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Chapter 1Introdu
tion He holds him with his glittering eye{The Wedding-Guest stood still,And listens like a three years' 
hild :The Mariner hath his will.The Rime of the An
ient Mariner, 1798Samuel Taylor Coleridge1.1 MotivationThe e�e
tiveness of a parallel appli
ation has been traditionally measured onlyin terms of its a
hievement of high performan
e as 
ompared with its sequentialimplementation 
ounterpart. From this point of view, the typi
al s
enario hasbeen one of a high performan
e quest, espe
ially in the �eld of s
ienti�
 
omput-ing. This situation is qui
kly 
hanging nowadays, sin
e general purpose parallelma
hines have be
ome an a�ordable alternative to 
lassi
al super
omputers, andnetwork 
onne
tivity improvements have enabled parallel 
omputing based onheterogeneous 
lusters, NOWs, and GRIDs. Con
epts su
h as portability, pre-di
tability, evolution or 
orre
tness, genuinely related to software developmentmethodologies, play now a role as important as performan
e improvements. Asa 
onsequen
e, the 
onstru
tion of high-quality parallel software at a reasonableinvestment of e�ort has be
ome one of the main obje
tives in the developmentof parallel appli
ations. Software 
onstru
tion methodologies, veri�
ation, easeof debugging, interoperability and reusability be
ome key 
hallenges for newgeneri
 super
omputing environments [52, 169, 175℄. The 
ontinuous hardwareevolution, and the la
k of an established and 
ommonly a

epted parallel 
om-puting model or referen
e ar
hite
ture results in a maturity level identi
al tothe one in sequential 
omputing before everybody assimilated the 
ompatibility1



2 CHAPTER 1. INTRODUCTION
Speed-up

DevelopmentExecution
efficiency efficiency

Programming cost

Shift in time

Effectiveness

Figure 1.1: Shift of interest in parallel development eÆ
ien
yideas imposed by the introdu
tion of widespread 
ommon ar
hite
tures based atthe more abstra
t level on the Von Neumann model [134℄. The development ofquality parallel software is 
ompromised by the la
k of well-established modelsand by the 
ommon design te
hniques for the low-level tuning whi
h is ne
essaryto get maximum performan
e.In the parallel programming �eld an important resear
h a
tivity is thus fo-
used on the introdu
tion of tools and methodologies for parallel software devel-opment. The obje
tive is to 
reate an appropriate framework to develop e�e
tiveparallel appli
ations (eÆ
ient and portable). However, parallel 
omputing 
hal-lenges are being fa
ed from three basi
ally di�erent perspe
tives whi
h are notyet mature enough as to bridge the gap between them. These are the following:Parallel semanti
 modelsFormal models of parallelism have been proposed and studied for a long time (seee.g. [165, 166, 190℄). They are aimed to reason about 
orre
tness and 
on
urren
ypossibilities. However, the models that explore unrestri
ted syn
hronization 
on-
urren
y reveal many unde
idable problems. Their inherent 
omplexity preventsformal analysis and the amount of tra
ing information about a system evolutionbe
omes intra
table. As a 
onsequen
e, there are no pra
ti
al programming lan-guages or environments whi
h fully integrate the 
omplete set of formal propertiespres
ribed by these models.Parallel 
omputation modelsParallel 
omputation models were introdu
ed as a means to reason about 
om-putability, and to derive 
omplexity measures of parallel algorithms. In sequentialprogramming, a Turing ma
hine is a universal model whose 
omplexity measuresare not modi�ed, but in small 
onstant fa
tors, when an implementation is gener-ated using the bridging model proposed by Von Neumann. However, in parallel
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omputing, 
omplexity measures and performan
e predi
tion are 
ompli
atedby the la
k of an established 
ost-theoreti
 model or a widely a

epted bridgingmodel for parallel 
omputers [122℄. As a 
onsequen
e, parallel 
omputation mod-els proposed are either too abstra
t, too worried about implementation subtleties,or even too restri
ted to des
ribe many real situations.When the abstra
tion level is too high, the implementation in a real ma
hinerequires 
ompli
ated transformations, spe
i�
 for any new ar
hite
ture and ingeneral not de
idable, that 
an modify the 
omplexity orders of an algorithm(e.g. PRAM model). At the same time, too abstra
t parallel models do noten
ourage programming te
hniques that deal with syn
hronization problems.On the other hand, some models are fo
used on modeling the low-level detailsof 
ommuni
ation/syn
hronization 
osts (e.g. LogP). In these 
ases, the syn
hro-nization stru
tures are 
ompletely unrestri
ted and analysis problems arise. Thesoftware development is not intuitive and the 
ost model (if not untra
table),
annot be used in reverse to determine whi
h heuristi
 implementation de
isionsprodu
e given results.Finally, there are models designed to provide a 
onvenient and simple 
ostmodel. However, they use unnatural syn
hronization restri
tions that limit thetypes of algorithms that maps dire
tly into the model, and no 
lues are given forthe mapping of other types (e.g. BSP).Parallel programming modelsGiven the previously dis
ussed problems, an important part of the parallel pro-gramming 
ommunity is fo
used on the development of pra
ti
al programming in-terfa
es that allows the programmer to exploit the parallel and high-performan
e
hara
teristi
s of a
tual ma
hines. In sear
h of the maximum expressive powerand 
exibility, many of these programming models allow the 
reation of stru
turesthat are dynami
, 
omplex, or impossible to analyze. Poorly stru
tured syn
hro-nization is the origin of many 
urrent diÆ
ulties of parallel programming [89℄. Forunrestri
ted syn
hronization stru
tures the optimal mapping (problems to pro-grams) is almost humanly impossible, 
ost models are not a�ordable, and goods
heduling algorithms are extremely expensive. The programmer must take lowlevel detail de
isions, in
luding sometimes ma
hine dependent optimization solu-tions hardwired in the 
ode. On the other hand, other models sa
ri�
e expressivepower, restri
ting the syn
hronization stru
tures available, so as to keep analysisproperties that lead to better 
ost models and formal developing, veri�
ation,mapping and debugging te
hniques.From the above dis
ussion, we identify the syn
hronization stru
tures availablein a parallel system as the key fa
tor for a trade-o� between expressive powerand engineering ability. This trade-o� has been, for a long time, an issue of



4 CHAPTER 1. INTRODUCTIONstill on-going debate. In this study we introdu
e the 
on
ept of syn
hronizationar
hite
ture to 
lassify the syn
hronization stru
tures in terms of their propertiesrelated to software engineering and high-performan
e. This new approa
h lead usto identify the minimum restri
tions needed to bound the 
omplexity of relevantanalysis problems, and to evaluate the potential problems to express parallelappli
ations into these restri
ted stru
tures.1.2 Parallel programming modelsAs already pointed out, a parallel programming model (PPM) 
an be de�ned asa programming interfa
e whi
h 
an be targeted to any 
omputer ar
hite
tureand lets the programmer express parallelism in terms of a set of primitives givenby the underlying parallel model of 
omputation. There exist PPMs from thehighest (formal spe
i�
ations) to the lowest (
lose to implementation details)abstra
tion levels.Many new design de
isions take part in the 
reation of a parallel programminginterfa
e. Compared to sequential programming, new degrees of freedom are tobe 
onsidered. Parallel 
omputations are mu
h more 
ompli
ated to 
reate, tra
kand analyze. The mapping of a parallel algorithm to a program is a 
omplex task.The resour
es-to-a
tivities assignment (s
heduling), and the partitioning of dataor a
tivities that minimize 
ommuni
ation 
osts are optimization problems inthe tuple (time, spa
e), typi
ally translated to graph problems, whi
h optimalsolution are not known or are NP-
omplete [4℄. A generi
, heterogeneous andevolving framework requires 
exible mapping methods to 
reate eÆ
ient andportable appli
ations. Thus, abstra
tion is a more important feature in parallelthan in sequential programming. On the other hand, a parallel programmingmodel is not pra
ti
al if it proposes a so abstra
t interfa
e that it is too diÆ
ultor expensive to �nd eÆ
ient ways to implement it in real hardware ar
hite
tures(existing or evolving). The 
hoi
e of a parallel programming model involves atrade-o� between portability and eÆ
ien
y.We distinguish two main 
ategories of 
hara
teristi
 for a PPM. They arerelated to two properties of the semanti
s involved in the model (see Fig. 1.2).A model should propose an interfa
e abstra
t enough to minimize the humane�ort to learn it and use it for software developing (SEC, software engineering
hara
teristi
s). At the same time, the model should be simple and 
lose enoughto the low level details to make it possible eÆ
iently bridging programs to a
tualparallel 
omputations in a ma
hine (AC, analysis 
hara
teristi
s). However,expressive power may be lost if too mu
h simpli�
ation or abstra
tion is used toimprove the quality of these SEC and AC 
hara
teristi
s.The sear
h of a 
onvenient programming environment is the 
urrent HolyGrail quest in parallel 
omputing. The problem has been approa
hed for a long
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Figure 1.2: Software engineering (SEC) and analysis (AC) 
hara
teristi
s.time. In the 80s, there was an important gap between theoreti
 parallel algorithmdesign (mainly based on PRAM model) and eÆ
ient implementation on real ma-
hines. Data-parallel languages and automati
 parallelizing 
ompilers based ondata analysis were the major trend of resear
h for easy and eÆ
ient parallelprogramming. Nonetheless, the restri
tive data-parallelism model and the im-possibility of re
onstru
ting 
ertain parallel stru
tures from sequential 
ode1 ledto the development of alternative systems for dire
t and free expressions of par-allelism (mainly message-passing interfa
es), that were failing to provide analysis
hara
teristi
s [89℄.In the 90s, the introdu
tion of the restri
ted but portable and 
ost driven
omputation model BSP [185℄, and the more detailed but less restri
ted 
ommu-ni
ation 
ost model LogP some years after [49℄, brought new attention to parallelprogramming models in general, and to those aimed to 
ost measurement in par-ti
ular [16, 57, 76, 133, 161℄. Performan
e modeling be
ame an important issue.In the middle of 90s, the performan
e analysis study of Van Gemund lead to theintrodu
tion of the parallel programming model SPC [70, 71℄. In this model thedependen
e stru
tures that 
an be generated are restri
ted to nested-parallelismstru
tures (those that 
an be represented by a Series-Parallel (SP) graph [184℄),extended with a simple 
ontention me
hanism. This basi
 restri
tion in the syn-
hronization stru
tures allowed by the model is related with the possibility ofusing a new performan
e analysis te
hnique, with adjustable a

ura
y in termsof a ma
hine model. SPC provides a simple parallel software development frame-work. However, some syn
hronization stru
tures are not dire
tly representablein nested-parallelism, and they must be reprogrammed, possibly adding depen-den
es that were not in the original problem. Thus, the utility of a restri
ted1When a naturally parallel appli
ation is programmed in a sequential model, the 
on
urren
yspa
e is 
ompressed in only one point of the 
on
urren
y axis. Con
urrent tasks are pushedinto the time axis, imposing an arbitrary order on them. Thus, important information about
on
urren
y 
ould be lost.



6 CHAPTER 1. INTRODUCTIONsyn
hronization programming model is endangered by the potential loss of per-forman
e in 
ertain type of appli
ations. We will 
ome ba
k to this importantissue along the next se
tion.The study and 
omparison of unrestri
ted and restri
ted parallel program-ming models (like SPC) brought to light an important feature of PPMs. Mostof their properties (SEC,AC) are related to the ability to dete
t and evaluateproperties of 
ommuni
ation and syn
hronization. Restri
ted models that havegood analyzability 
hara
teristi
s for both 
ommuni
ation and syn
hronization,
an a
hieve all the SEC and AC requirements.1.3 Syn
hronization Ar
hite
tureWe propose the 
on
ept of Syn
hronization Ar
hite
ture (SA) to be the abstra
tdes
ription of the syn
hronization stru
tures and 
ommuni
ation pro
esses whi
h
hara
terize a given PPM, together with their fundamental properties. PPMs 
anbe 
lassi�ed in terms of their syn
hronization ar
hite
ture, de�ned by the me
ha-nisms whi
h are provided for expressing syn
hronization, and the stru
tures that
an be 
reated by them.To 
lassify parallel programming models, Skilli
orn and Talia have proposedthe following 
riteria [174℄. (1) PPMs with support for dynami
 pro
ess or threadstru
tures; (2) PPMs with only stati
 pro
ess or thread stru
tures, but no syn-ta
ti
 limits on 
ommuni
ation; (3) PPMs with only stati
 pro
ess or threadstru
tures and synta
ti
 limits on 
ommuni
ation. They 
laim that: \Modelsthat allow dynami
 pro
ess or thread stru
ture 
annot restri
t 
ommuni
ation[...℄ even models that restri
t 
ommuni
ation within a parti
ular synta
ti
 blo
k
annot limit it over the whole program. Thus su
h models 
annot guarantee thatthe 
ommuni
ation generated by the program will not overrun the total 
ommu-ni
ation 
apa
ity of a designated parallel 
omputer. [...℄ some programs that
an be written in the model will perform badly, and it is not straightforward todete
t whi
h ones".Although we do agree this is a good 
andidate for a general 
lassi�
ation ofPPMs, we think that it 
an be 
learly re�ned. In fa
t, restri
ted syn
hronizationmodels 
an impose stru
ture on the way threads are 
reated and syn
hronized,to derive dynami
 but restri
ted thread stru
tures with a predi
table number of
ommuni
ations. Even for some dynami
 thread stru
tures, it is still possible toobtain 
ost measures and �nd an eÆ
ient way to map the 
omputations onto thema
hine, as shown in Table 1.1.Thus, we propose new more detailed 
riteria, in
luding di�erent 
lasses of syn-
hronization restri
tions. First, we distinguish two types of syn
hronization [9℄:(1) Condition syn
hronization (CS), whi
h implies an order to be preserved inthe exe
ution of two tasks or statements, and that is typi
ally asso
iated to data
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ationThread stru
ture Restri
ted Unrestri
tedStati
 Predi
table Predi
table�Dynami
 Unpredi
table(b) Comm. & Syn
h.Thread stru
ture Restri
ted Unrestri
tedStati
 Predi
table Predi
table�Dynami
 Predi
table� Unpredi
table� Depending on the exa
t stru
tures and restri
tions of the modelTable 1.1: PPMs 
lassi�
ations: (a) Skilli
orn& Talia [174℄, and (b) our proposal.dependen
es or 
ommuni
ation; and (2) mutual ex
lusion (ME), that preventsthat two tasks or statements to be exe
uted at the same time, although the orderin whi
h they are �nally exe
uted is not relevant. These types of syn
hroniza-tions 
an be 
onsidered orthogonal, in the sense that a PPM 
an support oneor both of them independently. Some models simply la
k any form of expli
itsyn
hronization (e.g., HPF [1, 27℄), some do not provide any expli
it dynami
syn
hronization me
hanisms (e.g., Fortran-M [67℄), while others impose restri
-tions on the form of the stati
 syn
hronization stru
tures (e.g., BSP [185℄).In se
tion 2.2 we will introdu
e a 
lassi�
ation of the syn
hronization spa
ein terms of three di�erent 
hara
teristi
s: (1) CS stru
tures to be allowed, (2)the ME me
hanisms, and (3) the data-dependen
e of syn
hronization stru
tures.In parti
ular, we distinguish two 
omplementary 
lasses of CS stru
tures: oneunrestri
ted and one restri
ted to a spe
i�
 
