mesh. A value of w(M) = 0.625
indicates that many nodes cannot be reached from other nodes independently of
the number of layers considered.

Meshes with connected 2 graphs and w values of 1, do not present any -y effect
different from the ones previously discussed, based on the topological (P, D,S)
and workload (¢) parameters. However, meshes with connected Q graphs and
lower than 1 synchronization balance values, will suffer the following pathological
effects:

1. Limited effect of S parameter:

If we add edges to a mesh, that do not increase the synchronization bal-
ance, the synchronization density increases, also the number of dependences
propagated, but not the number of nodes that are not reached from other
certain nodes. Thus, the beneficial effect of these added edges is highly
limited.
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To test this effect, we have designed an experiment in which we produce
meshes with increasing S values, but forcing the new edges to target neigh-
bors already reachable in the Q graph through transitive dependences. We
define the following synchronization function for a given P and a new pa-
rameter s:

p(§(v)) ={t:&{(v) <t < ({(v) +5) < P}

An example of meshes generated by this technique are shown in Fig. 4.15.

D=3

P=4

@ & @
O @ 66 O
ONONONO

s=2 S=2 s=3 S=3
W(M) = 0.625 W(M) = 0.625

Figure 4.15: Example of meshes with higher S and the same w

The s parameter is very similar to the final S of the generated mesh, es-
pecially when s < P. As we are interested in the effects produced for S
ranging from 2 up, for our experiments we will use P = 100, considering
S =s.

In Fig. 4.16 we show how increasing the number of edges (indicated by the
S parameter) in a complete unbalanced mesh (plot (a)), does not produce
the beneficial negative exponential-like decreasing effect on v, found in
random and typically balanced meshes of the same sizes (plot (b)). The
effect is canceled after adding approximately 4 or 5 edges (the dependences
are quickly propagated in the only possible direction).

. Non-limited effect of D parameter:

In Fig. 4.17(a,b) we show the effect of D increase, for unbalanced meshes.
We present two examples. Both of them have been created with the pre-
vious discussed technique. They are structures with unbalanced neighbor
edges with P = 100, and s = 3 and s = 5 respectively. Both graphs
have the same number of non-reachable nodes, w = 0.505. The plots show
how the limited effect of D, found for other graphs with w = 1, (com-
pare with Fig. 4.10) does not appear. As w value is the same, the final
trend for high D values is the same. What changes from S =3 to § =5



172 CHAPTER 4. EXPERIMENTAL STUDY

Unbalanced synchronization mesh (100 x 100 nodes)
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Figure 4.16: Limited effect of S in synchronization unbalanced meshes

is how quick the dependences are propagated in the only available direc-
tion. Thus, S still measures how quick the general trend imposed by w is
achieved. In both cases, we observe some irregularities in the slope near
the point D =~ P/S. At this point, the propagated dependences have been
spread along the full layer width, and the limiting D effect curve meets
the general tendency curve imposed by w. From this point on, both curves
(S =2,8 = 3) are similar.

With values of S lower than 2, the  graph is typically disconnected, and
the subgraphs should be studied separately. For connected €2 graphs, the w
lower values correspond to graphs with S ~ 2. We conjecture that the extra
dispersion of ~ values related to S near 2, observed previously, is produced by
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Unbalanced synchronization mesh (S=3, P=100)
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Figure 4.17: Non-limited effect of D in synchronization unbalanced meshes

these pathological effects not previously accounted for.

The pathological effects are higher for lower values of w, although no direct
relation has been yet established, because of the difficulties found to automati-
cally generate different synchronization unbalanced topologies with the desired w
values. It is an open question if D, P, S, ¢, w parameters are enough to accurately
estimate 7 for graph meshes.

Correlated workload meshes

In the previous study, due to the absence of real workload information for syn-
thetic graphs, we are assuming an i.i.d. workload for every node. In real appli-
cations with not completely regular tasks loads, it is typical to find some kind
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of correlation between the workload distribution and the topology. Consider, for
example, a mesh representing a macro-pipeline. If one of the pipe stages is more
time consuming than others, we will find a column of tasks more loaded than the
others. If a cellular-automata like program needs to compute some more complex
intermediate results after some normal iterations, we will find a mesh were some
rows or layers of nodes are more loaded than the others.

To detect if the presence of this correlation between workload and topology
is beneficial or negative for the SP-ization impact, we have designed some more
experiments with random meshes. We will consider meshes with fixed P, D and
S values, and we will change the workloads to create such vertical or horizon-
tal correlations. The modified load parameters u, o will be proportional to the
original ones to keep the same variability across the whole graph.

Let us consider the following workload models:

Vertical correlation: The load is modified in a given column c¢ in a given pro-
portion p:
T(U):{ z~ N(p,0) if {(v) #c
z ~ N(pp,po) if(v) =c

Horizontal correlation: The load is modified in a given layer r in a given
proportion p:
T(v):{ z~ N(pu,o0) if d(v) #r
z ~ N(pp,po) ifd(v) =r

Multiple vertical correlation: The load is modified in a given proportion p,
in a given number of columns 7, distributed along the graph with a fixed
stride s = P/n:

T(U):{ z~ N(p,o) if (£(v) mod s) #0
z ~ N(pp,po) if ({(v) mod s) =0

Multiple horizontal correlation: The load is modified in a given proportion
p, in a given number of layers n, distributed along the graph with a fixed
stride s = D/n:

r(v) = { x ~ N(u,o) if (d(v) mod s) #0
z ~ N(pp,po) if (d(v) mods) =0

We are interested in detecting how the position of columns or rows with
modified load, and the load modification are affecting v. Thus, we design the
following experiments. Let M be a random mesh with P = D = 64 and S = 3.
We carry out the following experiments, were some of the parameters have been
adjusted in view of the results discussed below:
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1. Vertical correlation of one column, changing the column position. As the
graph is symmetric, and the dependences are randomly distributed across
the full graph width, we expect symmetric results moving the column from
the center of the mesh to each extreme:

p=2c€{1,2,4,8,16,32,49,57,61,63, 64}

2. Vertical correlation of one fixed column, changing the workload modifica-
tion. We test both, lower and higher values of the load in the selected
column:

c=32,p€{0508,0.9,1.0,1.1,1.2,1.5,2.0,4.0}

3. Horizontal correlation of one layer, changing the layer position. As the
cpv is accumulated through the graph up-down, we test modified layers all
along the graph:

p=32,r € {1,2,4,8,16,32,49,57, 61, 63, 64}

4. Horizontal correlation of one fixed layer, changing the workload modifi-
cation. In view of the results of our first experiments in this category,
we detect that we need to increase the load much more than in vertical
correlations to get representative results:

r=32pe€{05,1.0,1.1,1.2,1.5,2.0,4.0,8.0, 16.0, 32.0, 64.0, 128.0}

5. Multiple column correlation, with different number of columns to generate
all the possible integer strides for P = 64:

p=2n¢€{1,23,4,56,7,8,9,10,12,16, 21,32, 64}

6. Multiple layer correlation, with different number of layers to generate all
the possible integer strides for D = 64:

p=6,n¢{1,2,3,4,56,7,8,9,10,12, 16,21, 32, 64}

All the experiments will be carried out with different workload variabilities
¢ € {0.1,0.2,0.5,1.0}, and drawing 25 times random workload distributions for
each topology. The results obtained from these experiments can be summarize
as follows. For the following discussion, keep in mind that 7 is minimum when
the critical path of the NSP graph has the more loaded nodes of each layer:
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1. Independence of the column or layer position:

As it is shown in Fig. 4.18, the position of the column or layer which load is
modified is not really important. In the case of vertical correlation, as along
as the edges in the mesh are chosen randomly, the dependences are prop-
agated with equal probabilities, independently of the column position. In
meshes with deterministic synchronization functions, it should be possible
to observe little v differences when the modified column position changes.
In the case of horizontal correlation, all full paths must cross the layer,
independently of the layer position, getting the same probabilities of being

affected.

2. Beneficial effect of the vertical correlation:

64
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In Fig. 4.19 we may appreciate the beneficial impact of increasing the work-
load in one modified column. A lower load than in other columns does not
significantly modify the v values, because the more loaded nodes in each
layer are the normally loaded nodes. The maximum accumulated path
value through several edges, is always got from one of the normally loaded
nodes. On the other hand, when the modified load is increased above the
normally loaded nodes, the paths that cross the highly loaded column more
times, get more and more probabilities to become the critical path. At the
same time, the nodes in the column get more and more probabilities to
be the more loaded nodes in the layer, especially when the variability is
small. Thus, the critical path in the NSP version gets more probabilities
to have exactly the more loaded nodes in each layer, minimizing v. As it

Loaded column grid (S=3, P=D=64) Column 32

1.6

L
50 100 150 200 250 300 350 400
% of normal load in column

Loaded columns grid (S=3, P=D=64) 200% of normal load
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Figure 4.19: Beneficial effect of the vertical correlation
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is also shown in Fig. 4.19, this beneficial effect immediately disappears if
there are several columns with the same load modifications in the mesh.
The reason is that there are more probabilities for the critical path to cross
a highly loaded node (in one of the modified columns) which is not exactly
the more loaded node in the layer (being in other of the modified columns).
Fortunately, in applications with vertical correlation (like some pipelines)
is typical that most columns have different mean load values. The existence
of this small load differences between columns lead to a middle point on
the beneficial effect.

Beneficial effect of the horizontal correlation:

In Fig. 4.20 we can see that in the case of horizontal correlation, small
modifications of the load does not affect . Although all paths must cross
the modified loaded layer, there are not so many probabilities for the critical
path to cross exactly the more loaded node in that layer. However, when the
load in the modified layer is highly increased, in a much bigger proportion
than the other layer nodes, the paths that cross exactly the more loaded
node in that layer have more and more probabilities of being the critical
path themselves, as the other layers loads become less significant in the
total path value. In the same figure we can also appreciate that increasing
the number of loaded layers is potentially beneficial until a given point. The
reason is that the effect previously discussed for one layer is applied more
and more times. However, when the number of layers increases too much,
the extra loaded nodes become too frequent, and they become the normally
loaded nodes. Then, the full paths get the typical variability effects of the
now more common nodes in the mesh, eliminating the beneficial effect of
the correlation. This workload configuration with many layers more loaded
than a few ones is not so typical in applications.

The important conclusion about this experiment, is that typical correlation

between topology and workload may produce beneficial effects on 7 in many
circumstances. Thus, our previous predictions with i.i.d. workloads can be con-
sidered a worst case for workload distribution, and previous  predictions can be
considered upper bounds of the expected 7 in typical application structures.

4.1.4 Conclusions about synthetic graph results

Although not being a topological feature, the workload balance is the graph
characteristic with the higher impact in the potential performance loss measured
with critical path analysis (7). Our main study is based on i.i.d. workloads due to
the absence of real workload information. Nevertheless, more irregular workload
distributions with typical application correlation in vertical and horizontal node
instances may produce even lower expected -y results.
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Figure 4.20: Beneficial effect of the horizontal correlation

For random or irregular graphs, the P and D parameters are typically cor-
related with S. Thus, S and R values easily determine the vy values. The
dispersion of v values is maximum around the critical point of S =~ 2 where v
values also reach their maximum.

More structured graphs, which nodes are organized in layers connected by
random or replicative synchronization structures, do not present a correlation
between the parameters S and P, D. If the synchronization structure across layers
is random, or balanced (as measured with w for deterministic synchronization
structures), the v values can be estimated with the workload characteristics and
the simple topology parameters P, D,S. The values of vy reach their maximum
for S < 2. Further increase of S immediately limits the v increase. The number
of layers in the mesh is only important until D ~ P/S. More layers do not
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further affect the potential performance loss. Thus, =y is highly predictable as a
function of very simple topological and workload parameters.

For unbalanced synchronization structures (w < 1), pathological effects are
observed in the S and D effects. Future work should relate these observations to
w values.

4.2 Real Applications

In this section we present an study of the performance effect of using different
SP and NSP programming techniques with real applications. Our purpose is to
determine the potential performance loss produced at programming level due to
restrict relevant synchronization structures to SP form. We choose application
examples which are representative of important SA classes (see 2.6). We use
graphs to model applications at different detail or abstraction levels. Modeling
techniques and their accuracy are studied. Transformation techniques and ~y pre-
dictions previously discussed, are studied in structures from real applications. We
present results on how < is propagated to run-time level in real implementations
I'. The main trends of this loss are studied before applying any improvement
derived from SP programming. Thus, no advantages of SP programming will
be exploited in our experiments during implementation or run-time. Finally, we
specifically focus our study on more irregular applications, showing how typical
load balancing and data-partitioning techniques lead to more regular structures,
feasible for SP-programming,.

4.2.1 Experiments design

Experiments are conducted to compare information obtained from programming
level cost models with real implementations. Results are studied to extract pa-
rameters non-dependent on the application which predict the mean performance
effects of restructuring programs for SP programming frameworks.

We first focus our study in applications in the NDS classes, where the struc-
ture of the application is fixed for some simple parameters after mapping (mainly
the number of processors).

The experiments are designed as follows:

1. Select a representative application of a static NSP SA class.

2. Implement the program in both NSP and SP versions, for different machine
architectures and/or programming models.

3. Run programs obtaining load and performance measurements.

4. Derive programming level graph cost models.
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5. Estimate mean program behavior with synthetic workloads and statistical
load measurements.

6. Compare estimations with real performance measurements. If accuracy is
not enough, refine cost models at a lower implementation level and go back
to phase 5.

7. Relate application behavior and SP-ization impact to structure parameters.

For dynamic classes, structure is data-dependent and cannot be easily derived.
For these cases an exhaustive study is not always possible. Availability of simple
codes is limited, applications trend to be much more complex, they typically
include hard-wired optimizations based on the machine architecture, and finally,
many alternatives of implementation exists for almost any algorithm. Input data
may have a great impact in an specific structure, as dynamic scheduling and
mapping techniques are used.

Thus, our experiments are oriented to exploit available samples of running
traces, obtained by execution monitoring. Task graphs are built from the tracing
information. The stages of each experiment are:

1. Find examples of structures (task graphs) generated by executing existing
implementations of an application, with different real input data, on specific
machines. If possible, we will gather detailed real workload information in
run-time.

2. Apply the Algorithm?2 transformation technique, presented in 3.5, to the
sample structures.

3. Compute and compare performance (cpv) in the original and transformed
structure and relate it to structural parameters.

Applications selected

Along the lines presented in the applications classification in section 2.6, we select
the following representative examples of relevant NSP classes:

1. Static NSP applications:

Static macro-pipeline: It is is a good representation of simple struc-
tures created by multiple iterations of a shifting memory access pat-
tern. Many parallel non-synchronized loops and data mappings create
structures similar to this one.

This application also presents the minimum synchronization density
S parameter value possible for complete regular applications in which
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all processors execute the same piece of code with the same communi-
cation pattern. Nevertheless, each iteration provides a full chain NSP
composition (see 3.3.3), that needs full layering synchronization to be
transformed into SP form.

Moreover, the dependences between processors are not propagated in
an homogeneous way, but in an specific direction of processors num-
bering after data partition. It leads to the biggest possible number of
dependences added for any S = 2 structure after SP-ization, and it
presents the pathological effects described in section 4.1.3 for struc-
tures with w < 1.

Thus, it is a extreme case for SP-ization impact.

1D Cellular automata: This application represents the neighbor syn-

chronization structures. Many regular and scalable applications are
mapped to this structures. Is is specifically representative of grid
computations and PDE solvers. Even more complicated stencil based
applications are mapped to this structure if a 1-dimensional data par-
tition is used. In fact, we have chosen to implement a typical 2D grid
computation mapped by rows, to produce a 1D cellular automata
structure with real and representative computation loads (see an ex-
ample of modeling this mapping in Fig. 4.23).

For this kind of neighbor synchronization and grid applications, the
1D cellular automata kernel present the minimum S parameter value
(S =~ 3), being the application example most potentially affected when
it is transformed to SP form.

FFT: It is an important kernel in many parallel applications and has been

widely studied. Its butterfly communication structure is the most typ-
ical example of solving networks.

After the local computation phase, FFT is an intensive communication
application, as all the local data is sent in each communication. In
each iteration the communication phase interchanges data with further
remote processors in a linear numbering. However, the binary tree
pattern may be exploited with special mappings and implementations
to improve locality in specific network models (see e.g. [156]).

LU reduction: Most matrix factorization algorithms (e.g. QR or Cholesky)

presents similar SA. It is a complex application for graph cost model
derivation as discussed in section 4.2.3. At program level it present a
triangular synchronization structure that must be mapped at imple-
mentation level to another different form for regularity and scalability.
This mapping leads to decreasing task load values along iterations.

2. Dynamic application classes:
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Simulations based on graphs: Most physical or chemistry simulations

are based on a PDE iterative sparse-matrix solver. The matrix struc-
ture represents the adjacency of the joint points of a 3D mesh which
models the studied object. For these applications, the synchronization
structure generated is completely dependent on the data mapping,
typically based on a graph partitioning algorithm.
As example of the structures produced by these applications we gen-
erate mapping level task graphs of a simple PDE solver style pro-
gram running on graphs already partitioned with a free and state-
of-the-art multi-level partitioning software for unstructured graphs
(METIS [117, 167]). Example input 3D models are chosen from the
structural engineering area, from a collection of free test data intended
for use in comparative studies of algorithms for numerical linear alge-
bra (Matrix Market [146]).

Sparse-Matrix factorization: This application is a good representative
of structures generated by direct solver techniques for sparse-matrix
computations. As an example of the performance impact of SP-ization
in these class of applications, we have apply our transformation algo-
rithm to some graphs generated by monitoring the execution of a
domain decomposition and unstructured sparse-matrix factorization
software [55, 123, 124] for finite-element problems. The automatically
obtained graphs are provided with real workloads.

These two problems covers the typical synchronization structures generated
by parallel implementations of the main iterative and direct solvers for
sparse-matrix computations.

Machine architectures

At implementation level a parallel program is compiled and optimized for an spe-
cific machine. When executed, it uses costly mechanisms to spawn, synchronize
and communicate tasks. Implementation details and the underlying architecture
of the machine become important. For simple applications and kernels we want
to study the main performance effects in different programming models, and also
different machine architectures. We have selected available machines to cover
different architecture models and typical configurations of them:

Shared memory architectures: The programming techniques used in these
machines are straightforward, and the programmer is not normally facing
the data distribution or scheduling details directly.

Our study is focused on a leading edge technology shared-memory archi-
tecture: CC-NUMA. Our available machine is an Origin2000. CC-NUMA
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machines have representative properties for performance evaluation of syn-
chronization techniques. The use of memory hierarchy improves perfor-
mance, while cache-coherence protocols and automatic process migration
try to hide machine level details to the programmer. Nevertheless, the
efficient use of memory locality is not an easy task even with compiler as-
sistance. Delay times for data access and synchronizations are less stable
than in other architectures, especially for full collective communications,
like barriers issued across the whole system [102].

Distributed memory architectures: The main parallel programming model
used for this kind of machines is message-passing. The programmer faces
problems as data distribution or scheduling details inherently, increasing
the developing effort.

We use two key types of distributed memory machines that have represen-
tative properties for performance evaluation of synchronization techniques.
CrayT3E is a mesh-based computer, with hardware and protocol improve-
ments to minimize the overhead of distant processors communication. The
special-purpose hardware is highly efficient. A Beowulf system (a cluster
of PC computers linked by a high speed Ethernet switch [176, 177, 151])
normally presents higher communication costs. As the underlying message-
passing tools are prepared to work in generic/all-purpose networks, the
implementation details can create irregularities in the network traffic or
communication delays. Both machines are at the budget extremes for high
performance computing. CrayT3E is an expensive specifically designed ma-
chine, while a Beowulf is an optimized way to create a supercomputer from
generic, all-purpose, and in comparison cheap, computer hardware.

Programming models and code generation

After determining the applications and machines, we must select a convenient
programming model to codify the NSP and SP versions of each program. The
minimum requirement for a programming model to be selected are:

1. Codes must be portable with minimum or none modifications to every
architecture tested.

2. A systematic code transformation technique must be devised to derive SP
versions from NSP versions of the final code.

3. A systematic technique to extract programming or implementation level
graph models from the code must be devised.

4. Tt must provide similar performance as compared with other native or more
specific models.
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According to the previous requirements, we consider the MPT message passing
interface as the best candidate for our experimental framework for the following
reasons:

1.

It is a portable API. Programs implemented in MPT can be compiled and
executed in almost any parallel machine due to standard MPI implemen-
tations.

. As MPT is a full standard interface of the well-known message-passing

model, many applications are already studied and implemented on this
model (see e.g. [189]). Real codes for some of the selected applications are
available.

. It is a performance efficient and reliable tool. Most vendors provide their

specifically optimized implementations. Generic but efficient implementa-
tions (e.g. mpich) are also available.

. Message-passing model forces explicit communication. Scheduling, data-

partition and any other mapping transformations must be hard-wired in
the code. Thus, a complete monitoring of communication activities at high
level is possible. In section 4.2.2 and section 4.2.3 we introduce systematic
ways to extract task graph models from codes in different programming
paradigms. We especially study the message-passing problems and solu-
tions, including an example for MPI. Message-passing interfaces simplify
task and communication identification because communication is always
explicit.

. Transforming NSP MPI codes to SP form is easy because of the explicit

communication. Communication phases are formed by grouping consecu-
tive communication primitives, with no computation code in-between (see
section 4.2.2). Synchronizing the programs to simulate the added depen-
dences needed for SP-ization may be as simple as adding barrier synchro-
nizations after communication phases. Probably, there exist other and bet-
ter methods to transform the original code to SP form, but this approach
is simple, systematic, and a typical worst case, where no code manipula-
tion is done except to add dependences through barriers. The technique
is suitable to exhibit an application potential degradation of performance
due to the extra synchronizations when programmed in an SP PPM.