ompositional form 
alled nested-parallelism, SP or Series-Parallel. SP stru
tures are restri
ted to nested-paralleltask 
ontrol stru
tures or, in other words, to the re
ursive appli
ation of prim-itives with the semanti
s of 
obegin-
oend [9℄. Models whi
h allow only SP re-stri
ted stru
tures are 
alled SP-models (e.g. BSP, SPC). The asso
iated taskgraph of these stru
tures is in the 
lass of Series-Parallel graphs or SP-graphs forshort.Beside the previously mentioned engineering aspe
ts (SEC) the introdu
tionof restri
tions on a PPM's syn
hronization ar
hite
ture has a favorable e�e
t onits analysis 
hara
teristi
s (AC). For instan
e, improved s
heduling te
hniqueshave been designed for SP restri
ted DAGs [63, 20, 142, 159, 157℄. One of thereasons behind their advantages is that the number of edges in an SP graphis bounded to be a linear fun
tion of the number of nodes (O(jEj) = O(jV j).Another reason stems from the 
ompositional nature of SP-graphs, whi
h allowsa re
ursive lo
al analysis of properties. Thus, many s
heduling algorithms show
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omplexity measure when applied on SP graphs. Moreover, many
ombinatorial problems whi
h are NP-hard for generi
 graphs are known to belinear on Series-Parallel graphs [179℄. Cost analysis (e.g. 
riti
al path analysis) isalso improved. Even more, analyti
al 
losed form 
ost expressions 
an be derivedfor SP graphs [71℄. At a more abstra
t level, there exists a formal algebrai

hara
terization of the languages 
onstru
ted on SP semanti
 models (
alled SP-languages), with their extended re
ognition automata [125, 126, 127℄.However, the restri
tions imposed on the stati
 syn
hronization stru
tures doeliminate some expressive power from the model. In some situations, tasks that
ould be theoreti
ally exe
uted in parallel must be serialized as a 
onsequen
eof nested syn
hronization. This 
ould lead to a performan
e loss whi
h, unless
arefully estimated, would 
learly 
ompromise the use of these models in parallelprogramming.To illustrate this point, let us 
onsider the task graph asso
iated to a 1D
ellular automata with just 3 
ells, where a fun
tion dependent on parametersevaluated at neighbor 
ells (the ones given by a sten
il) is applied in parallela
ross all the 
ells along 3 
onse
utive iterations. In Fig. 1.3(a) a task graphasso
iated with a generi
 PPM 
omputation is presented. Ea
h edge representsa 
ommuni
ation or a syn
hronization. The version in Fig. 1.3(b) is a task graphasso
iated with the 
hoi
e of a model whi
h restri
ts 
ommuni
ation so thatit 
an only syn
hronously take pla
e at a barrier syn
hronization. The dashedline represents the barrier. The bla
k nodes 
an be exe
uted in parallel in the�rst example, but are serialized in the se
ond. If exe
ution times of the bla
knodes is tb = 10, and white nodes tw = 1, the total exe
ution time (without
ommuni
ation 
osts) is T1 = 12 in the �rst example, and T2 = 30 in the se
ondone, whi
h give a performan
e penalty of almost 3.
(a) (b)Figure 1.3: Example of parallelism loss at programming levelThis potential loss of parallelism is introdu
ed at a programming level whenin the design phase, as a 
onsequen
e of the restri
tions of the abstra
tion levelwe are using to des
ribe the problem, and it will be readily propagated throughthe following development phases. We are spe
i�
ally interested in any potential
omputation time penalty for
ed by the restri
ted expressive power of a PPM.On the other hand, the quality of the low-level implementation phases 
an beimproved with restri
ted CS models. Spe
i�
ally, SP-restri
ted programming
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heduling and mapping, not found in non SP-restri
ted models, as mentioned earlier.1.4 Problem statement and thesisFrom the previous dis
ussion, a number of interesting open questions arise whi
hwe will address in this work. It is not yet 
lear what type of programming modelsare more 
onvenient for nowadays and near future parallel programming. It willbe highly interesting to �nd obje
tive 
hara
teristi
s that we 
an use to evaluateor 
lassify the potential bene�ts and drawba
ks of a given model. As mentionedearlier, Skilli
orn and Talia proposed in [174℄ a set of interesting properties forideal parallel programming models that promotes low 
ost software developmentand maintenan
e, eÆ
ien
y and portability. A

ording to them, a model should\be easy to program, have software development methodology, be easy to under-stand, guarantee performan
e, and provide a

urate information about 
osts".These 
riteria are mainly subje
tive, and 
an be diÆ
ult or impossible to agreeabout the adequa
y of a given model to it. On the evolution of future parallelprogramming models 
lear dire
tions and requirements must be proposed. The-oreti
al 
omparisons between well-known parallel 
omputing models has beenshown (see for example [16, 161, 128℄). However, no rationale has been o�ered inthe more abstra
t level to explain the similarities and di�eren
es, Quantitativeevaluation of parallel programming models has been tried previously fo
usingon eÆ
ien
y and performan
e evaluation a

ura
y [114℄. Related design 
har-a
teristi
 are studied in [112℄. Although the experimental approa
h is similarto ours in the low level, we are more interested in determining the origins ofthese quantitative di�eren
es at more abstra
t levels and to predi
t the e�e
t ofdesign de
isions in parallel programming languages and models in both, softwareengineering and analizability 
hara
teristi
s (SEC,AC).The problem we want to ta
kle is dete
ting any relation between the SAof a PPM and its software development and analizability 
hara
teristi
s, in or-der to present 
lassi�
ation 
riteria of SAs it terms of their 
hara
teristi
s forparallel programming. If restri
ted SA 
lasses appear to have advantages overunrestri
ted 
lasses, a related question is if there are methods to map knownappli
ations in unrestri
ted SA 
lasses to restri
ted ones, and how mu
h perfor-man
e impa
t may impose su
h high level transformations.In the thesis proposal we are presenting here, we identify, �rst, the syn-
hronization ar
hite
ture (SA) as a key property of PPMs with respe
t to itssuitability for software engineering and analysis, and a good 
riterion to 
lassifyPPMs. Some 
lasses of restri
ted SA leads to good 
hara
teristi
s in softwareengineering as well as analysis, while others prevent them. The most importantfeature of an SA is the 
lass of 
ondition syn
hronization it allows (NSP vs. SP).



10 CHAPTER 1. INTRODUCTIONThe 
hoi
e of a restri
ted SA may entail a loss of parallelism at the pro-gramming level of abstra
tion (possibly propagated to lower levels). We proposean empiri
al evaluation system of PPMs to grade them in terms of this loss ofparallelism as a fun
tion of their SA. Based in our value system, we promotethe 
lass of SP-restri
ted PPMs as a promising PPM for general-purpose parallel
omputing. SP restri
ted SA models present a good trade-o� between expres-siveness and software engineering and analizability 
hara
teristi
s. Moreover, weshow that most appli
ations 
an be mapped to SP (nested-parallelism) stru
turewith minimal performan
e impa
t.1.5 Approa
hIn this dissertation we study the problem from three di�erent perspe
tives. A
on
eptual review of the SA of parallel ar
hite
tures, 
omputation and program-ming models, programming languages, and appli
ations is needed to identify thebest 
riteria for 
lassifying the syn
hronization stru
tures found at any detaillevel of a parallel system. On
e the 
lasses are determined and the restri
tedSP 
lass arises as the 
lass with the most promising features, a further study ofthe properties of its stru
tures is needed. Then, the se
ond step is a theoreti-
al study, based on graph theory, of the properties of NSP and SP stru
tures,in
luding an study of the transformation of stru
tures in di�erent 
lasses. Thethird step entails an experimental framework: ideas and te
hniques developed onthe theoreti
al study 
an be used to experimentally 
ompare the behavior andperforman
e of appli
ation stru
tures in di�erent 
lasses. This empiri
al studyvalidates results and proposals analyzed in the previous steps and reveals thereal parameters and behavior of real appli
ations when programmed in di�erent
lasses of SA.Con
eptual approa
h: After de�ning the SA 
on
ept and establishing the dif-ferent abstra
tion levels of study, it in
ludes a 
lassi�
ation of the SAs foundat any level: From parallel ar
hite
tures and well-known parallel 
omput-ing or programming models to the appli
ations spa
e. In this approa
hwe relate the SA 
lass with the programming models expressive power,analysis 
hara
teristi
s and the virtues and 
aws asso
iated for mappingappli
ations to them. The NSP vs. SP 
lassi�
ation appears as the morerelevant feature of a PPM. We also present a 
on
eptual dis
ussion of thepossible mapping strategies of appli
ations, to PPMs in a di�erent andmore restri
ted 
lass.Theoreti
al approa
h: This approa
h is based on a theoreti
al study of themodeling 
apa
ities and restri
tions of SP models in an abstra
t level, and



1.6. OUTLINE 11their signi�
an
e. A formal analysis of the NSP and SP graphs, their re-lation and the distan
e from NSP to SP forms is introdu
ed. We presentheuristi
 transformation te
hniques and algorithms to 
onvey NSP stru
-tures into SP approximations that introdu
e minimum 
hanges in topologyor performan
e. We develop an analysis framework to predi
t the loss ofperforman
e introdu
ed at the programming abstra
t level as fun
tion ofSA. The framework is based on the use of graph theory, topology 
lasses,and task workload metri
s. We measure performan
e di�eren
es in termsof 
riti
al path.Experimental approa
h: We present a 
omparison of using programming mod-els or languages in di�erent SA 
lasses to implement real appli
ations, in-
luding the e�e
ts of typi
al implementation traje
tories. Here we do notrestri
t ourselves to the highest abstra
tion levels, but we use the aboveframework to dis
uss the performan
e e�e
ts of various mappings and im-plementation issues at lower level. Thus, two di�erent frameworks arestudied:1. Oriented to the whole program spa
e.We study the results of enfor
ing SP restri
tions on a sample of thewhole graph spa
e, and on syntheti
 graphs, relating the modeled per-forman
e loss to generi
 and simple graph and workload parameters.2. Oriented to appli
ations.Based on our parallel appli
ations 
lassi�
ation presented in the 
on-
eptual approa
h, we sele
t a 
olle
tion of representative appli
ationsfrom all relevant SA 
lasses. We 
ompare exe
ution times and perfor-man
e e�e
ts produ
ed when real 
odes programmed in generi
 andrestri
ted SP models are run in several ma
hines models. The impa
tof SP restri
tions is empiri
ally predi
ted and 
ompared with previousresults.As we will show along the following 
hapters, the results of this three ap-proa
hes will fully support our theses: presenting the SA as the key fa
tor inthe analysis 
hara
teristi
s of a PPM, and 
onsequently in the software engi-neering of parallel appli
ations, and promoting the SP restri
tion of 
onditionsyn
hronization as one of the most relevant 
hoi
es in the design of a PPM.1.6 OutlineThis dissertation is organized following the three di�erent approa
hes presentedin the previous se
tion. Chapter 2 presents the 
on
eptual approa
h. After



12 CHAPTER 1. INTRODUCTIONintrodu
ing some 
on
epts and terminology (in
luding SA), we present our 
las-si�
ation 
riteria for SA. Then, we travel bottom-up along the di�erent abstra
-tion levels studying the SA of parallel ar
hite
tures, programming models andappli
ations. Interesting 
on
lusions are dis
ussed for ea
h new layer. In Chap-ter 3 we present the theoreti
al approa
h. We formally de�ne SP graphs andstudy their stru
tures. Simple transformation te
hniques and problems are dis-
ussed, after whi
h two new heuristi
 algorithms are introdu
ed. The impa
tof the transformation is studied from di�erent perspe
tives. Chapter 4 in
ludesan exposition of the motivations and de
isions taken to build our experimentalframework. Graph appli
ation modeling te
hniques are introdu
ed in this phaseof the study. A broad summary of the results obtained in ea
h phase is presentedand dis
ussed. In Chapter 5 we re
all the results and ideas presented along thewhole work, and we present our 
on
lusions.



Chapter 2Con
eptual approa
hI did not paint it to be understood, but Iwished to show what su
h a s
ene was like.J.M.W. Turner, 1775-1851This 
hapter is an attempt to bring the reader a travelogue through theparallel programming world. After the introdu
tion of some 
on
epts and termi-nology, we will initiate a trip along the �elds of parallel programming, a land fullof sight spots where the syn
hronization stru
ture 
olors are showing up frominside everything that blossom. From the rough and 
hanging o
eans of parallelar
hite
tures and low level exe
ution models, we will 
y up to the low-lands ofmapping, where the implementation 
oods are dire
ted by the river 
oasts of
ompilation. In the upper valleys we will �nd the programming models whi
hallow this 
ompilation te
hniques and the abstra
tions that hide the details tothe programmer. Finally, we will 
limb up the high abstra
tion peaks to �ndtheir snow 
rowns, where appli
ations and parallel algorithms dwell, nurturingthe waterfalls where all the implementation line begins. All around, syn
hroniza-tion stru
ture will be a friendly guide that will show us se
rets beneath what theuntrained eye 
at
hes. Throughout this trip we will learn how syn
hronizationstru
ture helps us to understand the roots of advantages whi
h show, and thediÆ
ulties to be ta
kled, when di�erent parallel programming models are used.First, we will dis
uss about models and modeling, to propose general de�-nitions for parallel programming and 
omputing models, and des
ribe the dif-ferent detail levels involved in parallel 
omputing. Then, we will introdu
e thesyn
hronization ar
hite
ture 
on
ept, presenting 
lassi�
ation 
riteria, useful fordete
ting the good and bad properties of syn
hronization stru
tures regarding an-alyzability and expressive power. These 
riteria are used in the following se
tionsto 
lassify models and appli
ations, showing the relevan
e of syn
hronization ar-
hite
ture at any level of detail. 13