. Message-passing libraries as MPI allow very fine tuning of the codes for

performance. The library implementations, specifically for MPI, are fast
and efficient.

In shared memory machines, there are other interesting and widely known
programming models as OpenMP, directed to portable and efficient devel-
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Figure 4.21: OpenMP vs. MPT implementations in Origin2000

opment. We have tested different implementations of several applications
with OpenMP and MPI to compare their relative efficiency or detect dif-
ferences in the effect of SP-ization for so different programming models.
In Fig. 4.21 we show the performance obtained in an Origin2000 machine
for a simple cellular automata program, implemented in several different
ways. The plots correspond to the same codes compiled with no com-
piler optimization (-00), and with aggressive compiler optimization (-03)
respectively.

The codes include: (1) OpenMP SP code that executes the iteration loop
inside a parallel region, with full synchronization barriers before and af-
ter copying of frontier shared data; (2) OpenMP SP code which spawns
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and collapses a parallel region inside each iteration, with only one explicit
barrier needed for synchronization; (3) OpenMP NSP code based on con-
trol variables flushed across the memory system, with active waitings; (4)
OpenMP NSP code synchronized through lock variables; (5) MPI NSP
code based on simple point to point communications; (6) MPI SP code
with a barrier added before communication; (7) MPI SP code with a bar-
rier added between send and receive parts of the communication; (8) MPI
SP code with a barrier added after communication, before computation
phase. Data sizes are scaled up with the number of processors to keep the
tasks load independent of the number of processors. Task loads are highly
regular for this problem, thus SP-ization impact should be negligible. Our
results indicate that OpenMP and MPI implementations are similar in per-
formance, for both: NSP and SP versions. Results are independently of
code restructuring, change of primitives or synchronization system, or even
the barrier placement. MPI shows a more stable behavior than OpenMP
versions when we do not allow compiler optimizations, which is interesting
for our study (as we discuss below). Code versions using native OpenMP
perform better than MPI when aggressive compiler optimization is used.
However, the performance degradation is a constant delay due to extra pro-
cess creation and manipulation in MPI, compared with the efficient native
thread creation system used by the OpenMP implementation. MPI results
are still efficient and completely similar regarding the performance trends,
and the NSP to SP code restructuring.

Once the programming model is selected, we discuss other implementation
details. We must be careful about code or compiler optimizations. Fine tunings
that are not portable across machines must be avoided. We are mostly inter-
ested in simple direct codes that implement the basic communication scheme for
each application. For efficient software development we must rely in compiler
optimizations and efficient run-time environments tuned to the specific target
machine. However, we do not yet have a programming framework that really
exploits all SP properties for optimization. Moreover, our study is focused to de-
tect the potential performance loss due to transformations at programming level.
Advantages obtained during implementation phase are impossible to be fairly
evaluated nowadays, as they can be produced by SP compiler transformations,
run-time scheduling, or even by other non-related compiler optimizations, like
better sequential code manipulation, cache trashing reduction or internal buffer-
ing optimization (partial studies of SP optimization advantages exist, and they
point to good performance advantages obtained due to implementation transfor-
mations when restricted SAs are used, see e.g. [57]).

Thus, we must avoid aggressive optimizations. Compiler code manipulation
(loop reordering, unrolls, buffering optimizations), may change the synchroniza-
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tion patterns in such a way that: (1) implementation model of the resulting
transformed code is impossible to be known or derive even at run-time; (2) the
low level programs resulting from NSP and SP structures are so structurally
different that they are not comparable anymore. For these reasons, for our ex-
periments we have selected no compiler optimization at all (we include the -00
flag in all compilation jobs).

For each application considered we generate an NSP and a related SP version
based on the same original code:

1. MPI, NSP version: Based in point to point or basic collective communica-
tions.

2. MPI, SP version: The former version with added barriers after communi-
cation phases.

First we program a basic NSP version of the application using simple MPI point
to point communications. This reference version may be refined to a second
NSP version using collective operations'. We compare the NSP code with an
SP version created by adding barrier synchronizations after the communication
phase of each stage or loop iteration.

In the experiments with synthetic graphs we made the assumption of i.i.d.
task loads for any degree of parallelism. To be able to compare results and
trends obtained from synthetic graphs, with results obtained with these new real
application experiments, we use scaled up problem sizes in order to keep the
mean of the task loads as independent as possible of the number of processors.
Problem sizes are also loosely adapted to the relative hardware speed across
machines to obtain performance results in the same order of magnitude, and
similar communication to computation ratios.

Measures include the total execution time of the parallel section of each code,
as well as the mean and deviation of task and communication times. We consider
a task to be a continuous sequential computation, from the point after a wait for
synchronization has been performed (one or more communications or a barrier)
to the next one (see following sections for more details). The experiments are
conducted up to all the available processors (2 to 8 in the Origin2000, 16 to 128
in the CrayT3E, and 2 to 16 in the Beowulf system).

4.2.2 Application cost models at programming level

Applications may be modeled with different detail level (recall discussion about
implementation trajectory represented in Fig. 3.25, section 3.6.1). An appli-
cation synchronization structure is transformed from its original programming

'MPI standard states that collective operations may or may not be synchronized. It is
implementation dependent [140].
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shape during mapping and implementation phases. At programming level, with
no resource restriction, all possible parallelism can be exploited. In the mapping
to resources phase, data partition may affect the task structure of the applica-
tion. The implementation of the communication/synchronization mechanisms
may also create new low level structures. Thus, different task graphs models
will be used at different implementation levels. From simpler ones at the higher
abstraction levels, to more complex and detailed ones at lower levels.

In this section we introduce procedures to model real applications with task
graphs at programming or mapping level. These graphs are cost models when
provided with synthetic or real workloads. Our cost models will be as simplistic
as possible while they will provide at least asymptotically accurate performance
predictions.

At the programming abstraction level, the specification of an algorithm is
adapted to the synchronization structures available in the programming lan-
guage and/or model used. Mapping constraints are not considered. Thus, the
program could express all the parallelism available in the application in a very
fine grain. The synchronization structure is derived manually from the algorithm
specification or program. A graph representing tasks and dependences can be
generated to represent it. In the case of MPI model, some mapping decisions
(like data-partitioning among processors and other code adaptations to use a
fixed number of processors) are taken by the programmer and hard-wired in
the code. The mapping level graphs can be derived from MPI codes using the
mechanisms described in this section.

For dynamic applications where the communication/synchronization struc-
ture is data dependent, the exact task graph can only be generated at run-time,
and will be different for different executions. Moreover, even the simplest and
most regular codes are usually parameterized with, at least, the degree of par-
allelism or the number of iterations of a parallel repetitive computation. Thus,
task graphs are representations of a class; they represent the overall structure pro-
duced at programming level for a given application (for any number of processors
or iterations). Simpler static and high regular applications will be modeled by a
very small amount of graphs that will have the same synchronization patterns,
even if depth level and degree of parallelism change. More dynamic applications
should be modeled with a higher number of graphs, enough to represent the
typical structures that can be generated for different data.

Graph derivation mechanisms

At programming or mapping level, costs for communication or synchronization
mechanisms are not an issue to consider. Their structure or cost cannot be eval-
uated until lower implementation details are considered. Thus, a very simplistic
task graph model will be perfectly accurate to represent the structure of the
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application.

Nodes (Tasks): Each node of the graph represents a task. We consider a task
to be an atomic activity which can be executed independently of the local
state of other activities (tasks).

Edges (Dependences): Edges will represent only precedence of tasks imposed
by the program semantics (data dependences or other synchronization needs).

Mutual exclusion: Graph edges represent ordered precedence constraints be-
tween tasks. Thus, they are only appropriate for CS. At programming or
high abstract mapping level, there is not a way to translate ME synchro-
nizations to directed task graph edges. The ME synchronization mecha-
nism is solved in scheduling time, thus, it is an implementation dependent
or run-time matter. In these lower levels, when ME is solved, an execution
order will be forced between mutual exclusive tasks, but we cannot predict
it at high abstraction levels.

To represent non-ordered synchronization (ME) in our programming level
model we propose to use a different label or color for mutual exclusive
nodes. Formally, we use a function that maps subsets of nodes to mutual
exclusion identifiers. Nodes associated to the same identifier must be mu-
tual exclusive. A node mapped to the empty set represents a node that is
not mutual exclusive with any other one. No explicit ordered dependence
will be added with edges between nodes due to mutual exclusion.

ME:{m17m27"'7mn}
k:V—-MCME

Identifying tasks and dependences must be done manually from program spec-
ifications, and using the appropriate information associated with the program-
ming model. In some models, especially those which use implicit communication
through shared-memory, we must have enough information about the low level
semantics and of such tools to determine which memory accesses or primitives of
the language are local and which others imply a synchronization and therefore
the end of a task and the beginning of another one. In explicit synchronization
models as message-passing, it is easy to determine the start and end points of a
task. The execution of pieces of code between communication directives is a task.
In the case of MPI, that exhibits explicit communication and synchronization
primitives, the identification of tasks and dependences is direct. We consider a
group of communication primitives with no computation code in-between a com-
munication phase. A task (graph node) is a sequential computation, beginning
at the end of a computation phase, and ending before the next communication
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phase. Dependences (graph edges) may be extracted from the parameters of
communication primitives that indicate the source and target tasks. When data-
dependent parameters are used, the application is dynamic, and several graphs
must be derived for typical data values.

Workload information

After identifying the tasks, we must classify them regarding their execution time
characteristics. The graph can include as many types of task nodes as neces-
sary (Vi1,Vi2, ..., Vin). Nodes with the same type will share the same statistical
workload model. However, for simplicity it is interesting to reduce the number of
different task types. Most of the times, especially for highly parallel and scalable
applications, the kernel of the application can be modeled with only one type of
tasks which executes similar codes.

Formally, we split the tasks set V into different subsets. Nodes in each sub-
set will be of a different type. Random workload distributions with different
parameters are associated to the load of each node type.

T =PV ={T,,Ts,...,Tp},
T;={v eV :7(v) ~ D(ui, o)}

In complete absence of workload information we will assume all tasks to be i.i.d.
(independent identically distributed). Thus, if no information about workload
distribution is available, only one node type will be used.

Static regular applications modeling

We describe here examples and notations for modeling static regular structures.
We introduced in [183] a simple language and an associated tool that allows
easy synthetic graph reconstruction, based on the expression of regularities by
parameterizable synchronization functions. This language may be used to easily
construct the graphs associated with regular application structures discussed in
this section.

Many typical scalable application structures are created by replicating the
same local synchronization pattern for every task in each iteration. This applica-
tions may be modeled by meshes with a special synchronization function applied
to each node in a layer (see mesh definitions and notations in section 4.1.3). For
these replicative interlayer connection systems, the synchronization function may
be defined as a stencil or local pattern of communication (see e.g. [162]).

Definition 4.2.1 Let M = (V, E) be a mesh. Let p be a synchronization func-
tion. p is a Stencil iff exists R(p) C Z, called Signature of the Stencil, such
that:

R(p)={ri;i=1,...,a < P}:
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E={(v,w) : v € Li,w € Lit1;¢§(w) = £(v) +r € R(p)}

In other words, the cardinality of layers P, and the stencil signature R(p), define
a collection of number pairs A, in the range [1, P], that define the numbers of
source and target nodes of edges between two consecutive layers:

A={(a,b) :a,b€[1,P;b=a+71 € R(p)}
B = {(,w) v € Liyw € Linns (€(v), £ (w)) € A}

Definition 4.2.2 A Stencil Mesh is a triplet M' = (P, D, R(p)), that defines a
mesh graph M = (V,E) with |L| = D;|L;| = P and E defined by the stencil
signature R(p).

Stencils define synchronization functions based on local synchronization pat-
terns. For example, the signature R(p) = {—1,0, —1} defines the synchronization
pattern of meshes representing 1D cellular automates or neighbor synchroniza-
tion structures. Fig. 4.22 shows the stencil mesh M = (4,3,{—1,0,1}). The
edges between layers are defined by the following A set, where the number pairs
are defined by P =4 and R(p):

A={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3), (3,4), (4,3), (4,4)}

D=3

RP={-1,0,1}

Figure 4.22: 1D Cellular Automata mesh defined by a stencil

The numbering of meshes nodes may be extended to N', to more conve-
niently represent synchronization structures commonly found in applications
based on 2D,3D cellular automates, quad- and oct-trees, etc. In those cases,
the parameter P is represented by an n-tuple of natural numbers (P € N") and
the signature of the stencil will be a collection of Z™ tuples. The A set will
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be formed by pairs of n-tuples. For example, consider the following 2D mesh:
M = ((4,4),3,{(-1,0),(0,1),(0,-1),(0,1),(0,0)}). This mesh represents 3 it-
erations of a 5-star stencil 2D cellular automata with 4 x 4 nodes in each layer.
The nodes and the synchronization pattern are shown in Fig. 4.23.

oo

Layer Numbering 5-star stencil

Layer interconection

Figure 4.23: 2D Cellular Automata mesh defined by a stencil

For stencil functions, S is related to the number of elements in the stencil
signature: S < |R(p)|. Boundary nodes may have less leaving edges than sig-
nature elements because the target numbers may be outside of the numbering
range: (£(v)+7r € R(p)) ¢ [1, P]. However, for large sizes of P, S becomes closer
to the signature cardinality: limp_,oo S = |R(p)|. Thus, we consider S =~ |R(p)|
as a good approximation.

We present now the stencil mesh models for the two highly regular static
applications selected for our experimental framework in section 4.2.1:

Static macro-pipeline: This simple structure is created by a 2 elements stencil
signature (S =~ 2):

M = (P.D,R(p)) : R(p) = {0,1}

1D Cellular automata: This application has been used as example previously.
The signature has 3 elements (S = 3):
M = (P,D,R(p)) : R(p) = {-1,0,1}

In both cases, the computation to execute in each task is the same. Thus, all
nodes will be of the same type for workload modeling. At programming level,
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each task computes one data element with the local data and the remote data
received (one or two elements depending on the application). At mapping level,
a big amount of data is partitioned among P processors. If the input data size is
n, let k = n/P be the number of data elements to be processed locally for each
processor. Let ¢ be the computation time needed to process one data element:

YVoeV :r(v)=kxXxc

Other typical application structures are represented by graphs defined by
synchronization functions that are changing with the number of layer i or node
&(v), or where the P parameter is also variable along the layers. We describe
here the graph models of other static applications selected for our experiments
in section 4.2.1. They present regularities that allows to express them with
parameterizable and more complex synchronization functions:

Butterfly networks (FFT): For this kind of structures, D parameter is de-
pendent on P, because the number of iterations needed to complete an
FFT algorithm depend on the data size: D = 1+ log, P. The synchroniza-
tion function for this structure is dependent on the number of the layer.
Let Lj,L;11;1 = 1,...,D — 1 be two consecutive layers of the mesh. We
define the butterfly function f; : [1,P] — {—1,+1} as:

fila) =1 =2 [(((a —1) mod 2°)/2"*1)]
The synchronization function may be defined as:

pi(€(v)) = {£(v),€(v) + fil€(v)) ¥ 2}

An example of this structure for P = 4 is shown in Fig. 4.24. The local FFT
function always uses one element of local data and one element of remote
data. For this structure the synchronization density value is exactly S = 2.

At programming level, each node represents the execution of the FFT func-
tion for two data elements, and all nodes are of the same type for workload
modeling. However, at mapping level, when data is partitioned among a
fixed number of processors, the nodes in the first layer execute the full FFT
algorithm for the local piece of data. If data pieces have k elements, the
local computation complexity is k& X logy k. The nodes in following layers
execute only one FF'T iteration, with local and received data as input. The
computation complexity is only k. Thus, at mapping level, in this kind of
application we must distinguish two types of nodes for workload modeling.
For n data elements, let £ = n/P and let ¢ be the computation time to
process one data element:

Vo€ Li: 7(v) =k xlogyk x ¢
VogLi: 1(v)=kxc
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pa)={a f@x2""}

Figure 4.24: FFT butterfly network

Matrix factorization (LU reduction): We study the structure of a LU for-
ward reduction algorithm without pivoting (see e.g. [79]). The structure
of this application represents most factorization methods for dense matri-
ces, like Cholesky or QR. factorizations. A triangular shaped synchroniza-
tion structure is generated. The code, parallelized by rows, is presented
in Fig. 4.25. Given the sizes of the input matrix (n x n), at programming

(1) // LU ALGORITHM
(2) DO k=1,n-1

(3) PARALLEL DO i=k+1,n
4) lik = aik/ank

(5) DO j=k+1,n

(6) aij = aij —lirar,;
(7) END-DO

(8) END-DO

(9) END-DO

Figure 4.25: LU forward reduction algorithm

level P =n—1and D = n. The structure presents layers with a decreasing
number of nodes (column elements to be updated) along iterations (row
updatings). In each iteration, a node computes the row that is needed for
all the nodes in next iteration to update their rows. Synchronization pat-
terns are: one to all from first node in a layer to all nodes in the next layer;
and one to one for the rest of nodes. Thus, the synchronization function is
different for different nodes in a layer.

The graph model of matrix factorizations is defined by the following dec-
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larations (let n be the dimensions of the input matrix M, «,):

D=nP=n-1

1 ifi =1
Pi:{ n—i+1 ifi#1
_ [ {aza€[L, P} iféw) =1
A = { GORSY if ¢(0) # 1
Programming level Mapping level (P=4)

(a) (b)

Figure 4.26: LU reduction: Programming level and mapping level graphs

An example of the structure generated is shown in Fig. 4.26(a). The grey
nodes represent the tasks that compute the row that must be made acces-
sible to all other nodes in next iteration. For this applications S parameter
may be analytically determined from the synchronization descriptions. The
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S value is dependent on the P value:

V= (n*—-n)/2
|E|= n?-2n+1

S = 2n2—2n+1

n2—n

Matrix factorizations present synchronization structures with a very low S
parameter values.

Although this structure is similar to other factorization algorithms (as e.g.
Cholesky factorization), the workload distribution will be different for each
factorization algorithm. In fact, grey nodes in Cholesky factorization do
more computation operations than the rest in the same layer. For our LU
forward reduction algorithm each node in the same layer does the same
number of element updates, but the number of updates is decreasing along
iterations. Let be ¢ the computation cost of one data element update:

0 ifi=1
TwEL”_{cxm—i+miu¢1

LU reduction is a problem with many different possible mappings and im-
plementations that heavily change the synchronization pattern of the orig-
inal program model shown in Fig. 4.26(a). For example, a typical imple-
mentation achieves load and communication balancing by distributing rows
of the matrix to processors, with a stride equal to the number of processors.
Thus, for P processors, processor ¢ will store the following set of matrix
rows:

R; = {ri, T(P+i)s T(2P+i)s T(3P+4)> o}

Communication balancing is created because in each iteration a different
processor computes and sends the row that all of them need to update
the rest of their data in the following iteration. Cycling the processors
that send one row to the others, changes the graph topology. Now, it is
determined by n and P parameters:

D =n;
1 ifi=1
P=<X P ifl<i<n—-P+1

n—i+1 ifi>n—-—P+1
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{a:a€[l,P]} if&(v)—1=(i—1)modP
p&(v) = ¢ {&(v)} if(v) —1# (i —1)mod P;i <n—P+1
{&(v) — 1} ifé(v)—1#(G—1)mod P;yi >n—P+1

An example of the resulting mapping level graph for P = 4 is shown
in Fig. 4.26(b). For these mapping level graphs, the load is not so regular
for nodes in the same layer, due to the different number of rows that each
node may be processing. Thus, the workload model is more complicate.
Let us assume (n mod P) = 0 for simplicity:

0 ifi=1
Twel)=< |[(n—i+1)/P| xrow ifi#1,6(v)—1<(i—1)modP
[(m—i+1)/P] xrow ifi#1,{(v)—1>(i—1)mod P

row =c¢ x (n —i+ 2)

We conclude that extracting graph models from programming level specifi-
cations is a simple task for typical static programs, where the synchronization
patterns are regularly repeated for scalability. Mapping level graphs may me
more complicate and highly different from the corresponding programming level
graphs. As the data is spread across processors in different patterns, the synchro-
nization structures are adapted to these new patterns. Nevertheless, it is still
an affordable task. The graph models obtained clearly represent the task and
synchronization structures of the applications, and may be used with automatic
SP-ization techniques to obtain equivalent SP versions of the original application.

4.2.3 Application cost models at implementation level

When implementing an application for an specific machine model, new con-
straints appear. The communication/synchronization structures must be adapted
to the low level mechanisms of the selected target machine model. ME may be
transformed to static dependences through scheduling in some models, while oth-
ers will relay this task to run-time contention in communication systems. Thus,
the implementation of communication/synchronization mechanisms may trans-
form the task graph, adding new details. Communication structure and com-
munication delays are now an important issue. They are introduced as nodes of
their own specific type. We will distinguish as many node types as needed (tasks,
point to point communications, barriers,...). Nodes of the same type will share
a common workload distribution.

The communication graph structure is dependent on the implementation of
the underlying communication layer and parallelization tools selected. For ex-
ample, different implementations of a message passing library (as MPI) may
implement the communication structure of a broadcast collective operation in
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different ways (synchronized vs. non-synchronized, one to all point to point com-
munications vs. a tree). Programming tools may also include specific scheduling
algorithms that produce different transformations to the graph structure. Thus,
knowledge of all the low level details of the programming model chosen for im-
plementation is needed to derive accurate graph cost models.

Deriving implementation level graphs

We describe a general approach to derive task graphs from a program description
in a given machine and implementation model. This approach may be done au-
tomatically for some models and programs. We specifically comment foundation
for automatic construction of task graphs in message passing systems.