14 CHAPTER 2. CONCEPTUAL APPROACH2.1 Parallel models and de�nitionsIn this se
tion we begin to prepare the luggage we will need for our trip. Weestablish some terminology that sometimes have 
onfusing meanings, typi
allywhen 
oming from di�erent 
ommunities related to parallel 
omputing. We alsode�ne the main 
on
epts about parallel programming models we will use fromnow on.2.1.1 Parallelism and parallel 
omputingAlthough parallel 
omputing is somehow a 
omplementary 
on
ept to sequential
omputing, they share a main substrate. They solve problems applying a pro-grammed 
olle
tion of a
tions, 
hosen from a redu
ed set, where ea
h of themmodi�es a well-de�ned environment in a deterministi
 way.The important di�eren
e between parallel and sequential worlds is how thesea
tions intera
t with the environment and how they are ordered in the time spa
e.In sequential 
omputing the programmer is responsible for the order in whi
h theinstru
tions are exe
uted and only one of them 
an modify the environment in agiven instant of time. When the restri
tions of time order are relaxed, and many(a given number) of a
tions 
an be exe
uted simultaneously or in no spe
i�edorder, the programmer has new freedom degrees to exploit, but she/he fa
esnew asso
iated problems. When two given a
tions modify an initial environmentstate in non-
ompatible ways, they must be prevented to exe
ute simultaneouslyto preserve the 
onsisten
e of the 
omputation until it arrives at a known statewhere the problem is solved. Thus, we distinguish a
tions that 
an be exe
utedin parallel and a
tions that must be exe
uted sequentially.We 
all parallelism to the possibility of exploiting time ordering relaxationand simultaneous exe
ution of a
tions for problem solving. Thus, parallel pro-gramming is related to uses and te
hniques to express a solution to a given prob-lem in a 
omputational environment where parallelism is possible. And parallel
omputing refers to the evaluation of solutions in su
h environments.Parallel 
omputing and programming is histori
ally asso
iated with high-pri
ed ma
hines and high-performan
e. However, parallelism is a broader wordthat 
an be asso
iated with many terms, most of the times with un
lear bound-aries among them. For example:Con
urren
y: Typi
ally asso
iated with the basi
 problems of parallelism, likeanalyzing mutual dependen
es and using syn
hronization me
hanisms toa

ess shared resour
es. Sometimes, 
on
urrent 
omputing refers to me
h-anisms of time-sharing to provide simulated parallel exe
ution in multitaskenvironments with restri
ted number of pro
essing elements.Distributed 
omputing: More related to the te
hniques for using parallelism



2.1. PARALLEL MODELS AND DEFINITIONS 15in environments where a
tive elements are loosely-
oupled and/or havediverse nature.High-performan
e 
omputing (HPC): While mainly using parallelism, HPCis fo
used on the extra
tion of high performan
e peaks from spe
i�
 (s
i-enti�
) appli
ations with new or re
ent 
omputing te
hnologies.Parallel 
omputing: Mostly related to the programming and use of real par-allel ar
hite
tures, where several pro
essing units operate with a hardwareor software layer that allows intera
tion among them.We will use parallel 
omputing in the broadest sense, referring to the exploitingof parallelism in any 
omputational environment.2.1.2 ModelingHuman beings use modeling or models to abstra
t reality in order to representit in a simpli�ed way whi
h allows them to reason about it, developing theories.However, the exa
t meaning of the terms model and modeling depends on manyissues related to the nature of what is being modeled, the purpose of the model,the level of detail required and the intended te
hniques to be applied. Thus,talking about, and espe
ially de�ning what a programming or 
omputing modelis, is te
hni
ally diÆ
ult, as di�erent people understand or think di�erently aboutthem.In the parallel 
omputing world, there does not yet exist a referen
e ar
hi-te
ture or programming model a

epted as universal. We present in this se
tiona tentative distin
tion of modeling levels and their relations in a parallel 
ompu-tation environment, that will be useful for 
on
eptually analyze both, well-knowmodels of parallel 
omputation, and the s
ope of our study.The �rst distin
tion we must introdu
e is that programming and 
omputingare not the same thing. While programming is the a
tivity oriented to express orpres
ribe a solution to a problem (or family of problems) with a 
onstrained setof a
tions, 
omputing is the a
tivity oriented to evaluate programmed solutionsin a 
omputational environment. Thus, parallel programming models and parallel
omputing models are not exa
tly the same, although the boundaries are blurred,as programming and 
omputing are inter-related a
tivities. Many models par-tially 
over aspe
ts of both programming and 
omputing a
tivities, and they tryto �ll in the gap between them. They are usually 
alled bridging models. Wewill dis
uss about them in the next se
tion.2.1.3 Parallel 
omputing and programming modelsNow we will walk through the abstra
tion levels, from the highest to the lowestof the 
omputing/programming a
tivities, giving names to what we �nd on our



16 CHAPTER 2. CONCEPTUAL APPROACHway. The reader 
an follow our trip in Fig. 2.1.
Programming model

(Solution design)

Parallel architecture

(Hardware)

Parallel programming languagePPL

(Evaluation)
Execution model

Level 1

Level 2

Level 3

Level 4

PPM Parallel programming model

Parallel computing modelPCM

Bridging model

PPL’ PPL’’ PPL’’’

Figure 2.1: Abstra
tion levels of modelingThe reality that we try to model is the programming and 
omputing taskwith real ma
hines able to use parallelism. The programming task is done byimplementing an algorithm or appli
ation spe
i�
ation in a programming lan-guage with 
apabilities to express parallelism. A programming language is aninstan
e (with given words and syntax) of a programming model (whi
h providespe
i�
 semanti
s).Thus, a Parallel programming model (PPM) is an abstra
t des
ription (orabstra
t virtual ma
hine) to express parallel a
tions independently of the un-derlying exe
ution level. Message-passing interfa
es, 
on
urrent obje
t-orientedprogramming and other similar tools are mainly fo
used at this level. We 
all aninstan
e or spe
i�
 notation for a PPM a Parallel programming language (PPL)Thus, a PPM de�nes a family of PPLs (a family of possible languages that allowthe programmer to express exa
tly the same parallel semanti
s).A 
omplete virtual ma
hine in
ludes the de�nition of a basi
 informationunit and a 
on
ise instru
tion set with 
lear semanti
s. In parallel programmingthe instru
tion set must in
lude syn
hronization operations. The reader mustnoti
e that a PPM de�nes an abstra
t virtual ma
hine that in fa
t indu
es a
omputation model. A PPM is a programming interfa
e that hides some exe-
ution details and issues of the underlying exe
ution model . That is what we
all a Parallel 
omputing model (PCM). An e�e
tive parallel 
omputing modelmust be a�ordable to be eÆ
iently implemented in real parallel ma
hines andmany times it is highly in
uen
ed by real ar
hite
ture model 
apabilities. Atthe same time, it is expe
ted that a good parallel 
omputing model provides areliable 
ost analysis te
hnique to test the behavior and performan
e expe
ta-tions of programmed solutions. Examples of this level in
lude abstra
tions su
h



2.1. PARALLEL MODELS AND DEFINITIONS 17as PRAM [65℄ or LogP [50℄ models.Finally, at the lowest level, ma
hines are abstra
ted by parallel ar
hite
tures.They propose a model for hardware 
apabilities of the ma
hine, de�ning a kind oflow-level virtual ma
hine. A parallel ar
hite
ture may in
lude a spe
i�
 ma
hinedes
ription (e.g. The Conne
tion Ma
hine [103℄), or a more generi
 model (e.g.NUMA ar
hite
tures [51℄, Beowulf systems [177℄). PPMs and PCMs should beabstra
t enough to provide an easy interfa
e to the programmer, and at thesame time, they should be portable (eÆ
iently implementable) a
ross the mostrelevant parallel ar
hite
tures.For example: MPI [48℄ or PVM [178℄ are di�erent languages (level 1) thatimplement the semanti
s of the same PPM: Message-Passing (level 2). Messagepassing assumes an underlying PCM based on a bounded number of pro
essorsrunning asyn
hronously and ex
hanging point to point messages, su
h as LogP(level 3). At the lowest level, su
h a PCM 
an be dire
tly implemented on aNOW, a 
luster or even in a shared-memory ar
hite
ture (level 4), with possiblydi�erent low-level implementation me
hanisms on ea
h.PPMs and PCMs are highly related. Sin
e most of the times they are di�er-ent only in the point of view (from the programmer or from the implementationlevel), they share many 
ommon problems, and the solutions to them may besimilar. This is the reason why nowadays there exists a wide 
on
ern about bridg-ing models for parallel 
omputation. These models in
lude the main features ofa PPM, o�ering a high-level parallel programming interfa
e, and give detailsabout performan
e 
ost modeling and low-level implementation issues asso
iatedwith the PCM (typi
ally representing a given ar
hite
ture or real ma
hine witha small number of parameters). They try to jump over the gap between two
ommunities: The ar
hite
ture design 
ommunity (
on
erned by eÆ
ien
y andimplementation) on one hand, and the parallel solution design 
ommunity (
on-
erned with programming te
hniques and parallelism exploiting) on the otherhand. Many models 
an be 
onsidered bridging models, although the 
on
eptwas proposed with BSP [185℄. We will review some bridging models and their
hara
teristi
s in se
tion 2.4.In the following paragraphs we review other de�nitions and ideas found inthe literature about what parallel programming and 
omputing models are orshould be.Skilli
orn & Talia de�ne a PPM in [174℄ as an interfa
e separating high-level properties from low-level ones. It is an abstra
t ma
hine providing 
ertainoperations to the programming level above and requiring implementations forea
h of these operations on all the ar
hite
tures below. It is designed to sep-arate software-development 
on
erns from e�e
tive parallel-exe
ution 
on
ernsand provide both abstra
tion and stability.A similar idea introdu
ed by Maggs in [129℄: A PCM de�nes an abstra
texe
ution engine, powerful enough to produ
e a solution to relevant 
lasses of



18 CHAPTER 2. CONCEPTUAL APPROACHproblems, whi
h must re
e
t the salient 
omputing 
hara
teristi
s of pra
ti
alparallel 
omputing platforms. The model is both, des
riptive and pres
riptive.It des
ribes realisti
 platforms behavior, and at the same time it suggests hintsand dire
tions for new hardware development, as it models features desirable forinteresting programming and 
omputing te
hniques.2.1.4 Detail levelsFrom the more abstra
t spe
i�
ations of a problem solution, to the real imple-mentation and program, there exist several detail levels that 
an be 
onsideredand in
luded in a model. Most of them are 
learly related to the abstra
tionlevel where they typi
ally 
an appear. We introdu
e here a 
lassi�
ation of thesedetail levels from M
Coll, as presented in [35℄. From the maximum abstra
tionto the lowest level of detail, a PPM/PCM 
an in
lude or model the followinglevels (we present some examples of models that in
lude a given level):Spe
i�
ation: Unambiguous des
ription of a 
omputational problem (e.g. Z,CSP, �-
al
ulus).Programming: Notation for a pre
ise, high-level des
ription of 
orre
t and ef-�
ient solutions to a given 
omputational problem (e.g. HPF, O

am).Cost analysis: Basis for evaluation and 
omparison of eÆ
ient methods for aprogrammed solution to a 
omputational problem (PRAM, BSP, LogP).Ar
hite
tural (also 
alled mapping level): Framework for the des
riptionof implementations of programs (e.g. monitors, semaphores, RPC, message-passing).Physi
al (also 
alled ma
hine level): Des
ription of a real ma
hine 
har-a
teristi
s in whi
h to implement and solve a program (e.g. distributed-memory vs. shared-memory models, NOWs).A programmer typi
ally walks through these levels top-down during the de-sign and implementation until the program 
an be exe
uted in a real ma
hine.The term implementation is sometimes used for the whole pro
ess of transform-ing a problem spe
i�
ation in real 
ode for a given ma
hine. In our framework,it typi
ally means the pro
ess of transforming a program (spe
i�ed in a PPMnotation for the programming level) into a ready-to-run exe
utable.2.1.5 Requirements of PPMsWhat 
hara
teristi
s should have a PPM/PCM to be a good 
andidate for generalall-purpose parallel programming? We dis
uss here a proposal from Skilli
ornand Talia [174℄. They propose six main requirements for a PPM/PCM:



2.1. PARALLEL MODELS AND DEFINITIONS 19Easy to program: A PPM should 
on
eal details about de
omposition of the
omputation in threads, 
ommuni
ation and syn
hronization between them,and any mapping de
isions to adapt the 
omputation to the underlyinghardware model.Software development te
hnology: A �rm semanti
 foundation is needed tobridge from spe
i�
ations to programs.Easy to understand: To edu
ate existing software developers.Ar
hite
ture independent: Even with new evolving or future te
hnologies.(In [129℄ we also read that a PPM should be somehow pres
riptive, andpoint into new interesting dire
tions for hardware development).Guaranteed performan
e: Although it is not needed to exploit it to the bestpossible in ea
h ar
hite
ture, espe
ially at the expense of mu
h higher devel-opment and maintenan
e 
osts. \Implementations should aim to preservethe order of the apparent software 
omplexity and keep 
onstants small".Cost measures: They should 
over exe
ution time, pro
ess utilization, devel-opment, et
. They must be 
ompositional and 
onvex.These requirements 
an be divided in two broad 
ategories. The �rst three re-quirements are fo
used on the software development 
hara
teristi
s (more relatedwith the PPM), and the last three ones are fo
used on the good mapping 
hara
-teristi
s (more related to the indu
ed PCM). The a
hievement of the requirementsdepends on the modeling de
isions taken in the design of a PPM/PCM at thedi�erent detail levels (see se
tion 2.1.4). These de
isions de�ne the power of themodel expressiveness and analyzability , being foundations of the feasibility of thesoftware development and good mapping requirements 
ategories respe
tively.Spe
i�
 restri
tions at the programming level, that somehow redu
e the num-ber of appli
ations that have a natural mapping from spe
i�
ations to the stru
-tures a

epted at this level, may produ
e bene�ts for the lower levels. Spe
if-i
ally, advantages may appear on 
ost analysis te
hniques and implementationtransformations to map appli
ations into the ar
hite
tural level.The programming model, formally, provides a set of rules or relationships thatde�nes the meaning of a set of programming abstra
tions. Its obje
tive is to allowreasoning about program meaning and 
orre
tness [129℄. Thus, a model mustbe simple enough to allow analysis and stable software developing te
hniques.At the same time it must provide meanings to express problems in a naturalway (obvious to any programmer), 
omplying to the original spe
i�
ations of theproblem solution and obtaining eÆ
ient implementations and good performan
ein real ma
hines. Su
h mapping de
ision should be helped by a performan
e 
ostmodel, based on a suÆ
ient detailed but abstra
t enough ma
hine model. Cost



20 CHAPTER 2. CONCEPTUAL APPROACHmodels that allow to plug di�erent ma
hine models in a standardized des
riptionlanguage or formalism are the best 
andidates. The programmer may trade
omplexity and a

ura
y in the pro
ess to determine the best implementation ofan algorithm for a given ma
hine [70℄.Our study is mainly fo
used on the 
ross relationships between the program-ming, 
ost analysis and ar
hite
tural (or implementation) detail levels and theirimpa
t on the expressive and analysis power of the model. We have identi�edthe syn
hronization stru
tures supported in the programming model as a basi

omponent of a PPM design. We have found it responsible for an importanttrade-o� between expressiveness and analyzability, whi
h are foundations for thetwo PPM/PCM requirements 
ategories. This matter is dis
ussed in the follow-ing se
tions.2.2 Syn
hronization ar
hite
tureAppli
ations that exhibit the same syn
hronization stru
tures usually have prop-erties that 
an be exploited through the programming and implementation pipe-lines. PPMs 
an restri
t or support spe
i�
 kinds of stru
tures in order to o�eradvantages in software engineering, programmability and portability (automati
or intera
tive performan
e analysis, veri�
ation, et
.) Identifying important
lasses of programming stru
tures with interesting properties be
omes a 
hal-lenge for parallel software engineering.We propose the 
on
ept of syn
hronization ar
hite
ture to 
lassify parallelsystems regarding its main syn
hronization stru
ture properties. In this se
tionwe propose and des
ribe a 
lassi�
ation of the di�erent main types of syn
hro-nization stru
tures.De�nition 2.2.1 A Syn
hronization ar
hite
ture (SA) is the formal des
riptionof the properties that de�ne the 
ommuni
ation stru
tures and syn
hronizationme
hanisms either present in a spe
i�
 appli
ation or supported by a given PPM.2.2.1 Types of syn
hronization: CS, MEAlthough several names are used in the literature, we distinguish only two maintypes of syn
hronization (see e.g. [9, 122℄).Condition syn
hronization (CS): It is used when an operation or pro
essmust be delayed until a 
ertain 
ondition is satis�ed. It is typi
ally asso-
iated to data dependen
es, 
ommuni
ation or other pro
esses ending. Itimplies an exe
ution order in the pro
esses or operations involved for the
omputation to be 
orre
t. It is also 
alled stati
, deterministi
 or eventsyn
hronization.



2.2. SYNCHRONIZATION ARCHITECTURE 21Mutual ex
lusion (ME): A 
riti
al se
tion is a sequen
e of statements thatmust be exe
uted as an atomi
 operation. When two or more 
riti
al se
-tions or pro
esses 
annot be exe
uted at the same time (in parallel), wesay they are mutually ex
lusive. If two or more mutual ex
lusive pro
essestry to begin their exe
utions, only one of them 
an pro
eed, but the orderin whi
h they are exe
uted is not relevant for the 
omputation 
orre
tness.It is also 
alled dynami
 or non-deterministi
 syn
hronization.These types of syn
hronization are orthogonal in the sense that a PPM 
ansupport both or either of them independently. Nevertheless, they are only dif-ferent from the programming point of view. In the exe
ution model, the MEsyn
hronization is transformed in CS, 
reating an order of exe
ution for themutual ex
lusive 
riti
al se
tions. This transformation is done by s
heduling al-gorithms in the PCM implementation or dire
tly by the hardware (e.g. through
ommuni
ations 
ontention). The di�eren
e is the freedom for the 
riti
al se
-tions to be s
heduled in any order, that allows the underlying exe
ution layerto dete
t or apply a di�erent order for a parti
ular exe
ution of the 
ode. Thisorder is 
hosen to maximize the performan
e and must be determined by the
omputation status, the exe
ution times of other tasks, and previous s
hedulingresults.2.2.2 Mutual ex
lusion, mapping and bounded resour
esIn this se
tion we dis
uss the relation of ME nature with mapping tasks at lowlevels of detail. Thus, ME appears to be highly related to implementation detailsoriented to deal with restri
ted resour
es. Pro
essors are typi
ally a restri
ted re-sour
e. The dis
ussion evolves to the relative importan
e of supporting boundedor unbounded number of logi
al pro
essing elements in a PPM, that is relatedto the parallelism granularity supported.A PPM must in
lude CS me
hanisms. Although some problems 
an be solvedwith only ME, there are many others whose solutions need an spe
i�
 order ofexe
ution in some operations for the 
omputation to be 
orre
t. On the otherhand, ME ex
lusion may be implemented by a programmer in terms of CS 
re-ating an unne
essary order in the tasks involved. The programmer fa
es the riskof degrading performan
e if the order 
hosen is not the optimum for a spe
i�
exe
ution of the program, but many times she/he has a good heuristi
 to de
idewhat should be an a

eptable order. Furthermore, many times ME is introdu
edby programmers to solve mapping problems in environments where the PCM orexe
ution model 
annot solve them dire
tly.The main purpose of ME is to let the programmer deal with restri
ted re-sour
es. These resour
es 
an be of any nature, but they are intrinsi
ally related tothe ar
hite
ture, model, or design of real ma
hines (e.g. shared-memory a

esses
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hite
tures that do not provide an impli
it 
ontention me
h-anism). At the more abstra
t level of spe
i�
ation ME s
ar
ely appears. Onlywhen the programmer (or 
ompiler designer) is fa
ing mapping problems, 
on-sidering a restri
ted number of resour
es (e.g. a restri
ted number of pro
essors),ME be
omes really important. Expli
it ME 
an be used by the programmer toannote the tasks whi
h 
an produ
e 
ontention problems, for its implementationin ar
hite
tures that do need it, and for being used in a 
ost model during themapping.Consider the following example. A 
lassi
al parallel solution for load balan
-ing in many irregular problems is the farm paradigm, also 
alled work-stealingstrategy (see e.g. [43, 189℄). In problems solved with this strategy, there arek work providers and n workers. The workers repeat a simple 
y
le until the
omputation is �nished: Get work from a work provider and do the work. Thework providers a
t as resour
es that must be a

essed through 
ontention by theworkers. See a graphi
 representation of the generated stru
ture in Fig. 2.2. Forwork balan
ing reasons and simpli
ity, in most examples there is only one 
en-tralized work provider k = 1. In some appli
ations the work done 
an produ
emany other pie
es of work to do in the future whi
h are sent to a work providerwhen the ex
lusive a

ess for this operation is obtained.
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Figure 2.2: Workers-Farm s
heduling strategyThis des
ription 
orresponds to a mapped and free s
heduled solution for theproblem. The original problem only 
onsiders that many workers 
an do pie
esof a job in parallel. The original problem solution only spe
i�es that manyworkers 
an get a pie
e of job and do it iteratively. If the number of pro
essorsis not bounded, then, m simultaneous workers 
an do one of the many m pie
es



2.2. SYNCHRONIZATION ARCHITECTURE 23of the job. If the work produ
es more m0 pie
es, then, m0 new workers in m0new pro
essors 
an start pro
essing these new m0 pie
es, as soon as they areavailable. Nevertheless, the number of pro
essors is typi
ally a limited resour
e.When mapping to n pro
essors one logi
al 
hoi
e is to start n workers, andlet them pro
ess the pie
es of work iteratively. In a se
ond mapping phase, ifwe 
onsider k = n work providers, ea
h worker has an ex
lusive font of workpie
es, and the 
omputation does not need mutual ex
lusion. However, for thekind of irregular and data-dependent problems that this strategy is oriented tosolve, a worker 
an produ
e many more pie
es of work than others. We want tobalan
e the load su
h that no worker is idle while others have still many items topro
ess. Thus, workers that be
ome idle should 
onta
t the work providers to getmore job pie
es. One or more 
entralized sour
es of work are needed, a
ting asresour
es and needing mutually ex
lusive a

ess to avoid several workers 
reatingra
e 
onditions when downloading or uploading job pie
es.This load balan
ing strategy is a mapping de
ision that works appropriatelywhen the 
omputation is highly irregular and the 
omputation time of a workerdoing a job pie
e 
ompensates the 
ommuni
ation and 
ontention delays. Thenumber of work providers 
an be sele
ted depending of many 
ost fa
tors and loadpredi
tions. All these mapping issues are fa
ed by a programmer implementinga farm dire
tly, when the original problem de�nition was mu
h simpler. In fa
t,the original solution stru
ture is hidden or even lost in the mapped-s
heduled
ode generated. We argue that this mapping de
ision must be postponed tothe mapping phase, done by the PCM implementation, guided by informationprovided by the programmer either, on the 
ode or intera
tively.An interesting question derived from the previous dis
ussion is whether aPPM should for
e the programmer to work with a �xed number of logi
al pro-
essors or with an unbounded number of them. As is dis
ussed in followingse
tions about existing PPMs, working with an unbounded number of pro
essorsallows the programmer to exploit the maximum level of �ne-grain parallelism inthe problem. However, in most situations, this is not an eÆ
ient solution in realimplementations. Fine grain parallelism 
an 
reate a huge amount of small taskswith too frequent 
ommuni
ation, redu
ing the parallel sla
kness1 and unbal-an
ing the 
ommuni
ation/
omputation ratio, in
rementing the 
ommuni
ation
osts over the 
omputation. On the other hand, if the programmer must takein a

ount that he is working with a �xed number of pro
essors, sometimes heis lead to deal with this restri
ted resour
e dire
tly, fa
ing and solving the datapartition, s
heduling and other mapping details. This 
ould 
ompromise porta-bility and the possibility of using powerful software development te
hniques. Inse
tion 2.4 we dis
uss PCMs that try to fa
e this problem from di�erent pointsof view.1The granularity of the 
omputation partition among tasks [185℄.



24 CHAPTER 2. CONCEPTUAL APPROACHThe best solution is to �nd a good mapping te
hnique that transforms �ne-grained parallelism expressed in an abstra
t form by the programmer in 
oarse-grained parallelism in the best possible form, adapted to the number of pro
essorsand other ma
hine details. An a

urate, minimum 
ost model that dete
ts atleast the asymptoti
 performan
e alterations of a given data-layout, s
hedulingor other mapping transformations is a key for this kind of te
hniques.From the above dis
ussion, we suggest that an ideal PPM should abstra
tthe programmer from the number of pro
essors that he is going to use, lettinghim only to show hierar
hi
ally the di�erent levels of parallelism in the prob-lem solution (from the 
oarsest to the �nest). The PPM/PCM should in
ludean automati
 or intera
tive pro
edure to map this kind of programs to the re-stri
ted resour
es of a given ar
hite
ture using: (1) ME, (2) an asymptoti
allya

urate 
ost model supplied with the target ma
hine model and parameters, (3)a proper s
heduling te
hnique to transform �ne-grained parallelism to the propergranularity, eliminating unne
essary 
ommuni
ation and leading to the properparallel-sla
kness needed to obtain an eÆ
ient program.We 
on
lude that ME is not needed at the highest abstra
tion level of spe
-i�
ation, but it is helpful to express some solutions to spe
i�
 problems and tohelp the PCM implementation to take de
isions about where and how to dealwith 
ontention problems that are not solved by typi
al underlying ar
hite
tures.2.2.3 Classi�
ation 
riteria for SAsWe 
an 
lassify SAs a

ording to the di�erent properties (in expressiveness vs.analizability trade-o�) they indu
e in a PPM/PCM or appli
ation. We propose
riteria based on three orthogonal axis as shown in Fig. 2.3. The two �rst axis
orrespond to the two orthogonal types of syn
hronization (CS and ME syn
hro-nization). They are orthogonal in the sense that a PPM 
an support both oreither of them independently. The third axis is based on a 
riterion that distin-guish data-dependent from non-data-dependent syn
hronization stru
tures. CSand ME are 
ombined by the programmer to 
reate the appropriate syn
hro-nization stru
tures for a given appli
ation. Some appli
ations will always 
reatea given syn
hronization stru
ture or 
ombination. However, appli
ations thatare data-dependent may 
reate pro
esses and any type of syn
hronization (MEor CS) dynami
ally. Thus, it is possible that the exa
t syn
hronization stru
-ture 
reated by an appli
ation will be not known until exe
ution time. Thisthird 
riterion be
omes important to dete
t if syn
hronization stru
tures maybe analyzed and manipulated stati
ally at 
ompile time or only dynami
ally atrun-time.The relevant 
lasses identi�ed in ea
h of the three axis are:1. CS syn
hronization subtypes:



2.2. SYNCHRONIZATION ARCHITECTURE 25

Mutual exclusion Data-dependency

Condition Synchronization

SP

ME

NME

NSP

NDS

DS

Figure 2.3: SA 
lassi�
ation 
riteriaWe propose only two 
omplementary main 
ategories of CS stru
tures re-garding the properties of the PPM that derivate from its 
lass: (1) Hi-erar
hi
al, SP, or Series-Parallel (also known as nested parallelism); (2)Non-hierar
hi
al, NSP, or Non-Series-Parallel.2. ME syn
hronization subtypes:We 
onsider two 
lasses: (1) PPMs not supporting mutual ex
lusion (NME),or appli
ations whi
h do not need it; and (2) another 
omplementary 
lassfor PPMs supporting, or appli
ations whi
h use, ME.3. Data-dependen
y subtypes:We distinguish between: (1) Non-Data-Dependent syn
hronization stru
-tures (NDS), and (2) Data-dependent syn
hronization stru
tures (DS),
reated by a PPM whi
h allows dynami
 thread 
reation [174℄ or data-dependent syn
hronization stru
tures (determining whi
h and when pro-
esses 
ommuni
ate at run-time). Parallel algorithms may also be designedwith non-data dependent stru
tures or may use semanti
s that need data-dependent (dynami
) syn
hronization.Thus, we propose eight SA 
lasses, where some of them 
an be empty atsome abstra
tion or modeling levels if no useful parallel 
omputations (PPMs orappli
ations) present su
h syn
hronization stru
tures. Ea
h 
lass will be namedby a triplet (a;b; 
), where a will be the 
lass of CS, b will indi
ate if ME 
an beexploited and 
 if data-dependent syn
hronizations are possible. In the followingse
tions we will fully des
ribe ea
h axis sub
lass, presenting examples of PPMsand programs for ea
h one.
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Figure 2.4: SA 
lassi�
ationWe will 
onveniently represent the SA spa
e in two dimensions as in Fig. 2.4.In this graphi
 representation, the less restri
tive SA 
lasses are in the top right
orner, and the more restri
tive are in the bottom left 
orner. Fig. 2.5 shows theidea of in
reasing restri
tiveness from one 
lass to another with small arrows, andthe intuitive idea of general in
reasing restri
tiveness from the top right 
ornerto the bottom left 
orner with a big arrow.2.2.4 Condition syn
hronization: CS 
lassesPPMs that do not support 
ondition syn
hronization must base all solutions inME. They 
annot solve many 
on
urren
y problems that need fairness, shouldensure no-starvation or should avoid dead-lo
k 
onditions. We 
onsider this 
asea degenerated 
lass of PPMs not fully useful for general parallel 
omputation.Appli
ations based mainly in ME for problem solving typi
ally in
lude some formof CS at least to 
reate pro
esses or threads and to wait for them to end beforeanother stage begins, or the appli
ation �nally ends (see e.g. se
tion 2.5.5).We will present now the two 
lasses of CS stru
tures with an example of apossible parallel programming language and a possible program for ea
h 
lass.
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SFigure 2.5: Restri
tiveness in
rease of SA 
lassesA. SP (Series-Parallel)This 
lass 
ontains the SAs whi
h only allow CS stru
tures whi
h dependen
es
an be represented by a series-parallel partial order set or series-parallel dire
teda
y
li
 graph (see se
tion 3.2.1). Series-parallel stru
tures are generated by theso 
alled nested-parallelism, nesting (or re
ursive applying) series and parallel
ompositions. They appear in PPMs with language primitives with the samesemanti
s as the 
obegin, 
oend 
onstru
tors [9℄. The end of the parallel se
tionimpli
ates a barrier syn
hronization before it pro
eeds. Next tasks are dependenton all of the tasks in the previous parallel se
tion. Communi
ations are impli
itand only o

ur during the fork and join phases of a parallel se
tion.A formal de�nition of SP languages based on SP partial order sets and SP-algebras is presented in [126℄. Automata theory 
an be extended for re
ognitionof SP languages (see [127, 125℄).For example, 
onsider a PPL where the only 
ondition syn
hronization that
an be expressed is impli
it in 
obegin, 
oend statements. Arbitrary 
omputationblo
ks are identi�ed by an integer in a do <integer> statement. An example ofa possible 
ode and its task graph representation is shown in Fig. 2.6. Thenumbers in the task graph represent the numbers of the 
omputation blo
ks in
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ode. The syn
hronization stru
tures that 
an be 
reated are 
onstru
ted byre
ursive appli
ation of spawning parallel se
tions, and serial 
omposition. Theuse of global variables or data in tasks from di�erent threads of parallel se
tions
ould 
ompromise the program 
orre
tness, as the model 
onsiders the tasks indi�erent subthreads 
ompletely non-dependent.(1) begin(2) do 1;(3) 
obegin(4) t1: do 2;(5) t2: do 3; do 4;(6) 
obegin(7) t1: do 5; do 6; do 7;(8) t2: do 8;(9) t3: do 9; do 10;(10) 
oend(11) do 11;(12) t3: do 12; do 13; do 14;(13) 
oend(14) do 15;(15) end
3

4

5 8

7

6

9

10

11

15

12

13

14

1

2

Figure 2.6: Example of series-parallel 
ode and stru
tureSub
lasses of SP 
lassIn SP 
lass of SAs we 
an distinguish two sub
lasses asso
iated with well-known
on
epts related to the syn
hrony in PPMs, and widely used in the literature.Presented in order of de
reasing syn
hronization restri
tiveness, they are:Lo
kstep: Ea
h 
omputation step is syn
hronized among all pro
essing ele-ments in the system. SIMD ma
hines in Flynn's 
lassi�
ation [64℄ workswith these SA (see also PRAM model dis
ussion in se
tion 2.4.1). Typi-
ally, lo
kstep me
hanism assume unit 
ost for the operations and no 
ostfor the syn
hronization me
hanism.Bulk-syn
hronous: Ea
h pro
essor exe
utes a series of lo
al 
omputationalsteps or tasks before all pro
essors syn
hronize together in a full barrier.Communi
ation or a

esses to shared memory only o

ur su
h that theresults are only available in the next phase, after the full syn
hronization.(See BSP, QSM and some PRAM derivate models in se
tions 2.4.2, 2.4.3and 2.4.1 respe
tively). The re
ursive appli
ation of bulk-syn
hronizity
reates SAs that are in the full SP 
lass.