Tasks identification: Tasks are identified in the same way as it was done at
programming level (see section 4.2.2). The execution of sequential code
between two communication or synchronization operation (or collection of
operations without computation in-between) is considered a task.

Communication model: For our graph models we must use a very simplistic
communication representation. Otherwise, the graph will be too complex
to derive or handle. The details of communication can be different in
any parallel programming tool and even in each implementations of it. In
general we must simplify as much as possible but with enough detail to get
a trustful approximation.

We present here a simple modelization of common operations in the com-
munication layer of the MPI interface. We consider two different imple-
mentations. One for CrayT3E and other for a Beowulf system (mpich).
Both implementations share common characteristics that let us model our
simple communication schemes in the same way. A graphic representation
of each communication form discussed is shown in Fig. 4.27.

e Four types of communication nodes will be used (V1, Ve, Ves, V3)

e When a point to point communication appears alone, it can be con-
sidered as a whole in only one node (V).

e In the situation where a program is issuing several point to point
communications one after the other, all of them should be divided in
two nodes:

1. The first phase node (V,2) will correspond to buffering the message
and initiating the real communication. This phase will also delay
the beginning of the next communication.

2. The second phase node (V.3) will correspond to real communica-
tion and reception for the message, and it will delay only the start
of the receiving task.
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Isolated Detailed point2point comm.
point2point comm. (a) Initiating comm.

? (b) Real comm.

Barrier
synchronization

Figure 4.27: Communication models for MPI

e A broadcast communication will be represented by p (the number of

processors) simultaneous point to point communications (V). This
will comply with the MPI interface that states that the implemen-
tation of a broadcast operation can or cannot be synchronized. Im-
plementations of the broadcast operations can distribute the message
spawning it through processors in different ways, being typical a vir-
tual tree structure. Nevertheless, for simplicity we will consider all
the nodes to have the same workload distribution. Measures in real
machines support the accuracy of this simplification. A communica-
tion node will also connect the communication initiating task with the
next task in the same processor, to represent the cost of issuing the
broadcast.

Barrier synchronizations will be modeled with a new type of nodes
(V4). In message-passing interfaces the barriers are typically imple-
mented with a tree like communication structure. The cost is variable
with the number of nodes involved in the barrier. Thus, a different
type of node should be use for barriers with different number of pro-
cessors. However, the tree-like structures have a logarithmic effect
on the cost when the number of processors is increased. For simpli-
fication, only one type of node will be introduced for each range of
processors number between powers of 2 (Via, Via, Vig, Viis, ...). Bar-
rier times are easily predicted by direct measurement for any given
number of processors.

Our model is simple enough to easily derive the implementation level task graphs,
and accurate enough to get asymptotic predictions of the application behavior if
proper workload models are provided for both, tasks and communications.
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Example

In this section we show an example of how to use these simplified cost models to
predict important information about the effects of SP-ization techniques when
different MPI implementations of an algorithm are considered.

We have chosen the LU reduction application because it shows different per-
formance effects when SP-ization is applied to different implementations of the
same algorithm. These effects are not detected when using a programming level
model, but they are predicted and explained with our simple implementation
level graph cost models.

We discuss implementations of the forward reduction algorithm, mapped by
rows interleaving as presented in section 4.2.2. Two implementations for the
communication stage have been considered (See algorithms in Fig. 4.28):

IMP-1: A simple loop of point to point communications.
IMP-2: A broadcast operation.

SP versions of both implementations are easily constructed adding a full barrier
synchronization after the communication stage of each iteration.

(1) // LU IMP-1 (1) // LU IMP-2

(2) DO iteration=0,n (2) DO iteration=0,n

(3) // COMMUNICATION (3) // COMMUNICATION

(4) IF mod(iteration,p) = myself THEN (4) IF mod(iteration,p) = myself THEN
(5) DO proc=1,p (5) Copy row in sending position
(6) IF p # myself THEN (6) END-IF

(7 Send(proc,row) (7 Broadcast(row,mod(iteration,p))
(8) END-IF (8)

(9) END-DO (9) Barrier (ONLY SP VERSION)

(10) ELSE (10)

(11) Receive(row) (11) // COMPUTING: UPDATE ROWS
(12) END-IF (12)

(13) (13) END-DO

(14) Barrier (ONLY SP VERSION)

(15)

(16) // COMPUTING: UPDATE ROWS

(17)

(18) END-DO

Figure 4.28: LU reduction message-passing algorithms

The corresponding graph models for a mapping in 4 processors are shown
in Fig. 4.29 The key to distinguish the types of nodes follows:
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Tasks Vi White nodes

Full communication V.1 Black nodes

First phase communication Ve Big dark grey nodes

Second phase communication V.3 Small dark grey nodes

Barriers Vip  Light grey nodes with dashed line

Tasks are executing updates on less data as iterations pass by. The mean
load time of tasks is decreasing with the layer depth. In the mapping model
we presented a workload model that was quite complicate; dependent on the
number of layer (iteration) and number of node inside the layer (processor). We
have tested other simplified workload models. For our example we have chosen
to derive a very simplistic task graph with only one type of node for all tasks.
We will use the same Gaussian random distribution to calculate the load in each
node. Modeling any task load with the same random distribution is a very rough
approximation. However, we find that using statistical information from sample
executions, for mean and deviation parameters, the accuracy is enough for our
purposes. It is the communication pattern the one which plays the important
role in the results.

The statistical workload information can be obtained from sample executions
or by any known prediction method. The results obtained will be highly sensible
to the workload information accuracy, especially because we are using such a
rough approximation of the real workload model. The mean and deviations used
for task and communication nodes have been statistically obtained, from direct
measures when executing codes of the MPI implementations discussed here. For
tasks we use the overall mean and deviation when all tasks are considered to-
gether. Two machines with different communication times and characteristics
are considered; a CrayT3E and a Beowulf system.

The graph models obtained are used to simulate performance behavior of the
SP and NSP versions of each implementation. The results obtained from the
models can be used to determine which implementation may be safely translated
to SP (asymptotic behavior is not modified).

We present first an accuracy study, comparing predictions obtained from the
graph models with execution times of real implementations in a CrayT3E and a
Beowulf system. To supply graph models with workloads, we gather statistical
information about mean and deviation values for the load on different types of
nodes, from experiments with real codes. The size of the problem is scaled up
with the number of processors, using matrices of double data size when doubling
the number of processors. The initial matrix size has been empirically calculated
for each machine to obtain similar task times. Table 4.1 shows the estimated pa-
rameters in the two machines considered, for the number of processors available.
The load values have been rounded up before using them for graph simulations.

CrayT3E has faster mean communication times with lower deviations, even
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Figure 4.29: Implementation models of LU reduction with distributed rows
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CrayT3E
Vi Vel Vea Ves Vo
Proc. m o’ 1 o’ m o’ m a? 1 o’
16 19 | 0.28 0.66 | 0.00001 0.22 | 0.00001 0.44 | 0.00001 0.104 0.000001
32 19 | 0.28 0.88 | 0.00001 0.22 | 0.00001 0.66 | 0.00001 0.143 0.000001
64 19 | 0.28 1.32 | 0.00001 0.22 | 0.00001 1.10 | 0.00001 0.175 0.000001
128 19 | 0.28 2.22 | 0.00001 0.22 | 0.00001 1.98 | 0.00001 0.224 0.000001
Beowulf
Vi Vet Veo Ves Vs
Proc. 1 o? M o? 1 o? 1 o? M o?
2 19 | 0.31 1.00 0.0001 1.00 0.0001 0.00 0.0001 0.50 0.00001
4 19 | 0.31 2.00 0.0005 1.00 0.0001 1.00 0.0001 1.00 0.00010
8 19 | 0.31 6.00 0.0007 1.00 0.0001 5.00 0.0001 3.00 0.00100
16 19 | 0.31 9.00 0.0010 1.00 0.0001 8.00 0.0001 6.0 / 2.0* 0.00100

Table 4.1: Load estimated times (milliseconds)

for a large number of processors. Thus, the results of the simulations will be more
reliable. The barrier synchronization system is also more efficient when scaling
up. It is noteworthy the strange effect of barrier times for 16 processors in the
Beowulf system. After a group of point to point communications, full barrier
time still grows up (6.00ms). However, after a broadcast operation, the time is
even smaller than with less processors (2.00ms). It seems that an optimization
of either the MPI implementation or the hardware is carried out when a barrier
is issued after a broadcast with all the processors in the system. Communication
mean times in the Beowulf are in general not so much reliable, as unexpected
peaks are commonly found.

Comparative results from real execution times and predictions with the graphs
are shown in Fig. 4.30. In all cases the performance predicted times are similar
to the real measures, and they show the same slope tendencies.

The first effect observed is that IMP-2 scales better than IMP-1. The graph
model can be used to explain the effect. IMP-1 creates a strange communication
pattern, that is not well balanced. The loop is always sending messages to
processors in strict numbering order while the origin of communications is cycling.
In Fig. 4.28 (NSP IMP-1), we can see that the first phase of each point to point
communication, accumulated for all send primitives, is not evenly distributed to
other processors. Depending on how significant is the mean load of the V5 nodes
compared to V.3, the overall performance can be badly affected. Moreover, as
more processors get involved, the delay grows higher. The relative importance of
Vio vs. Vi3 loads is higher in the Beowulf system than in the CrayT3E, as shown
in Table 4.1. However, we use many more processors in the CrayT3E. Thus,
the final effect is even more noticeable in CrayT3E. The broadcast primitive of
IMP-2 scales clearly better than the IMP-1 for both NSP and SP version.

Changing the loop indexes to cycle with the processor initiating the com-
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CrayT3E - LU (1600x1600 16 Proc., scaled up)
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Figure 4.31: ~ comparison: Real times v vs. predicted times y

munications will alleviate part of the problem. However, the SP version that
adds a barrier after the communication stage is always delaying all processes
up to the accumulation of all communications first phase. When the number of
processors grows, the problem gets linearly worse. Fig. 4.31 shows the values
of v (performance loss due to SP-ization) for real and predicted results. It can
be seen that IMP-2 is perfectly suitable for SP programming, as the 7y values
keep almost constant when the application is scaled up. The loss of performance
in SP version of IMP-2, clearly seen in the Beowulf case, is generated by the
times needed for barrier synchronizations when the number of processors grow
up. Better barrier synchronization mechanisms will diminish this loss. The peeks
in communication/synchronization times in the Beowulf also helps this grow.

We must also point out the curve slope differences between measured and
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predicted ~y values. Since we used simplified graph models in our simulations,
some irregularities appear, especially in the central part of the number of pro-
cessors axis. In general, predicted results are higher than real measures, which is
a consequence of the rounded up approximations we have used. As the number
of processors (and thus the execution time) grows, the relative importance of ac-
cumulated rounding errors is smaller. All this could perfectly explain the shape
differences of the v prediction curves.

With the predictions obtained with our simplified graph models we can rec-
ognize that IMP-2 is in general better than IMP-1 due to the implementation on
the underlying message-passing library. IMP-1 is especially not well suited for
SP-ization with full barrier synchronization. On the other hand, IMP-2 behaves
correctly in SP version, providing a very small loss of performance.

Conclusion

The previous study shows how very simple graph models can be used to asymp-
totically predict performance effects produced by synchronization structure mod-
ifications. For simpler applications, graph cost models derived at programming
level will be accurate enough. When more complex mappings are used, more
detailed models must be derived, at mapping or even implementation abstrac-
tion levels. However, very simple graph modelation techniques, that can be even
automated to extract structure from codes, turn up to be accurate enough.

4.2.4 Static applications results

In this section we discuss the results of our study of v and I" for static applica-
tions. The experimental framework design was discussed in section 4.2.1. First,
we obtain experimental measures of I' from the execution times obtained with
real MPI implementations of the NSP and SP versions of the selected applica-
tions for different machines. We extract workload information by monitoring the
applications execution. Using statistical information about the real workload, we
experimentally estimate v with the cost models discussed in previous sections,
to validate the simple graph modeling techniques for each application subclass.
We compare our T' results with 7 predictions and general trends obtained for
synthetic graphs, presented in section 4.1.

We more precisely define here the relative performance indicator we use for
I. Our reference programming model will be the MPI with point to point (or
basic collective) communications implementation.

Definition 4.2.3 Let Tyrpr be the execution time of the NSP version with point
to point (or basic collective) communications. Let ThrpriBarriers be the execu-
tion time of the SP version generated adding barrier synchronizations after each
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communication phase. Then:

T = TMPI+Barm'ers
Typr

The following results are exposed:

1. Performance effects predicted with the graph models are similar to those
obtained with synthetic graphs:

In the case of Macro-Pipeline and 1D Cellular automata, the graph models
are inside the synthetic meshes graph classes studied in section 4.1.3. In
fact, Macro-Pipeline was used as foundation for the unbalanced synchro-
nization meshes experiments. The 1D Cellular automata is also similar
to the random graph meshes generated with S = 3. However, in ran-
dom meshes, the edges were not propagating dependences only to neighbor
nodes, but to further nodes with the same probability. In neighbor sten-
cil based graphs, the dependences are spread across layers slower than for
random synchronization functions, and the SP-ization should produce a
little higher impact. In Fig. 4.32 we show that using random distributed
workloads with the 1D Cellular automata graph model, we obtain very
similar predictions as for S = 3 synthetic meshes. However, the 7 results
are slightly higher (compare with plot slopes in Fig. 4.10 and Fig. 4.11).

The FFT application graph model present a low synchronization density
parameter S = 2, and a number of layers dependent on the degree of
parallelism D = log, P. Thus, the number of layers is always low, and the
critical parameter is the layers size P. In Fig. 4.33 we show the results
of experiments with FFT graph models supplied with random workloads.
The results confirm the same logarithmic like effect of parameter P on v,
for butterfly network structures.

The LU reduction graph model derived at programming level, present inter-
esting features. The S, P, D parameter values are dependent on the input
matrix size n. Thus, the topology has always a similar triangular shape,
more different from the synthetic meshes than the previous applications
studied. Moreover, the workload model is dependent on the number of
layer. For experiments with random workloads we propose a random work-
load model where p; is determined as a function of the layer index by the
workload model proposed in section 4.2.2 for LU, and o is computed as a
function of y; and a chosen variability:

o =i Xs:¢€{0.1,0.2,0.5,1}

In Fig. 4.34 we show the effect produced on ¥ when we scale up the pro-
gramming level structure. For this graph model, P, D parameters are equal
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1D Cellular Automata (S=3, D=100)
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Figure 4.32: v results for random workloads in 1D Cellular automata model

and determined by the input matrix size n. The S parameter is very low
(below 2) and the full barrier synchronization cannot be avoided by the
SP-ization techniques. Thus, as expected, worse results than for other ap-
plications are obtained. Although the plot slopes are higher than for other
applications, the same logarithmic tendencies are observed.

The mapping level graph model has been also supplied with random work-
loads. In this case, n determines D but P is only restriction by P < D.
Thus, we have conducted experiments to test the effect of both parameters
separately with huge graphs (up to half million nodes). In Fig. 4.35 we
show the = plots for both experiments. As the minimum value of D is the
same as P, the limited effect of this parameter, found in synthetic meshes,
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FFT (S=3)

D (P =2"D)

Figure 4.33: v results for random workloads in FFT graph model

appears immediately, even in the lower possible values. However, we ob-
serve some irregularities and a very small increasing of v when the input
matrix size increase. The reason is the presence of a very small pathological
behavior due to some unbalancing in the synchronization patterns, as dis-
cussed in section 4.1.3. The effect of P parameter is following the general
logarithmic tendency, except for the irregularities produced by both: the
small unbalancing in the synchronization patterns (as found in synthetic
meshes) and the change of shape experimented by the graph with the P
values. The pathological effect due to unbalanced synchronization pattern
is producing the slope irregularity around D/4, but the triangular part of
the graph dominates the behavior after P = D/2, producing another slope
change.

It is interesting to notice that, considering the full range of results, the
workload balance is much more important than the type of application
or S parameter value. The big differences on v among all the applications
studied, are produced for big values of ¢. For ¢ = 0.1 the 7 values are small,
and the slopes are very similar (with less than 20% of difference among all
applications and synthetic meshes), even for the biggest P values tested.

Task workload balance in static applications:

A principle design of parallel applications is to distribute load across pro-
cessors. For all static applications tested, the workloads are very well bal-
anced. All task in these examples are executing the same piece of code
for the same amount of data. As discussed in section 4.2.2, FFT or LU
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LU reduction (S<2) Programming level
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Figure 4.34: v results for random workloads in LU programming level model

applications present this characteristic only layer by layer, that is perfectly
enough to talk about a well-balanced computation.

Thus, as predicted at programming level when modeling the workloads (see
section 4.2.2), the task loads are highly regular, showing in most cases a neg-
ligible deviation (see Table 4.2). In the table we can appreciate performance
effects introduced in a very low level by the machine architecture. The ex-
ecution times of tasks (sequential codes) become unstable only when the
user task is sharing the processor time with operative system tasks. This
effect never happens in the CrayT3E, as the operative system launches the
user jobs in other free processors. In the Origin2000 (a cc-NUMA machine)
it is noticed only when the number of processors used is equal to the max-
imum installed in the machine. The operative system is typically running
in only one processor. Hence, only when this last processor must be shared
with user processes, awful effects that degrades the user tasks performance
appear (cache trashing, processes migration across processors, etc.). The
Beowulf, representative of NOWs and low coupled systems, is the worst
case. In these machines, most of the operative system tasks, and the MPI
daemon operations, are executed locally in each node. Thus, the user tasks
must share time with them. As the amount of processors increases, more
communication and synchronization operations share the limited network
bandwidth. Thus, their times increase. Moreover, the complexity of low
level communication tasks also increases (collective operations, as barriers
are a good example). Thus, the time of executing the same piece of code
with the same data increases and becomes less predictable. This effect, typ-
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Figure 4.35: v results for random workloads in LU programming level model

ical in low coupled systems (for which Grid computing is the extreme case),
enforces an idea related to SP SA: potential beneficial effects can be ob-
tained using hierarchical division of computations, in locally synchronized
subparts (see e.g. [119, 118]).

However, the real workload variability, statistically measured, is really small
even for the worst cases (saturated Beowulf):

¢ < 0.024; <=0.005

This leads to extremely low performance losses for the SP versions.
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Origin2000
Macro-Pipeline || Cellular automata
Proc. m o’ 1 o’

2 23 <0.001 28 <0.001

4 23 <0.001 28 <0.001
6 23 <0.001 28 0.001
8 23 0.002 29 0.003
CrayT3E
Macro-Pipeline Cellular automata
Proc. m o? m o?

16 52 <0.001 27 <0.001
32 52 <0.001 27 <0.001
64 52 <0.001 27 <0.001
128 52 <0.001 27 <0.001

Beowulf
Macro-Pipeline || Cellular automata
Proc. m o’ m o’
2 21 0.003 27 <0.001
4 22 0.105 27 <0.001
8 23 0.136 28 0.002
16 23 0.288 28 0.002

Table 4.2: Statistical workload information for highly regular applications (ms.)

3. Very low performance degradation:

In Fig. 4.36 we show the I' plots that summarize the results obtained with
real application codes in different machine architectures. We observe the
general logarithmic tendencies when the applications scale up, predicted
with the programming level models. However, with extremely low slopes
due to the small relative deviation of the task loads. Irregularities in the
plots are produced by different low level machine effects described below.

Machine architecture independence, and side effects:

Different irregularities and strange effects in ' plots are observed across
machines (see e.g. the performance upgrading of LU reduction applications
in CrayT3E and Origin2000 for some specific number of processors). All of
them are easily explained by the different nature of machine architecture
and operating system activities, that affect every application run.

We observe that the most regular results are obtained in the CrayT3E,
where the task loads are more stable and the communication costs are
lower. The performance loss is less than 2% in the worst case for 128
processors. In the Origin2000, the barrier costs are comparatively higher,
and it affects the performance. We also see the high impact of running
the applications with the maximum number of processors available in the
machine (8 processors in this case), when the user tasks share resources
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(as CPU) with the operative system tasks, that are typically running in
only one processor. In the Beowulf system we appreciate the increasing
costs that appear due to irregularities produced by task, operative system,
and communication overlapping in every node. However, the performance
degradation is still very low (less than 5% for the worst cases).

A remarkable case previously discussed is the LU reduction application.
Recall the implementation considerations exposed in section 4.2.3. Even if
no compiler optimization is used, the communication layer performs run-
time optimizations when a collective communication primitive is followed
by a barrier. This effect is observed for specific numbers of processors in the
CrayT3E and Origin2000. In these machines, the MPI implementations are
optimized by the vendor for the architecture and low-level hardware details.
An improvement of performance, around 2%, is obtained in some cases.

Apart from this predictable irregularities, the performance degradation due
to added dependences is proportional to hardware speed across machines.
Specific machine effects with high impact in performance, affect in the same
way to the NSP and the SP versions. For example, in the Beowulf system,
we observe completely different communication time response when appli-
cations scale up from 6 to 8 processors (see Fig. 4.37). Nevertheless, they
do not modify, or even improve, I' results (the relative performance impact
is decreased when a constant is added to both: NPS and SP execution
times).

Thus, different architecture models do not create unexpected differences in
the ' tendencies. The general conclusions obtained from the results are
the same in all cases. The real performance effects produced by changing
the programming style or model to a restricted PPM, is independent of the
machine architecture.

We conclude that: (1) General tendencies (e.g. logarithmic effect when scaling
up) observed with synthetic graphs are found in real applications; (2) static, scal-
able applications are, in general, well balanced applications. Thus, as predicted
with synthetic graphs, and the application specific graph models, the potential
performance effect when programming these applications in SP programming
models is extremely low; even when no SP specific optimization or run-time en-
vironment is exploited. For some applications (as LU reduction implemented
with broadcast), highly structured synchronization is exploited by implementa-
tions at run-time level, even by non-specific NSP programming models as MPI.