2.2. SYNCHRONIZATION ARCHITECTURE 29The relation between these sub
lasses is presented in Fig. 2.7. SP andNSP 
lasses are 
omplementary. Lo
kstep is a more restri
ted 
lass than bulk-syn
hronization that is in turn a sub
lass of SP syn
hronizations.
CS

SP Class NSP Class

Bulk-synch.

Step-lock

Figure 2.7: Classes of 
ondition syn
hronizationB. NSP (Non-Series-Parallel)This is the 
lass of the SAs whi
h allows stati
 stru
tures whose dependen
es
an NOT be represented by an SP partial order set or SP dire
ted a
y
li
 graph.Any kind of dependen
es 
ombination expressed with CS 
an be found in anappli
ation programmed in this kind of model.PPMs in this 
lass are also 
alled asyn
hronous. Non-series-parallel modelsare related to the 
on
ept of syn
hronization by point to point message-passingor me
hanisms as signal, wait primitives. Consider a toy PPL where arbitrary(1) do (> 1 > a,b )(2) do (> 2 > 
 )(3) do (b > 3 > e,f )(4) do (a > 4 > d )(5) do (e > 5 > g )(6) do (
,f > 6 > h,i,j )(7) do (d,g > 7 > k,l )(8) do (i > 8 > m,n,o )(9) do (j > 9 > p,q )(10) do (n,p > 10 > r,s )(11) do (o,q > 11 > t )(12) do (l,r,s > 12 > u )(13) do (s,t > 13 > v )(14) do (k,u > 14 > )(15) do (m,v > 15 > )
b
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14 15Figure 2.8: Example of non series-parallel 
ode and stru
ture
omputation blo
ks are identi�ed by an integer number, and they are exe
utedprovided that a 
olle
tion of pre
onditions, identi�ed by a name, are true. At
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omputation a 
olle
tion of post
onditions 
an be issued. Thesyntax used will be the statement do (pre
onditions list > taskNumber > post-
onditions list). Any task with no pre
ondition will be exe
uted (in parallel) atthe beginning of the 
omputation. In Fig. 2.8 we show an example of a programwhi
h generates a 
omplex non-SP graph. Any kind of syn
hronization stru
tureor generi
 graph 
an be generated with su
h a language. (For this example toylanguage it is possible to 
reate 
omputations that never end, due to in�nite
y
les or 
onditions impossible to be satis�ed).2.2.5 Mutual ex
lusion: ME 
lassesWe distinguish two 
lasses in the ME axis: PPMs that do, and PPMs that do notprovide ME me
hanisms. We in
lude a dis
ussion about the di�erent natures andME me
hanisms in the des
ription of the related 
lass. Appli
ation de�nitionsalso may or may not use ME semanti
s. In se
tion 2.2.6 we dis
uss the problemsof simulating ME semanti
s with CS.A. NME (No mutual ex
lusion)Models and appli
ations in this 
lass do not support or need ME me
hanisms.In previous se
tions we have shown examples of PPLs and programs whi
h donot use ME (see Fig. 2.6 and Fig. 2.8).B. ME (Mutual ex
lusion)In this se
tion we dis
uss the di�erent me
hanisms that support ME. We willuse as example a simple problem where n threads need to a

ess a global vari-able (a

essible in shared-memory or through 
ommuni
ation me
hanisms a
rossthreads) to use it as a 
ounter. ME must be used to avoid ra
e 
onditions. Thetypi
al me
hanisms are:1. Shared-Variable paradigm with mutual ex
lusion primitives:Some PPMs provide the programmer with me
hanisms or primitives thathave impli
it ME semanti
s. In this 
ase the programmer 
an dire
tlyspe
ify whi
h tasks 
annot be exe
uted in parallel (simultaneously), with-out spe
ifying any impli
it order. Any one 
an be exe
uted before theothers.The exa
t me
hanisms 
an be of any nature: Atomi
 operations on vari-ables, atomi
 transa
tions, 
riti
al se
tions spe
i�
ation, monitors, ... Themain advantage of dire
t ME primitives is that the 
ompiler 
an easily de-te
t and reason about the e�e
ts of the unordered syn
hronization in theprogram performan
e. An approximation te
hnique to the 
ost modelingof ME is given by Van Gemund in [70℄.



2.2. SYNCHRONIZATION ARCHITECTURE 31(1) a=0(2) !$OMP PARALLEL, shared(a)(3) myId = OMP GET THREAD NUM()(4) !$OMP CRITICAL(5) a=a+1(6) WRITE(*,*) "Thread ",myId," s
ores ",a(7) !$OMP END CRITICAL(8) WRITE(*,*) "Ending thread ",myId(9) !$OMP END PARALLEL(10) WRITE(*,*) "End of 
omputation"
a=0

1

1

1
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2

2

3

3
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n

a=a+1; WRITE

WRITE

WRITE

THREAD_NUM

Figure 2.9: Example of 
ode and stru
ture with ME primitivesConsider for example OpenMP [149℄. It provides a parallel se
tion pragmaOMP PARALLEL and another pragma 
alled OMP CRITICAL to spe
ify apart of 
ode that is a 
riti
al se
tion. Criti
al se
tions of 
ode are mutuallyex
lusive for all the threads in the same parallel se
tion. The simpli�ed 
odein Fig. 2.9 shows an example using OpenMP in FORTRAN language. Inthe asso
iated task graph we 
annot use normal oriented edges to representthis dependen
e, as it does not indu
e any order in the tasks. We useshaded nodes to represent this dynami
 dependen
e. The shaded nodeswill be exe
uted sequentially but in no spe
i�
 order. The number in anode represents the number of the thread exe
uting the task. The s
reenresults of this 
ode exe
ution depend on the order in whi
h the threadsget a

ess to the 
riti
al se
tion, but they will be 
onsistent as no ra
e
ondition in the a = a+ 1 statement 
an be produ
ed.2. Message-Passing paradigm with programmed ME:Other models do not provide primitives with ME semanti
s, but they havea 
ontention me
hanism that 
an be use to manually program mutual ex-
lusion.Consider for example a SPMD parallel language whi
h begins a parallelse
tion with a parallel() statement, a fa
ility to get the own thread num-ber get id(), and has a message-passing interfa
e with send(p,i), re
v(p,i)operations, where p is the number of pro
essor to send to or to re
eivefrom, and i is an integer. Suppose we allow the re
eive operation to get amessage from any pro
essor, the �rst that arrives at the in-port. For ourexample language, if p = �1, then the re
v(p,i) operation will return in pthe number of the pro
essor from whi
h the next message 
omes. We areallowing a kind of 
ontention between arriving messages in the in-port ofthe re
eiving pro
essor. We 
onsider a 
ase in whi
h if several messages aresent simultaneously the order of arriving 
annot be predi
ted. In the 
ode



32 CHAPTER 2. CONCEPTUAL APPROACHin Fig. 2.10 we show an example of using this feature to produ
e mutualex
lusion, using one thread as a (monitor like) dynami
 syn
hronizationserver. Again, the number in a node represents the number of the threadexe
uting the asso
iated task. The results will be similar to those of theprevious example for ME primitives.(1) parallel(n+1) f(2) myId = get id();(3) if (myId==0) f(4) a=0;(5) for (i=1; i<=n; i++) f(6) p=-1; /* From any */(7) re
v(p,foo);(8) a=a+1;(9) send(p,a);(10) g(11) g(12) else f(13) send(0,foo);(14) re
v(0,result);(15) printf("%d reads %d",myId,result);(16) g(17) g(18) printf("End of 
omputation");
recv; a=a+1;

send

recv; a=a+1;
send

recv; a=a+1;
send

getId

send
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send
recv; a=a+1;
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Figure 2.10: Example of 
ode and stru
ture with programmed MEAlthough it is still possible to produ
e similar results as using ME primi-tives, the programs get more 
ompli
ated, the programmer must fa
e semi-s
heduling issues, and the global e�e
t of the mutual ex
lusion is hidden tothe 
ompiler. Typi
ally, in these programming models, the analysis of the
ontention must be done at a very low level, where the original semanti
sof the mutual ex
lusion are lost, 
ompli
ating the overall 
ost analysis withnew low-level parameters.2.2.6 Mutual ex
lusion vs. 
ondition syn
hronizationSome PPMs do not in
lude any me
hanism for mutual ex
lusion (NME). Whensu
h a model needs to deal with a problem like the one proposed as examplein se
tion 2.2.5, the only possible solution is to use 
ondition syn
hronizationbetween the tasks that 
annot be exe
uted in parallel, 
reating a spe
i�
 order,that may be not the optimum s
hedule.Consider a SPMD language extension of C, with an expli
it parallel region
onstru
t, with a fa
ility to identify the number of the 
urrent thread get id() and



2.2. SYNCHRONIZATION ARCHITECTURE 33with semaphore-like operations: wait(
) that waits until 
 
ondition is signaled,signal(
) that signals the 
ondition 
. Conditions will be identi�ed by an integernumber. Thus, the 
ode in Fig. 2.11 shows how to use 
ondition syn
hronizationto avoid ra
e 
onditions in the a

ess to the shared variable a.(1) a=0;(2) parallel(n) f(3) myId = get id();(4) if (myId==1) f /* thread 1 */(5) a=a+1;(6) printf("%d reads %d",myId,a);(7) signal(2);(8) g(9) else if (myId < n) f(10) wait(myId);(11) a=a+1;(12) printf("%d reads %d",myId,a);(13) signal(myId+1);(14) g(15) else f /* thread n */(16) wait(myId);(17) a=a+1;(18) printf("%d reads %d",myId,a);(19) g(20) g(21) printf("End of 
omputation");
2

3

n

2 3 n

1

1

a=0

wait;

signal;
a=a+1; printf;

wait;

signal;
a=a+1; printf;

a=a+1; printf;
signal;

wait;
a=a+1; printf;

get_id

printf;Figure 2.11: Example of none ME syn
hronization 
ode and stru
tureHowever, 
ondition syn
hronization 
reates an ordering over-spe
i�
ation notreally 
oming from the original problem. In 
ases of not perfe
tly balan
ed situ-ations, where the 
ontending threads may arrive at the 
riti
al se
tion in randomorder, this over-spe
i�
ation 
ould delay threads prepared for exe
ution until theprevious threads in this false order arrives and �nish the 
riti
al task. Fortu-nately, not many parallel problems present this kind of unbalan
ed behavior.2.2.7 Data-Dependen
y: DS, NDS 
lassesThis 
lassi�
ation axis is related to the 
reation, from the same program, ofpotentially di�erent syn
hronization stru
tures at run-time (data-dependent).We distinguish only two 
lasses.A. NDS(Non-Data-Dependent syn
hronization stru
tures)Many appli
ations 
reate the same syn
hronization stru
ture independently ofthe input data (no thread 
reation or 
ommuni
ation target is de
ided as a fun
-



34 CHAPTER 2. CONCEPTUAL APPROACHtion of the data values). Although not 
ommon, PPMs may support only thiskind of data-independent stru
tures. In this 
ase, syn
hronization me
hanismsare provided with expli
it information about whi
h pro
esses or threads 
ommu-ni
ate at 
ompile-time. A PPM that is restri
ted to only non-data-dependentsyn
hronizations must have a predetermined number of named pro
esses run-ning. The name of the pro
ess to whi
h a 
ommuni
ation or syn
hronization isissued must not be able to be determined at run-time.(1) initialize( M(1:1000,1:1000) )(2) numIterations=3(3) do i=1,numIterations(4) dopar(5) 
ellAutom(M(1:251,:), M(1:250,:))(6) 
ellAutom(M(250:501,:), M(251:500,:))(7) 
ellAutom(M(500:751,:), M(501:750,:))(8) 
ellAutom(M(750:1000,:), M(751:1000,:))(9) end-dopar(10) end-do(11) write(M)
2 3 41

initialize, numIterations=3

1 2 3 4

1 2 3 4

write
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cellAutom

cellAutom

cellAutomFigure 2.12: Example of stati
 syn
hronization 
ode and stru
tureLet us 
onsider an example PPL, where the parallelism 
an be only expressedby a dopar, end-dopar 
onstru
tion that 
ontains no 
ode, but a maximum ofp fun
tion 
alls with one input and one output parameter. Ea
h fun
tion isexe
uted in an independent pro
ess that re
eives the input parameter from theroot pro
ess and 
ommuni
ates the output parameter ba
k to the root pro
ess.The semanti
s of the language do not allow 
on
i
ts by synta
ti
ally for
ing thatthe variables whi
h re
eive the output parameters int the root pro
ess must bein non-overlapping memory 
ells. The fun
tions inside a parallel 
onstru
tionmust not 
ontain other parallel 
onstru
tion. In this model, the syn
hronizationstru
ture is 
ompletely non-data-dependent if the dopar 
onstru
tion may notbe inside a 
onditional statement. Hen
e, no run-time de
isions may a�e
t theparallelism or 
ommuni
ation stru
ture. An example of a stati
 
ellular automatalike program in su
h a PPL is shown in Fig. 2.12. The input parameter of ea
hfun
tion in
lude the frontier lines of the matrix, while the output parameters dore
eive only the 
omputed part, with non-overlapping lines.B. DS(Data-Dependent syn
hronization stru
tures)Almost all PPMs allow an impli
it or expli
it form to 
reate data-dependent syn-
hronization stru
tures. Typi
al 
ases of these syn
hronization me
hanisms are
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ommuni
ation/syn
hronization primitives inside 
onditional statements, 
om-muni
ation 
hannel names sele
ted at run-time by a 
omputed value, data-dependent asyn
hronous 
ommuni
ations, wild
ards for message re
eiving primi-tives in message-passing, dynami
 
reation of pro
esses inside 
onditional or loopstatements, et
.(1) MPI INIT(err)(2) MPI COMM SIZE(MPI COMM WORLD, numP, err)(3) MPI COMM RANK(MPI COMM WORLD, myId, err)(4) IF (myId==0) THEN(5) read(*,*) s(6) END-IF(7) MPI BCAST(s,1,MPI INTEGER,0,MPI COMM WORLD,err)(8) DO i=1,s(9) neig = MOD(myId+i,numP)(10) CALL MPI SEND(myId,1,MPI INTEGER,neig,0,MPI COMM WORLD,err)(11) END-DO(12) DO i=1,s(13) neig = MOD(myId+numP-i,numP)(14) CALL MPI RECV(le
,1,MPI INTEGER,neig,0,MPI COMM WORLD,status,err)(15) write(*,*) myId, "re
eive: ", le
(16) END-DO(17) MPI FINALIZE(err)
1 2 30