4.2.5 Dynamic applications results

In this section we discuss the results of our study of v and I' for dynamic ap-
plications. Recall the experimental framework design discussed in section 4.2.1.
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Figure 4.37: Execution times of some applications in the Beowulf system

Due to the data-dependent nature of these applications, we can only explore ~y
as a function of structures generated by specific applications for a given input
data. Hence, we use example structures, representative of the typical structures
generated by a given application. These example structures can be obtained at
run-time by monitoring existing applications, or can be derived manually from
the data structure and the code. The second method is clumsy, unaffordable
for complex applications, and impossible when run-time decisions (as some ME
or scheduling solutions) are inherent to the original code. For our experiments
we have selected several available examples of task graphs generated manually
or during run-time for two typical applications, representative of important and
large application classes detected in the classification presented in section 2.6.
Both are based on finite element solvers, and they represent the structures gen-
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erated by typical iterative and direct solvers for sparse-matrix computations.

Iterative solvers and graph partitioning

Many finite element and PDE problems are solved by iterative methods applied
to the sparse adjacency matrix that represents the problem graph. Structural
engineering, chemical and physical phenomena simulations, and many other prob-
lems use these methods. The problem graph is distributed among the available
processors by a partitioning algorithm that try to balance the load and minimize
the communication due to links between graph nodes allocated in different pro-
cessors. The solver algorithms apply the same computation for each iteration
on the local nodes, and communicate the computed values that other processors
need before the next iteration. Hence, for these problems, the computational load
of a task is proportional to the number of nodes allocated in a given processor.

Given example input graphs and a partitioning algorithm, we can compute
the data distribution for any number of processors. Thus, we can reconstruct the
mapping level graph associated with the computation, including load estimations.
The graphs can be used to estimate y values for this class of applications.

We have selected six example graphs from the structural engineering field
as study cases. The graphs are obtained from the Everstine’s collection?, to be
found inside the Harwell-Boeing collection of sparse-matrices [58]. This public
collection is available on the Matrix Market home page [146]. We have selected
six graphs that present different structure patterns, and cover a wide range of
nodes number, from the available in the full set (87,209,607,1005,1242,2680).
From now on, we add the number of nodes after the name of each example for
clarity. In Fig. 4.38 we show 3D models of the objects from which the matrices
are obtained, and in Fig. 4.39 we show the sparse-matrices structures.

The graph partitioning algorithm selected is METIS (see e.g. [167]), that is a
free and state-of-the-art multi-level partitioning software for unstructured graphs,
that can be found in the METIS/ParMETIS home page [117]. We have used this
software to partition the input graphs for 4,8,16,32,64 number of processors. The
obtained data is processed to reconstruct the mapping level graphs, and to obtain
the statistical information needed.

From the collected data we observe the following results:

1. Good load-balance:

As the computational load is typically proportional to the number of nodes
allocated in the local processor we can estimate the mean load and deviation
with the number of nodes in each part. In Table 1 we show the workload

2These patterns were collected from various US military and NASA users of NASA’s struc-
tural engineering package NASTRAN for use as a benchmark collection for variable bandwidth
reordering heuristics. They have been widely used in benchmarks.
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Figure 4.38: 3D models of the structural engineering examples



4.2. REAL APPLICATIONS 219

Tower-87

.
.

Y
™

A

Wankel rotor-607 Baseplate-1005% &

Matrix Market - Harwell Boeing Collection - Everstine’s collection

Seachedt-1242 v -V . N\J|Destroyer-2680 - - TR

Figure 4.39: Sparse-matrices structure of the structural engineering examples
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variability obtained for each example with a given number of processors.
The graph partitioning methods are designed to create a well-balanced data

Example # Procs.
4 8 16 32 64

Tower - 87 .0199 | .1747 | .2053 | .1658 | .5723
Console - 209 .0249 | .0127 | .1469 | .1875 | .1457
Wankel rotor - 607 | .0505 | .0267 | .0422 | .0466 | .3334
Baseplate - 1005 .0183 | .0199 | .0212 | .0442 | .0663
Sea chest - 1242 .0204 | .0190 | .0176 | .0176 | .0680
Destroyer - 2680 .0155 | .0172 | .0241 | .0243 | .0306

Table 4.3: Estimated ¢ for partitioned iterative solver task graphs

partition. We observe very low variabilities, as the partitioning method is
performing quite well. The only cases where the values are higher than
a very small bound ¢ > 0.1, are found when the number of nodes per
processor is very low, and the parallelism exploitable is very poor (see e.g.
the smaller example, Tower-87). For normal real computational problems,
the load will be well distributed, leading to minimum performance effect
when SP-ization is applied.

. Regular structures:

In Fig. 4.40 we present an example of a small mapping level graph gen-
erated for some iterations with the Sea chest-1242 example, mapped for 8
processors. Recall that reducing the number and load of communications
among processors, and promoting some neighborhood, is an objective of the
partitioning algorithms. Hence, we find that the structures obtained are
very similar to the synthetic meshes studied in section 4.1.3. The shape of
these mapping level task graphs is highly regular. They have a fixed num-
ber of nodes per layer (the number of processors for which the partition is
computed) and each layer represents an iteration of the solver. The number
of edges per node is determined by the partition computed. In Fig. 4.41
we show the S parameter measured for the generated graphs. Its values
are found in a narrow range, and the general trend is that S increases log-
arithmically with the number of processors. When the number of nodes
per processor is very low, we find again a case where there is not enough
parallelism available and the number of communications decrease (see e.g.
the Tower-87 example plot). Thus, the increase of P values is somehow
compensated by the increase of S. This effect together with the small load
variability observed, predict very low v values for this applications type.

Load distribution correlation:

There exists an important correlation in how the loads are distributed
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Figure 4.40: Example task graph: Sea Chest-1242, 8 processors, 8 iterations

across the graph. Different layers represent different iterations of the same
computations. Thus, when the partition assigns different number of model
nodes to different processors, the load distribution has a vertical correlation
with the topology. If an implementation level graph is considered, where
communication costs are accounted, the correlation can be even more no-
ticeable. This correlation may produce a beneficial v reduction, especially
in these cases of low workload variability along several iterations (see sec-
tion 4.1.3).

4. Negligible performance degradation:

In our set of experiments with these graphs, using the loads estimated with
the number of nodes allocated to each task in the partition, with have
found no critical path value increase due to SP-ization except in cases of
assuming high load variabilities for nodes. This will not be the case for
this kind of applications, where a processor is replicating exactly the same
task in each iteration. The real loads have extremely low variabilities in
different instances of the same node. In this case, the SP-ization effect is
typically neglected.

The conclusion is that if the partitioning algorithm is producing a good par-
tition and no other run-time or machine details severely affect the load balance,
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Iterative solver - Graph partitioning examples
12 T T T T T

T T
Destroyer-2680 —+—
Sea chest-1242 —<—
Baseplate-1005 —*—
Wankel rotor-607 —&—
10 Console-209 —=— -
Tower-87 —e—

# Proc.

Figure 4.41: S parameter for partitioned iterative solver task graphs

iterative solvers for this kind of sparse-matrices can be programmed in nested
parallelism programming models with negligible loss of performance. The ex-
tra synchronizations and barrier costs are not accounted, but SP programming
advantages are also not considered. For example, the knowledge of the global
communication structure may still be exploited to improve communication per-
formance (see e.g. [57]).

Domain decomposition and sparse-matrix factorization

The DIANA software [55] is oriented to the structural engineering field. It in-
cludes several methods, based on direct solvers for sparse-matrices, to compute
solutions to finite-element problems. The software include domain decomposition
and sparse-matrix factorization modules [123]. Our example task graphs were ob-
tained during the research conducted to parallelize the DIANA software package.
They represent examples of domain decomposition and sparse-matrix factoriza-
tions of real data with different input sizes. The factorizations were implemented
using a tool for parallel execution of unstructured problems (Tgex [124]).

For each of these graphs we apply the Algorithm2 SP-ization technique, and
we measure v comparing the cpv of both graphs. First, we apply different syn-
thetic random workloads to the nodes. Then, we compare the results, with I’
estimations obtained when real workloads (measured at run-time) are considered
in the nodes.

The number of nodes in our example graphs are: 59, 113, 212, 528, 773
and 2015. In Fig. 4.42 we showed the 113 nodes graph before and after the
transformation. The first part of the graph, before it achieves its maximum
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width, is the domain decomposition phase. The rest of the graph represents the
sparse-matrix factorization. An indication of the real workload distribution is
shown; darker and bigger nodes represent more loaded nodes.

After experiments with these graphs the following results are exposed:

1. Topology regularities:

Due to the nature of the application, the topologies present some regu-
larities. Fig. 4.43(a) shows y measures for the six example graphs when
using modeled workloads with Gaussian distributions, as a function of the
relative synchronization density (R,) parameter. They approximately fol-
low the expected tendency detected with synthetic random topologies in
section 4.1.2; ~ decreases with R;. However, if we compare these plots
with the equivalent plots for synthetic random topologies (see Fig. 4.5), we
found that the points are below the expected mean values for completely
random samples. The topologies of these sparse-matrix computations are
not completely irregular, and they are not in the worst case topologies.

2. Workload distribution regularities:

In Table 4.4 we show statistical information about the real task loads. We
find that the workload is highly deviated. Few nodes concentrates the
biggest part of the overall load. Nevertheless, we can see in the graphical

# nodes S
59 2.1
113 3.0
213 1.4
528 2.0
773 7.1

2015 2.6

Table 4.4: Statistical information of real workloads for sparse direct solver.

representation of the graphs that the highly loaded nodes are not randomly
distributed (see e.g. the position of darker nodes in the example graph pre-
sented in Fig. 4.42). We find some of them distributed among the beginning
nodes of the domain decomposition phase, and some other ones at the first
layers of the factorization phase. In Fig. 4.43(b) we show I' estimations
for the graphs considered with real workloads measured during execution.
Information about the number of nodes n and the relative deviation () is
added to each point.

Measured real workloads showed higher deviations than any of the Gaus-
sian models used for each topology. However, I' values are very low, and
much better than expected. The reason for this is that real workloads
are not completely distributed at random across the task nodes. They are
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Figure 4.42: Example of a dynamic application graph and its SP version.
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Figure 4.43: Results for sparse direct solver example graphs.

highly unbalanced, but there still exists a high correlation between topology
structure (layers and local synchronization patterns) and workloads. This
correlation produces a beneficial impact on +, similar to the one presented
for correlated workload meshes in section 4.1.2.

Workload parameters u, o are not enough to get an accurate estimation
of the impact of SP-ization on a given unstructured topology. In general,
the correlation between highly loaded nodes and layers will produce an im-
provement in performance when mapping to nested parallelism structures.

For this set of experiments we find that sparse-matrix solvers generate task
graphs with enough topology and workload regularities to minimize the perfor-
mance impact of SP-ization. However, workload parameters are not enough to
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get an accurate estimation of the impact of SP-ization on a given unstructured
topology. In general, the correlation between highly loaded nodes and layers will
produce an improvement in performance when mapping to nested parallelism
structures.

4.2.6 Conclusions about real application results

In this section we have tested several types of real applications, comparing the
real performance I' in different machine architectures with tendencies observed
during the 7 study of their structures. A first conclusion is that the main =y ef-
fects detected with synthetic graphs (e.g. logarithmic effect when scaling up) are
present in real applications. At the same time we find that they are propagated
to the run-time level. However, the real applications present high regularities
that minimize the performance impact of programming them in an SP parallel
programming model. Even typical irregular applications use load-balancing or
mapping techniques that create important topological and workload regularities.
The small performance effects introduced at the programming level are indepen-
dent of the underlying architecture. In many cases, implementation details and
low-level machine effects appear to have more impact on the final performance
than the choice of a restricted SP parallel programming model.

4.3 Summary

In this chapter we have presented an experimental framework to determine em-
pirically the potential and real impact of using a nested-parallel SP program-
ming model. First, we have discussed how to build synthetic workload distri-
butions, based on i.i.d. random workloads, that can be used with any synthetic
or real topology generated along the experimental study. We have introduced
the methodology to construct random graphs in order to test a sample of the
graph space, and synthetic meshes of nodes that represent regular applications.
The graph meshes are used to systematically test the v effects related to sim-
ple graph parameters that represent characteristics inherent to the application
(synchronization density) or typical mapping variables (degree of parallelism or
number of iterations). The study of the graph meshes includes the identification
and analysis of other impact factors (as synchronization unbalance or workload
to topology correlation).

For real applications, we have presented a criteria to select representative
study cases, and to select machine models for a real performance study; along
with the implementation techniques and tools to allow the NSP to SP structure
comparisons. We have discussed the modeling techniques to: (1) extract task
graphs from real applications at different levels of detail, and (2) construct graphs
representing irregular or dynamic applications from the input-data structures.
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Finally, we have introduced the framework to carry out a cpv study on all the
generated or extracted graphs to obtain 7 results and compare them with real I’
measures.

The results obtained in this study point out that the expected values of -y, used
as an indicator of the potential performance impact of using an SP PPM, follow
predictable tendencies. Indeed, these tendencies are determined by simple and
easily measurable graph parameters. The increase of the degree of parallelism,
measured with P, produces a general under-logarithmic increase on . The graph
depth level, measured with D, has a completely limited effect on v, except in
pathological structures, for which we present a formal description and a possible
indicator of the potential pathology factor (w). The synchronization density
represented by S (or Ry) is the topological parameter with the higher impact on
v. For the very small values found in sparse random or highly irregular graphs
(S < 2), SP-ization techniques that exploit local synchronization techniques, as
Algorithm2, may produce SP-forms with small ¢pv increment. Values of S > 2
have a quick negative exponential limiting effect on . However, around values
of § = 2, the SP-ization techniques studied present the worst results, and the
lower predictability for random topologies. As discussed in section 3.3.1, these
could be the structures more suitable for other mixed transformation techniques
based on both, added dependences and duplication of nodes. Nevertheless, the
workload distribution is the critical factor for SP-ization performance impact.
Its variability and possible correlation with topology highly determine the main
v tendencies. A well-balanced workload distribution immediately reduces or
even neglects the potential increase of the cpv after an SP-ization. Moreover,
most of the tendencies previously discussed are only fully appreciated for highly
deviated workloads. Fortunately, real applications present very good workload
conditions for SP-ization. In other case, the scalability and flexibility of the
parallel application would be compromised. The experimentation shows that real
workloads are usually well balanced and correlated with the graph topology. The
values found present better characteristics than the synthetic workload models
used during the first phase of our study, leading to negligible performance impact
when using SP form synchronization structures to program real applications.

All these tendencies are propagated to the run-time low level. Even some
classes of important irregular applications use data-partition and load-balancing
techniques to produce scalable codes. These techniques create enough topology
or workload regularities to neglect the potential performance degradation when
programmed with a nested-parallel, SP, programming model. Indeed, some ma-
chine effects derivated from different hardware or parallel tools implementations
appear to have more impact on the performance than using SP-restricted syn-
chronization structures. We conclude that our experimental study clearly points
out that using an SP parallel programming framework is a safe choice for most
parallel applications, and potentially bad study-cases can be easily predicted.
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Chapter 5

Conclusion

The line it is drawn
The curse it is cast
The slow one now
Will later be fast

As the present now
Will later be past
The order is

Rapidly fadin’.

And the first one now
Will later be last

For the times they are a-changin’.

The Times They Are a-Changin’, 1963
BoB DYLAN

The field of parallel programming appears to be not yet mature enough to
produce a consistent and established software development methodology. Par-
allel architectures and programming models still lack a common development
direction based on a standard machine and programming model (like Von Neu-
mann’s in sequential programming). While machines and low level programming
interfaces are oriented to exploit the maximum parallelism and performance in
an application, more abstract programming models accept restrictions of expres-
sive power, in terms of their SA, to obtain those analyzability characteristics
that help in the design, programming, mapping, implementation and debugging
tasks. This expressiveness vs. analizability trade-off needs to be carefully ana-
lyzed in order to establish which characteristics of a model are responsible for its
good and bad properties of it, in terms of software development, implementation
portability, and performance.

Being the determining factor of a programming model that characterizes the
above trade-off, in this dissertation we have studied the SA concept and its rela-
tion to the properties of PCMs at different abstraction levels. We have classified

229
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the SA of well-known models and applications, and we have proposed and studied
an important class: the SP, also known as Series-Parallel, or Nested-Parallelism
SA. We have found that in the design of a PCM, the decision to restrict or not
to restrict SA to SP class, is a critical one. SP vs. Non-SP is the SA barrier
where important analyzability properties appear or disappear. Consequently, we
have presented an in-depth study on the impact of the expressive restrictions
associated to SP programming models to support our thesis that SP restricted
models are the best choice to obtain both: highly beneficial software development
characteristics, and a good level of expressive power for general-purpose parallel
programming.

We have used a three-way approach to study the relevancy of the SA concept
and the SP restriction for parallel programming models: (1) A conceptual study
of SA, where existing programming models and applications are studied; (2) a
theoretical approach, where the SP vs. NSP structures are deeply studied with the
aid of graph theory; and (3) an experimental study, where empirical results are
presented to validate our hypothesis about the potentially negative performance
impact of using restricted SP models. In our study of SAs from these three points
of view, we have made several contributions and we have produced significant
results, obtaining relevant conclusions in support our thesis.

5.1 Contributions

In particular, the following contributions are made in this dissertation:

e SA description and classification.

We have introduced the SA concept, and we have shown how it is related
with the expressive power (EP), software engineering (SEC) and analyzabil-
ity (AC) characteristics of a PCM/PPM, through a conceptual review and
classification of well-known existing models at different abstraction levels.

e Applications classification in terms of SA.

We have classified parallel applications in terms of the SA they naturally
map to. The classification is useful for detecting application types that
do not map directly to restricted synchronization PPMs, and to choose
example applications, representing their SA classes, for further study of
the application to PPM mapping techniques. Some mapping strategies are
also discussed for the relevant classes.

e NSP vs. SP graph theoretical study.

In order to assess the performance loss associated with the choice of an
SP-restricted PPM for an inherently NSP problem, we have performed a
graph theoretical study of the SP and NSP structures. We have presented
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a number of techniques to transform NSP structures to SP approximations
that introduce minimum changes in topology or performance, including
new full graph algorithms. Methods and metrics to measure the impact of
such transformations in topology and potential increase of the critical path
have been proposed.

Analysis framework for performance impact of SA transformations.

We have introduced an analysis framework to predict the performance loss
at the programming abstract level as a function of SA. Given the rela-
tive importance of condition synchronization, we have specifically applied
the approach to predict the performance differences of using NSP vs. SP-
restricted programming models. The framework is based on the use of
graph theory, topology classes, and task workload metrics. We have mea-
sured performance differences () in terms of critical path.

Simple graph modeling techniques for applications.

We have introduced methods to model applications and workload with
graphs, at different detail levels. The significance of the contribution is to
show that very simple graphs, easily derived from specifications or even
from real code, are accurate enough to predict tendencies and behavior of
applications when synchronization structures are transformed to map them
to different SA classes.

Full experimental study using real applications.

The study consists on a comparison of using programming models or lan-
guages in different SA classes to implement real applications, including the
effects of typical implementation trajectories. Here we do not restrict our-
selves to the highest abstraction levels (), but we use the above framework
to discuss the performance effects of various mappings and implementation
issues at lower level (T').

5.2 Conclusions

The contributions presented strongly suggest the SP SA as the most promising
design concept for new portable, efficient and easy-to-use parallel programming
models. PPMs in the SP SA class offer important advantages in terms of soft-
ware engineering and analyzability characteristics, not available for less restricted
models in the NSP class, with a modest trade-off regarding expressive power. The
conclusions of this thesis are:

e SP SA leads to formal methods of software development and verification.

SP restricted models and structures are associated with SP algebras and
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an extended automata theory. At the same time, more efficient scheduling,
compiling and mapping techniques exist for SP restricted structures than
for NSP structures.

From the study of SA of existing parallel programming models we have
found that only PPMs/PCMs that restrict CS structures include an easy-to-
use and accurate cost model that may help in automatic mapping decisions.
This is critical for portability of programs to different architecture models.

Many application classes and parallel programming paradigms directly map
to SP structures. For those application classes that do not directly map
to SP models, systematic transformation techniques that minimize the po-
tential performance impact have been proposed. Many examples of how to
use them have been presented for synthetic and real application structures.

Simple application parameters, like the maximum degree of parallelism, as
well as workload characteristics may be used to predict the impact of an
NSP to SP transformation, at different levels of detail with very simple
cost models. Such predictions are accurate enough to predict the perfor-
mance asymptotical behavior of different mappings of an application to SP
programming structures.

The performance degradation associated with SP programming is mainly
related to poorly balanced and unstructured computations, that are dif-
ficult to program, verify and debug. In our application classification and
experiments we find that these structures are far from typical or even in-
appropriate for parallel programming in general. High performance un-
structured computations are programmed with hard-wired scheduling and
load-balancing techniques that transform them in more structured and well-
balanced computations, more suitable for SP programming.

The Synchronization architecture concept, and this study, validate some re-

search directions previously introduced in restricted SA models (as e.g. BSP).
Many previously intuitive ideas about the impact of SP programming have been
formally or empirically verified in this study. This may help to focus the atten-
tion of parallel programming languages and models designers to the SP concept.
SP, or nested-parallelism may lead to a more focused research direction to fill
the gap between the two extreme points of the parallel programming world: ma-
chine architecture vs. high-level programming. The development of new and more
abstract languages for SP restricted models may include new compiling and map-
ping techniques that exploit many beneficial features nowadays scattered among
different programming models and their implementations.
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