1 2 30

s=1

1 2 30

1 2 30

s=2

Figure 2.13: Example of dynami
 syn
hronization 
ode and stru
tureIn Fig. 2.13 we present an example of a FORTRAN-like MPI based 
ode thatprodu
e di�erent syn
hronization stru
tures depending on a run-time value. Thevalue is read from an input devi
e and determines the number of 
ommuni
ations,and the pro
esses to whi
h they are sent. Two examples of the generated graphare shown for values s = 1; s = 2 and exe
utions with 4 pro
essors.2.3 Exe
ution-level modelsIn the following se
tions we will use the SA 
lassi�
ation to show that bene-�ts and disadvantages found at di�erent modeling levels are strongly related tothe 
on
epts used for our SA 
lassi�
ation 
riteria. Our trip along the parallelprogramming abstra
tions begins in the lower level, where the unknown o
eansof parallel program exe
ution are shaking the dangerous 
li�s of ma
hine mod-
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ks �ght with the �er
e waters, trying to resist in the middle of themoaning winds to form an established 
oast line. People working in parallelar
hite
tures try to rule this broken seaside, in 
onstant 
hange, applying allnew a�ordable te
hnologies. In their e�orts, some ma
hine models have beena
knowledged and are being used as abstra
tions for development of higher levelprogramming tools.The ma
hine models we review in this se
tion are more or less establishedideas. Sometimes they are thought as equivalents of Von Neumann ar
hite
turefor parallel 
omputing, but many of the times they are 
onsidered little abstra
-tions of 
urrent te
hnology trends in the 
on
urren
y and high performan
e ra
e.Nevertheless, there exist a 
onvergen
e of parallel ma
hine models at hardwareand organization levels [51℄.2.3.1 SA 
lass of ma
hine modelsMost ma
hine models are designed to provide full 
apa
ity of 
ommuni
ation andsyn
hronization among pro
esses. Thus, they are mainly in the SA 
lass thatpresents no restri
tion (NSP,ME,DS). The two main trends of parallel ar
hite
-tures have been shared memory-address spa
e and distributed memory-addressspa
e or message-passing models. We dis
uss also the data-
ow ma
hine model,be
ause it is a di�erent and interesting graph-based approa
h to generi
 parallel
omputing. There are other non-generi
 models that are not 
onsidered in ourstudy, e.g. systoli
 arrays (simple lo
k step appli
ation oriented 
ir
uits), ve
torma
hines, and data-parallel ma
hines. Their ar
hite
tures are spe
i�
ally de-signed to obtain better performan
e for spe
i�
 types of 
omputations. Thus,their SAs are highly dependent on them. The following des
riptions are mainlybased on [51℄.
Global memory

...

Cache Cache CacheCache

P1 P2 P3 Pn...P1 P2 P3 Pn...

Global memory

...

Cache coherence systemSimple shared-memory

Access hardware

Access hardware

Figure 2.14: Shared address spa
e ma
hine models
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eShared address spa
e systems have hardware support for global a

ess to anymemory 
ell from any pro
essor. The laten
y of memory a

ess 
an be uniform(UMA) or non-uniform (NUMA) depending on the physi
al 
on�guration of thememory a
ross the ma
hine, the presen
e of 
a
hes with a 
oheren
e system, andthe pro
essor to memory a

ess hardware (see a blo
k diagram of two typi
al 
on-�gurations in Fig. 2.14). But it is anyway transparent to the upper levels. Thiskind of ma
hines provide di�erent me
hanisms to prevent ra
e 
onditions whena

essing memory 
ells 
on
urrently. However, the programmer is responsiblefor using the syn
hronization and 
ontention me
hanisms provided by the ar
hi-te
ture (operative system or hardware) to 
reate programs with �xed semanti
sand no sto
hasti
 behavior. ME is then programmed with expli
it primitives thatimplement lo
k systems. CS is 
reated through similar primitives also hardwiredin the operative system (e.g. semaphores) or the hardware itself (e.g. CrayT3Eprovide even a hardware barrier me
hanism, and 
a
he 
oheren
e hardware maybe exploited in 

NUMA ma
hines for the same purpose [102℄). As they arebased on some kind of 
ag set, 
ag test me
hanism, the CS stru
tures 
reatedby pro
esses are not restri
ted.Message-PassingMessage-passing (distributed address spa
e) ma
hines are based on a modelwhere pro
essors only have a

ess to a lo
al memory, and 
ommuni
ate withother pro
essors to obtain remote data by ex
hanging messages. There existmany di�erent message 
ommuni
ation me
hanism, all of them abstra
ted as aninter
onne
ting network from the ma
hine model point of view (see a blo
k dia-gram of these ma
hine models with two example 
on�gurations of the abstra
tnode elements in Fig. 2.15). Messages are used to 
reate CS in a natural way(when the pre
ondition is a
tivated, a message is sent to all the pro
esses wait-ing for it and the re
eption of the message �res the a
tion). Messages are intransit through the 
ommuni
ation network for an unknown and typi
ally un-predi
table time (usually depends on network traÆ
). Thus, the order of severalmessages sent from di�erent pro
essors at di�erent times 
annot be predi
ted.The programmer may program ME using messages. The pro
esses that wantto exe
ute a mutual ex
lusive task (
riti
al region) must send a request messageto a resour
e server pro
ess and re
eive a 
on�rmation message from it beforethey pro
eed. After the exe
ution of the 
riti
al region, the pro
ess send anending message to the server to indi
ate that it 
an send a 
on�rmation to otherrequesting pro
esses. Thus, in this model ME must be manually programmed.As presented in [51℄, there exist a 
onvergen
e in these two main trends ofparallel ma
hine models. Traditional message passing operations are supported
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Figure 2.15: Message-passing ma
hine modelsby shared-memory ma
hines using hidden shared bu�er storage with a properAPI. On the other hand, over a message-passing system it is possible to build amore abstra
t layer where a global address spa
e hides the ne
essary messagesto ex
hange data. Thus, in upper abstra
tion levels, even if di�erent PPMs seemto be more oriented to a spe
i�
 ma
hine model, all of them 
an be implementedin both types of ar
hite
tures.Data-Flow ma
hinesThese ma
hines ar
hite
ture are based on a hihgly abstra
t exe
ution model.The programs are spe
i�ed as stati
 task graphs. A node is a basi
 operationto be exe
uted when all pre
ondition (input parameters) are available. Afterexe
ution, a node throws its post-
onditions to su

essor nodes. The pro
essorsare based on a mat
hing me
hanism that identi�es ready to run graph nodes(those whi
h inputs are already 
omputed) and spawns new threads to exe
utethem. The exe
ution graph has the same topology as the input graph, whi
hstru
ture is not restri
ted. Thus, any kind of NSP CS is possible, although itmust be stati
. In a more dynami
 version, the nodes 
an be fun
tion invo
a-tions with 
ontext information. Dynami
 syn
hronization stru
tures are possible.As information generated as node output may be used or modi�ed by di�erentsu

essor nodes, lo
k me
hanisms to 
reate ME are provided to a

ess memoryelements (by hardware) or entire data stru
tures (by operative system). Thus,ME is impli
it in the low level data a

ess system.



2.3. EXECUTION-LEVEL MODELS 392.3.2 Con
lusions about exe
ution modelsAll ma
hine models are in the less restri
ted SA 
lass (NSP,ME,DS); see Fig. 2.16.Parallel ma
hine developers try to satisfy all possible 
onsumer requirements.Hen
e, most ma
hine models proposed have the 
apa
ity to 
reate any kind ofCS stru
ture. Moreover, ME is needed at low levels for shared resour
e 
ontrol. Itis a basi
 feature for distributed and parallel operative systems. They should alsohave me
hanisms to 
reate or destroy pro
esses and threads to attend new userjobs and system requests. These elements, that appear and disappear at hand,may 
ommuni
ate or syn
hronize among them. Although an spe
i�
 installationof the operative system may limit this 
apa
ity, the parallel ma
hine models arefully dynami
 and support data-dependent syn
hronization stru
tures.
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Figure 2.16: SA 
lassi�
ation of ma
hine modelsIn generi
 environments, su
h as NOWs or GRID 
omputing, it is 
ommonto have only software me
hanisms to syn
hronize. Espe
ially in these environ-ments with mixed ar
hite
tures and high laten
ies that ineÆ
iently in
rease thesyn
hronization time with the number of pro
essors, stru
tured and hierar
hi-
al syn
hronization highly in
reases performan
e. Hierar
hi
ally splitting the
omputation in subsets of pro
essors improves lo
ality, and maps well to big het-erogeneous or hierar
hi
al 
lusters (see e.g. [119, 187℄). Thus, more restri
ted
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hronization ar
hite
tures (spe
i�
ally in SP 
lass) will be found in higherabstra
tion levels, to improve software development on these generi
 exe
utionmodels.2.4 Bridging models and 
ost modelsWalking up from the exe
ution level 
oasts, we will travel through the wide landsof 
ost evaluation and bridging models (PCM/PPM). We will �nd pleasant slantsof greenery where new proposals 
ourish, but most of the time we will 
ross vast�elds whi
h old well-known PCMs have ploughed long ago, and where the 
ropsso many of experien
e are now hanging on their heads.We review several models frequently found in the literature. All of thempropose a PCM based on an abstra
t parallel ma
hine, give a performan
e 
ostmodel (at least for asymptoti
al 
omplexity measures) and pres
ribe a SA for thePPM. Some of them are more fo
used on the solution design point of view, butmost of them are introdu
ed as bridging models, proposing a trade-o� betweenprogrammability and eÆ
ient mapping for any ma
hine. We examine here themost popular ones, fo
using on the features relevant to our study, to show howSA is highly related to the analyzability properties of a model. (For a more
omplete survey of parallel 
omputation models see e.g. [129, 35, 4℄).2.4.1 Class (SP,NME,NDS): PRAMIn this 
lass we �nd an important family of PCMs with a 
ommon origin. ThePRAM parallel 
omputing model [65℄ has been used for parallel 
omplexity mea-surement during more than two de
ades. In PRAM, a parallel 
omputer ar
hi-te
ture is highly abstra
ted, leading to a very simplisti
 model for easy program-ming. Although in many referen
es (see e.g. [73, 156℄) it has been presentedand used as the equivalent of a data-parallel programming model, based on theSIMD (Single Instru
tion, Multiple Data-
ow) ma
hine model of Flynn's 
lassi-�
ation [64℄, the PRAM model has indeed more expresive power and it is a fullMIMD model.Des
riptionA PRAM ma
hine [65℄ 
onsist of a 
ontrol unit that syn
hronously a
tivates theexe
ution of one ma
hine level instru
tion on an unbounded number of pro
essorsthat, apart from their private memory, work with an unbounded global memoryspa
e of uniform time a

ess (see Fig. 2.17). When the exe
ution begins thesame program is loaded in ea
h pro
essor (SPMD model). The pro
essor P0 isthe only pro
essor a
tivated when the 
omputation begins, but the instru
tionset in
ludes a fork operation to a
tivate other pro
essors whi
h may evolve in



2.4. BRIDGING MODELS AND COST MODELS 41di�erent ways as they have their own program 
ounter, a
umulator register andan unbounded number of private memory 
ells. Note the 
on
eptual similaritywith the shared-memory ma
hine model blo
k diagram in Fig. 2.14.
�����������
�����������
�����������
�����������

P1 P2 P3 Pn

Global memory

...

Synch. control

...Figure 2.17: PRAM 
omputing modelThe 
ost of a PRAM algorithm is the produ
t of the parallel time 
omplex-ity by the number of pro
essors used. Time 
omplexity is easily measured asthe pro
essors operate syn
hronously and global memory a

esses have uniformlaten
y in
luded in the pro
essors step.Derivates of the basi
 PRAM model exist to 
over the problem that appearswhen more than one pro
essor issues simultaneous a

esses to a 
ell in the globalmemory (see e.g. [156℄). They a�e
t the programmer in the te
hniques availablefor algorithm design, but the stronger the model (the more expressive power) thefurther from easy implementation of the model in a real ma
hine. The PRAMmodel 
an be 
onsidered:EREW (Ex
lusive read, ex
lusive write): Two pro
essors are not allowedto read or write at the same memory 
ell simultaneously.CREW (Con
urrent read, ex
lusive write): Only simultaneous reads areallowed in the same 
ell, but only one pro
essor 
an write. This is thedefault PRAM model.CRCW (Con
urrent read, 
on
urrent write): Reads and writes to same
ell are possible in the same step. A poli
y for handling 
on
urrent writesmust be spe
i�ed, leading to more sub
lassi�
ations of the model (seee.g. [156℄).PRAM models 
an be simulated, sometimes eÆ
iently, in other variants ofPRAM or in other parallel 
omputing models (see e.g. [97, 128℄).Syn
hronization ar
hite
tureThe basi
 PRAM model presents a extremely restri
ted SA. The CS is restri
tedto a syn
hronous advan
e step by step, or lo
kstep (a sub
lass of SP). All tasks



42 CHAPTER 2. CONCEPTUAL APPROACHin one step depend on all tasks of the previous step. Whether all pro
essorsexe
ute the same instru
tion or they exe
ute di�erent ones does not a�e
t thesyn
hronization stru
ture. The most important simpli�
ation for the 
ost modelis the assumption of similar laten
y in memory a

esses and 
omputation steps,for
ed by the syn
hronization 
ontrol.We 
onsider PRAM to be in the NDS SA sub
lass be
ause even if data-dependent appli
ations may be programmed, the syn
hronization stru
ture istransformed to a stati
 lo
kstep stru
ture. Although pro
essors may a
tivateother pro
essors at any moment, the PRAM algorithms are typi
ally designedin two phases [156℄: In the �rst phase a suÆ
ient number of pro
essors are a
ti-vated, and then, in the se
ond phase, all pro
essors a
tivated are used to exe
utethe program with no new a
tivations. In this 
ase, the number of pro
essorsused for a given 
omputation is �xed. Let us analyze now the allowed syn
hro-nization patterns among them. The number or index of the pro
essor and thevalues of memory 
ells may be used in 
onditional statements. Thus, in prin
iple,the exa
t instru
tions and memory lo
ations a

essed in one 
omputation phase
an be 
ompletely data-dependent. From this point of view, the 
ommuni
ationstru
ture 
an be also data-dependent. However, from a more abstra
t point ofview, the lo
kstep me
hanism transforms any 
ommuni
ation stru
ture in a fullall-to-all syn
hronization stru
ture. On one hand, programmer do fa
e an stati
programming model, as the syn
hronization stru
ture is syn
hronized and mem-ory laten
ies or 
ommuni
ation problems are transparent. On the other hand,data-dependent appli
ations may be programmed, being the lo
kstep me
hanismthe responsible to deal with the dynami
 behavior during implementation.The obje
tive of PRAM is to simplify the 
ost model assuming unit 
ost for
omputation step and 
ommuni
ation. One 
an see PRAM as syn
hronized onlybe
ause of equal laten
y on the operations. This simpli�es the algorithm design,but the implementation should keep the 
ommuni
ation stru
ture expressed inthe algorithm, in the presen
e of real laten
ies and even with asyn
hronous exe-
ution in ea
h pro
essor. In this 
ase, the implementation of a PRAM algorithm
an express regular but not fully-syn
hronized patterns between ea
h layer of
omputation (a SA in NSP and DS 
lass). As it is shown in the dis
ussionbelow, these di�eren
es between spe
i�
ation (using a 
ost model in a highlyrestri
ted SA) and implementation (in unrestri
ted SA), is one of the reasonswhy PRAM fails to provide good mapping features.The basi
 PRAM model la
ks ME me
hanisms, as they are not needed in alo
kstep SA. The only shared resour
es are the memory 
ells. The EREW modeldo not allow writing algorithms that need 
ontention 
ontrol, while the CREWmodel assumes the possibility of simultaneous reading but no writing 
ontentionis allowed. In the CRCW model, a 
ontention poli
y for 
on
i
ts prevents theneed of ME. However, if an arbitrary non-deterministi
 poli
y is assumed, MEmay be expli
itly programmed. One pro
essor may be used as resour
e (
riti
al



2.4. BRIDGING MODELS AND COST MODELS 43region) server, using the non-ordered 
ontention in a memory 
ell to 
ommuni
atethe requests. Thus, for non-deterministi
 
ontention poli
ies, CRCW is in 
lass(SP,ME,DS).Dis
ussionThe simpli
ity of the model allows immediate 
ost measures. The parallel time
omplexity is in the order of the number of instru
tions exe
uted (as any opera-tion is syn
hronized among all pro
essors), and no more parameters are 
onsid-ered. However, the simpli
ity of the model makes it to ignore important detailsof real parallel and distributed programming.First, global memory a

ess in uniform time is not portable. It is not easilysimulated in non-uniform memory a

ess (NUMA) ma
hine, and the model doesnot 
onsider the 
ost of full 
ommuni
ation in a distributed memory ar
hite
ture.Thus, the model does not dis
ourage the design of algorithms with a very �negrain of parallelism. Communi
ation patterns 
an produ
e bottlene
ks that 
om-pletely negle
ts performan
e improvement and s
alability. The time needed for
ontention solving in real 
on
urrent a

esses to memory 
ells is also disregarded.Se
ond, the number of pro
essors is unbounded. It is 
onsidered that a �xednumber of pro
essors 
an simulate a set of PRAM pro
essors, but the implemen-tation of the syn
hronization system, a load balan
e me
hanism when PRAMpro
essors are dynami
ally swit
hed on and o�, and the 
ost of the simulationwith 
on
urrent memory a

esses are diÆ
ult issues and 
an 
ompletely modifythe 
omplexity bounds of the original algorithm.The 
on
lusion is that PRAM model is adequate for basi
 theoreti
 
om-plexity measurement, or gross 
lassi�
ation of algorithms. However, it is soun
on
erned about real ma
hine details that the mapping problem of PRAMalgorithms is far from dire
t, and many details must be still 
onsidered by theprogrammer to keep the original features of the algorithm for a spe
i�
 ma
hine.However, for its simpli
ity, and for assuming unit resour
e 
osts, it en
ouragesthe algorithm designer to expose all possible parallelism in the problem (evenif this �ne-grained parallelism will have a non-eÆ
ient or even a non-a�ordable
ost). Thus, it surely will survive as an interesting tool for theoreti
al purposes.PRAM extensionsMany extensions of the original PRAM model have been proposed to solve themodel short
omings. They typi
ally try to ta
kle one of the main importantfeatures not 
ontemplated in basi
 PRAM, although some of them try several atthe same time. Some are still too simplisti
 and they do not usually map well inreal ar
hite
tures. Others lead to mu
h more 
ompli
ated or even non-pra
ti
al
ost models. In general they try to preserve simpli
ity, by assuming restri
ted



44 CHAPTER 2. CONCEPTUAL APPROACHSA. Evolution to real bridging models 
an be noti
ed in some of them. Considerthese few examples (see [129, 35℄ for a detailed survey of more alternatives):Contention problems: An extended family of PRAM models known as theQRQW-PRAM [75℄ (Queue read, queue write PRAM) deals with the 
on-tention problem in memory a

esses. This model is better suitable for ar
hi-te
tures with pipelining 
ontention rules in 
ells, and suÆ
ient pro
essors-to-memory bandwidth. EÆ
ient implementations in other ar
hite
turesare not supported. This model support programmable ME using the 
on-tention queues, moving the SA to ME 
lass (still in lo
kstep sub
lass of SPCS).Asyn
hrony: It is another important issue in PRAM model extensions. Someexamples of partial asyn
hrony are in the Asyn
hronous PRAM [74℄ andthe APRAM [46℄ models. In these models di�erent pro
essors may exe-
ute at di�erent time rates, skipping the lo
kstep me
hanism. Neverthe-less, expli
it syn
hronization is needed to keep 
onsisten
y in write/readoperations. Thus, these models propose global or partial syn
hronizationme
hanisms. Communi
ation through write/read operations between syn-
hronization points is limited to eliminate dependen
es (e.g. no read aftera write in the same global memory 
ell before a syn
hronization point).There exists several variants:APRAM: Syn
hronization o

urs in �xed rounds. SA moves to bulk-syn
hronous SP sub
lass.Phase Asyn
hronous PRAM: Full syn
hronization is expli
itly usedby the programmer for 
onsisten
y in read/write operations: Bulk-syn
hronous SA.Subset Asyn
hronous PRAM: The programmer 
an use full syn
hro-nization in hierar
hi
al subsets of pro
essors. SA moves from lo
kstepand bulk syn
hronous sub
lasses. SP syn
hronization stru
tures areallowed. As the subsets of pro
essors may be 
reated dynami
ally bydata-dependen
es, the syn
hronization stru
tures are 
hange to DS
lass. The SA is in (SP,NME,DS).All these models still keep an a�ordable 
ost model due to the SP-restri
tedCS stru
tures.Another model 
alled Asyn
hronous QRQW-PRAM [77℄ 
ombines 
on-tention in 
ells and real asyn
hrony, where dependen
es through a

esses toglobal memory 
an appear in any form. Thus, SA moves to (NSP,ME,DS)
lass. However, to avoid the problems of 
omplexity, redu
ibility and anal-ysis in the 
ost model, derived from unstru
tured CS, it for
es the program-mer to 
onstru
t the program in a way that it assures 
orre
tness under



2.4. BRIDGING MODELS AND COST MODELS 45the worst 
ase assumption on the �nite delays in
urred by the pro
essorsin queuing global memory a

esses. The 
ost model uses an optimisti
 syn-
hronous assumption. Thus, the 
omplexity introdu
ed by the NSP SA,is moved not to the 
ost model (that works properly for bulk-syn
hronousstru
tures), but to the programmer de
isions. Many PRAM algorithmsmust be re
onsidered and reprogrammed to get pro�t of this model, andto assure 
orre
tness if the simpli�ed 
ost model is to be used.Communi
ation laten
y: Several variants 
onsider di�erent laten
y valuesfor a

essing lo
al or global memory. Some well-known examples are theLPRAM and BPRAM models.LPRAM model [3℄ distinguish only two laten
y times: One for a

essinglo
al memory (unit time) and one for a

essing global memory 
ells (a newlaten
y parameter). It is suggested that LPRAM algorithms should restri
ttheir behavior to perform two di�erent kind of steps. Communi
ation steps(where the a

esses to global memory has a high �xed 
ost), or 
omputationsteps (where pro
essors work in lo
al memory in unit time). Thus, the 
ostmodel in
ludes two types of steps with di�erent 
osts, but the SA does not
hange and the analyzability is not a�e
ted.The Message-Passing Blo
k PRAM (BPRAM) [2℄ in
ludes a startup 
ostfor a message (or a

ess to a global memory blo
k) and a 
onstant 
ostfor any word in the message (pipelined read/write operations). Thus, itrewards the sent of long messages, and en
ourages the design of algorithmsthat exploit data lo
ality to form 
ohesive blo
ks that 
an be moved fast.A pro
essor 
an send and re
eive at most one message in a step. Thismodel does not greatly modify the SA. As long as di�erent blo
k a

esses
an have di�erent 
osts, the lo
kstep is inherently substituted by a bulk-syn
hronous a
tivity. The 
ost model of a step is a little more 
omplexdue to new parameters for more a

urate predi
tions. But the overall 
ostmodel simpli
ity is similar be
ause of the still SP-restri
ted SA 
lass.We 
on
lude that many extensions of PRAM model try to 
over featuresignored in original PRAM to jump over the implementation gap. Some try toimprove a

ura
y by adding new parameters and a little 
omplexity to the lowlevel details of the 
ost model, but keeping a restri
ted SA to make the overallsolution simple and easy to handle. Others move to unstru
tured SAs, leading to
ost models that be
ome too 
ompli
ated. Some of them are so far from originalPRAM model that no algorithm developing te
hniques and pra
ti
e have beenyet exerted. In general we noti
e how newly introdu
ed features that seriouslymodify the SA lead to important 
hanges in the 
ost model or mapping propertiesof the model.



46 CHAPTER 2. CONCEPTUAL APPROACH2.4.2 Class (SP,ME,NDS): BSPThe Bulk Syn
hronous Parallelism model [185℄ was introdu
ed as a more realisti
bridging model for a parallel ma
hine. BSP and variants have been studied formore than a de
ade and its introdu
tion has produ
ed a lot of expe
tation andinterest. However, its a

eptan
e is not 
omplete due to its restri
ted parallelexpressive power. We fo
us on several key features of BSP and espe
ially in ex-tended BSP models that support nested parallelism, as they provided the nearestframework to a pure SP parallel programming model.Des
riptionA simpli�ed model of a parallel 
omputer, 
alled the bulk-syn
hronous parallel
omputer (BSPC) 
onsists of: (1) A �xed number p of pro
essors with lo
almemory; (2) an inter
onne
ting network with limited bandwidth and simplebounded laten
y parameters; (3) a �xed 
ost barrier syn
hronization system.The BSP 
omputer works in supersteps. In ea
h superstep every pro
essorworks independently with its lo
al memory and data. During the 
omputationphase every pro
essor sends or re
eives at most h messages of little size (typ-i
ally one word) to other pro
essors (if h = p every pro
essor 
ommuni
ateswith all the others). This is 
alled an h-relation (see e.g. [173℄). Data re
eivedfrom other pro
essors are not available until next superstep. After the 
om-putation/
ommuni
ation phase, a full barrier syn
hronization is issued. Everypro
essor begins the next superstep at the same time (the full syn
hronization
an be inherent to the 
ommuni
ation phase when h = p).Two main interpretations of how BSP superstep works and its 
ost modelexist (see Fig. 2.18). The main premise for the model is a 
onsisten
y statementthat assures that data 
oming from other pro
essors during superstep s are notused for 
omputing before the beginning of superstep s+ 1. Thus, 
ommuni
a-tions 
ould be issued during the 
omputation phase at any moment, providedthat transfered data arrived during the 
urrent superstep are not used in thetarget pro
essor before the beginning of the next superstep.Interpretation 1: Completely horizontal model. The messages are delayed un-til the end of the 
omputation phase (all pro
essors end their 
omputationfor this superstep), and sent during a 
ommuni
ation phase. See for exam-ple [114, 173℄.Interpretation 2: Overlapping model. The messages are sent during the 
om-putation phase, overlapped with 
omputation. Examples of this interpre-tation 
an be found in [76, 133℄.The 
ost parameters of the model are:
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omputing modelp: Number of pro
essor elements.g: The 
ost per 
ommuni
ation (the basi
 throughput of the 
ommuni
ationsystem while in 
ontinuous use).Some simplifying assumptions are made here. The 
ost of establishinginitial 
ommuni
ation is generally ignored, as long as the minimum numberof 
ommuni
ations per pro
essor in a superstep is 
onsidered to be enoughto negle
t this innitial laten
y, in 
omparison with the total 
ommuni
ation
ost. Global 
ommuni
ation stru
ture 
an also be exploited to hide it.Another simpli�
ation assumed by the 
ost model is that messages aresmall (in the order of the pro
essor word), in order to always have similarsending laten
y time.L: Periodi
ity. The 
omputing unit for a superstep.As originally proposed by Valiant [185℄, ea
h L time units the system 
he
ksif every pro
essor has �nished its superstep a
tivity. Then, 
ommuni
a-tions are �nished and a new superstep begins after a full syn
hronization.During a superstep ea
h pro
essor 
an do L 
omputation steps, and 
ansend/re
eive at most bL=g
 messages.L parameter has other meanings depending on the interpretation of themodel used. See following dis
ussion about the 
ost model.The 
ost measurement is easy as any 
omputation works in supersteps of
L+gh time 
omplexity (
 is the number of periods of L time used by pro
essorsbefore they end the 
omputation phase).



48 CHAPTER 2. CONCEPTUAL APPROACHAuthors using the horizontal interpretation typi
ally 
onsider another param-eter l for the 
ost of the barrier syn
hronization, and they 
ompletely split 
ompu-tation and 
ommuni
ation 
osts. In this 
ase, wi represents the work/
omputationtime of ea
h pro
essor during the superstep and hi the total number of messagessent by the pro
essor i. The 
ost model of a superstep is:T = maxi=1:::pwi + maxi=1:::p ghi + lOther authors using this interpretation 
onsider L to be the minimum 
ostof a superstep. Thus, L represents the time for syn
hronization and a
tivationof next superstep and it substitutes l in the formulae.However, in the se
ond interpretation, 
omputation and 
ommuni
ation over-lap. Typi
ally L is 
onsidered a minimum laten
y parameter that representsthe minimum time length of a superstep imposed by the hardware. Let beW = maxi=1:::pwi and H = maxi=1:::p hi. Thus, the superstep 
ost model is:T = max(W; gH) + lOr, in other versions: T = max(W; gH;L)The parameters L; l; g are empiri
ally measured for a given ar
hite
ture anda given number of pro
essors p. The 
ost model 
an be used to test how analgorithm maps to a range of values for the parameters 
ombination (the BSPspa
e). Thus, if the 
ost model shows to be a

urate enough, the programmer 
aneasily predi
t whi
h algorithm is going to perform best for an spe
i�
 ma
hine.In [49℄ we read that being the L parameter (the duration of a superstep orperiodi
ity) 
al
ulated as a fun
tion of h it must be 
onsidered for the worstpossible h. In this 
ase, the 
ardinality of interpro
ess 
ommuni
ation 
an bedi�erent in di�erent supersteps leading to performan
e losses in some steps. TheExtended BSP (E-BSP) model [113℄ in
ludes an extended 
ost model based onmore 
omplex and variable routing relations. It provides reliable measures forunbalan
ed 
ommuni
ation patterns in di�erent supersteps and models lo
ality(network proximity) in 
ommuni
ations.ImplementationsImplementations of the BSP model in generi
 ar
hite
tures have been developedsin
e 1993. Mainly the Oxford BSP library [138℄, the Green BSP library [92℄ andthe BSPlib library [101℄ whi
h in
ludes Dire
t Remote Memory A

ess (DRAM)and Bulk Syn
hronous Message Passing (BSMP). BSPlib has almost be
ome astandard or at least a referen
e point for BSP implementation resear
h and pro-gramming. New implementations with nested parallelism approa
h are dis
ussedbelow.
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hronization ar
hite
tureThe SA of the BSP model is highly restri
ted. The only 
ondition syn
hroniza-tion stru
tures allowed are sequen
es of supersteps, and a superstep is a parallel
omposition, always with the same degree of parallelism. Ea
h parallel threadis a series of tasks of any length. These stru
tures are in the bulk-syn
hronoussub
lass of SP CS 
lass. The restri
tion of using always p pro
essors in ea
h su-perstep is not important for the SA point of view. The laten
y parameters L; l; gare typi
ally dependent on p. The purpose of �xing p is to use �xed and knownvalues of parameters throughout all supersteps for 
ost formulae simpli�
ation.At the same time it is a reasonable 
hoi
e to use as many pro
essors as possibleduring all the program exe
ution.Some kind of 
ontention is produ
ed by the arbitrary arriving of messagessent to the same pro
essor. Thus, even if no ME primitive is 
onsidered in themodel, ME 
an be programmed and the SA is in the ME 
lass.For the same reasons dis
ussed in the PRAM model in se
tion 2.4.1, theSA is stati
 and non-data-dependent, in the sense that the programmer do notfa
e the problems of dynami
 
ommuni
ations among pro
essors. She/he seesonly one bulk syn
hronization and 
ommuni
ation step, independently of the in-ternal dynami
 stru
ture 
reated in lower implementation levels. Programmingdata-dependent appli
ations is possible, but the bulk syn
hrony barrier systemis responsible for transforming the dynami
 stru
ture into an stati
 one, mak-ing it transparent for the programmer. Thus, we 
onsider BSP to be in the(SP,ME,NDS) 
lass.Dis
ussionThe thesis of Valiant [185℄ is that when the programmer uses enough parallelsla
kness2 the model behaves neutral with respe
t to the number of pro
essors,and the programs run eÆ
iently as long as the 
ommuni
ation is at least balan
edwith the 
omputation. The value of L 
an be pre-
al
ulated for any ma
hine andh value 
ombination, for any program to run with optimal eÆ
ien
y (in 
onstantfa
tors) for this model.It is 
laimed by Valiant that the implementation of this model in any ar
hi-te
ture is possible loosing only little eÆ
ien
y (no logarithmi
 losses). Su

essfulimplementations of BSP models and appli
ations 
on�rms it for many 
ases (seereferen
es in [173, 100, 91℄). The model lets the programmer determine whi
halgorithm is better suitable for any ma
hine simply 
he
king the results of the
ost model for the given parameters measured for the ma
hine, and knowing theh-relation 
ardinality of the algorithm.2Programs are written for v virtual pro
essors to run on p physi
al pro
essors where v ismu
h larger than p (e.g. v = p log p)



50 CHAPTER 2. CONCEPTUAL APPROACHNevertheless, obje
tions and 
ounter-obje
tions to this model are stated. Thea

ura
y of the 
ost model is not so high, although it is \very reliable in modelingthe overall behavior of an appli
ation, in
luding the predi
tion of breakpoints atwhi
h the performan
e 
hanges" [91℄. In the same paper it is also 
laimed thatthe a

ura
y 
ould be in
reased by adding new parameters, but this will made themodel more 
omplex and the algorithmi
 trade-o�s less obvious. Nevertheless,as far as the SA does not 
hange, the main analyzability properties that leads toan a�ordable 
ost model will not 
hange. The 
hoi
e of modeling parameters ofthe underlying ma
hine is a trade-o� between a

ura
y and 
omplexity that 
anbe applied to the same 
ost modeling te
hniques [70℄.BSP 
ost model ignores possible delays due to 
ontention problems derivatedby many pro
essors sending messages to a given pro
essor at the same time. Thesolution is to use spe
i�
 message ordering adapted to the 
omputation. Imple-mentations of BSP 
an do it internally, but most of the time the programmershould be aware of the problem and provide a solution 
hanging the order inwhi
h messages are sent in the algorithm [112℄. Thus, the programmer is fa
inga mapping problem derivated by the limited number of resour
es (pro
essors andnetwork interfa
es).At the same time full barrier syn
hronization is 
laimed to be an expensiveme
hanism that most ma
hines do not provide by hardware, and a me
hanismwith no �xed 
ost, whi
h s
ales-up with the number of pro
essors. Hill andSkilli
orn studied the pra
ti
al implementation of barrier me
hanisms in [102℄.The performan
e of the di�erent me
hanisms available in shared memory ar
hi-te
tures is good enough, but diÆ
ult to predi
t without very low-level detailedknowledge. For distributed memory ar
hite
tures, whi
h rely on message-passingmodels, performan
e of barrier syn
hronization is predi
table and reliable, butpoor in general. However, better syn
hronization systems are 
onstantly devel-oped and it is reasoned that syn
hrony is an important feature to improve analyz-ability and 
orre
tness proo�ng. The model suggests this dire
tion for hardwaredevelopers. Software alternatives to dire
t barrier syn
hronization exist:1. When h = p and every 
ommuni
ation is delayed until the end of thesuperstep, the 
ommuni
ations 
an be optimized and the barrier is impli
itin the h = p information ex
hange [57℄.2. A spe
ial system of zero-
ost emulation of a barrier that 
an be used inspe
ial 
ir
umstan
es was proposed in [62, 8℄. It is implemented in thePUB library with the name oblivious syn
hronization [25℄. When everypro
ess knows exa
tly the number of messages that other pro
esses aregoing to send to it during a superstep (the exa
t re
eiving h-arity), when itre
eives that number of messages it 
an pro
eed to the next superstep. The
onsisten
y is maintained, as long as no pro
ess uses data re
eived duringa superstep until next lo
al superstep begins.
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hronization emulation by a handshake proto
ol onlybetween 
ommuni
ation pro
esses is proposed in [121℄. It uses the numberof the superstep (s) in the sending pro
ess as 
ontrol information in themessage to keep the 
onsisten
y statement (data are not used before thes + 1 superstep in the re
eiving pro
ess). The eÆ
ien
y of the system isimproved due to the relaxation of the syn
hronization phase.However, these systems only work under spe
ial assumptions (e.g. knownnumber of re
eiving messages), and the relaxation of the syn
hronization 
om-promises the simpli
ity of the 
ost model be
ause of a 
hange in the SA. It isdiÆ
ult to deal with the la
k of syn
hrony and still keep 
ost measures tight, es-pe
ially in irregular or not highly-balan
ed problems. A new 
ost model shouldbe devised, but the la
k of syn
hrony 
an lead to NSP SA and non-redu
ible 
ostmodels. An approximation to this problem has been presented in [81℄.Another pro�table feature is that BSP model is mainly used in the mostgeneral 
ase where h = p (assuming a full interpro
ess 
ommuni
ation in ea
hsuperstep). For this 
ase, implementations may exploit the impli
it and ex-pli
it knowledge of the 
ommuni
ation global stru
ture. Repa
king, destinations
heduling and pa
ing te
hniques used in an implementation of the BSPlib im-prove performan
e to a fa
tor of approximately four 
omparing with a generi
message-passing interfa
e (MPI) [57℄. This is a good example of how restri
tedand stru
tured syn
hronization ar
hite
tures lead to performan
e improvementsin implementation.An interesting proposal for in
reasing the expressive power of BSP and main-taining or even improving the performan
e, somehow related to the idea of sub-dividing the BSP ma
hine, is the Colle
tive Computing Model (CCM) [163℄. Inthis model the number of possible 
ommuni
ation patterns at the end of a normalsuperstep is limited to a 
hosen subset that in
ludes all typi
al 
olle
tive 
ommu-ni
ation s
hemes. A

urate 
ost measures 
an be obtained for them, and spe
i�
eÆ
ient implementations are possible for su
h a limited number of well-know
ommuni
ation patterns. At the same time they propose a new spe
ial kind ofsuperstep, the division superstep, that splits the pro
essors in groups, distributesdata among them, 
omputes spe
i�
 tasks in ea
h group, and redistributes theresults, always trying to bene�t from the redu
ed number of eÆ
ient 
ommuni-
ation patterns. However, the division steps are rigid and 
annot be nested toextent the SA to an SP 
lass. The model keeps the great simpli
ity of the BSP
ost model even in the division steps as the SA is still bulk-syn
hronous. Thisdire
tion is mainly fo
used to the integration of BSP with the eÆ
ient and per-forman
e predi
table 
olle
tive 
ommuni
ation operations, that are so 
ommonlyused in message passing environments (see se
tion 2.5.4).



52 CHAPTER 2. CONCEPTUAL APPROACHNested parallelism in BSPIt has been said that \global barrier syn
hronization is an in
exible me
hanismfor stru
turing parallel programs" [135℄. Trying to keep the good properties ofBSP model but getting more expressive power, some new versions of BSP in
ludesupport for the 
on
ept of nested parallelism (SP syn
hronization ar
hite
ture)using the nested BSP 
omputers 
on
ept. The whole BSP abstra
t ma
hine, withp pro
essors 
an be re
ursively subdivided in k BSP subma
hines, ea
h with kipro
essors that work like a small BSP ma
hine, syn
hronizing their pro
essorsindependently of the other sub-ma
hines. When a subset of (perhaps also sub-divided) ma
hines end their work, they must wait to be syn
hronized together.Examples of the implementation of this idea 
an be found in the Paderborn Uni-versity BSP (PUB) library [25℄, NestStep [119℄ (that also in
ludes support forvirtual shared memory), H-BSP [39℄, and NBSP [80℄.The BSP model assumes that the 
omputer has a global syn
hronizationme
hanism (a bulk property). It has been argued that syn
hronizing a subsetof exe
uting pro
esses 
an be a 
omplex issue [173℄. However, the same re-port states that ar
hite
tures in whi
h barrier syn
hronization is implemented insoftware 
an make to it without any problem. Moreover, many works orientedto �ne-grained parallelism indi
ate that nested parallelism 
an be implementedeÆ
iently (see e.g. [180, 131, 19℄).Nested BSP has basi
ally an SP SA 
lass. Thus, the 
ost model of a nestedBSP 
an use the 
ompositional analysis properties of SP 
lass over the lo
al BSP
ost models. For example, a simple nested theoreti
 BSP 
ost 
al
ulus namedminiBSP was introdu
ed in [172℄.If the subsets of pro
essors may be 
hosen dynami
ally by data-dependen
es,the syn
hronization stru
tures are no more stati
. Nested parallelism move theSA to real SP 
lass, where dynami
 
onstru
tion of the nesting is possible. Thus,nested BSP is in (SP,ME,DS) 
lass. SP languages map without mu
h trouble inany implementation of a nested parallel BSP model.Con
lusionThe BSP model proposes a highly restri
ted SA (bulk-syn
hronous) to obtaina very simple and easy-to-use 
ost model. At the same time, full syn
hroniza-tion helps in software development be
ause it makes mu
h easier to reason about
orre
tness [91℄. For example the re�nement 
al
ulus 
an be used to 
he
k 
or-re
tness in BSP program building [171℄. In the same report it is also said thatthis te
hnique 
an be also used for nested BSP. Re�nement 
al
ulus works in are
ursive framework, being useful for all SP 
lass models.Although the programming dis
ipline imposed by the bulk-syn
hronous ar
hi-te
ture is very user-friendly and easy to understand [91, 72℄, no software engineer-
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hniques that helps the programmer to 
atten more 
omplex SA s
hemesto only one-dimensional parallelism exist. Automati
 
attening by the 
ompilerhas been only a
hieved for SIMD parallelism [119℄, as e.g. in NESL [18℄. Sim-ulations of other models (as PRAM) are possible in BSP, but for real eÆ
ien
ydire
t BSP algorithm design is desirable. At the same time the programmer isfa
ed with data-partition problems, as the point-to-point message system for
esto expli
itly know where data are and where they must be moved to be used.Data-layout is then �xed in the �nal algorithm.It is an interesting question to determine whi
h range of appli
ations 
an beeÆ
iently programmed in a bulk-syn
hronous s
heme [91℄. No measures of thepotential loss of parallelism inherent to the full barrier syn
hronization have beenpreviously shown. Measuring the distan
e from BSP programming to a moreexpressive or generi
 model is an important issue in this dissertation. Althoughwe fo
us in the more broad SP syn
hronization ar
hite
ture 
lass, we show thatmost of our results are appli
able to BSP programming.2.4.3 Class (SP,ME,NDS): QSMThe Queue Shared-Memory model is the evolution of the QRQW-PRAM model(see se
tion 2.4.1) to a bridging parallel 
omputation model based on laten
y-
ontention in a shared-memory environment. It tries to keep the simpli
ity ofuse of shared-memory with the same 
ost model features of BSP or LogP models(see se
tion 2.4.4). QSM detailed des
ription and rationale 
an be found in [76℄.Des
riptionThe QSM ma
hine model has a �xed number p of pro
essors with lo
al memoryand 
onne
ted to a shared memory global spa
e. Every 
ell has a queue ofread/write operations that deals with the 
ontention of many pro
essors tryingto read/write the same 
ell.Pro
essors exe
ute syn
hronized phases. A phase is an arbitrary interleavingof three possible operations:Lo
al 
omputations: Ea
h pro
essor i performs 
i RAM operations in its lo
almemory.Shared-memory reads: Ea
h pro
essor i reads ri shared-memory 
ells, 
opy-ing their 
ontents into the lo
al memory. Shared-read operations are notguaranteed to 
omplete until the end of the phase. Thus, values 
annot beused before the next phase begins.Shared-memory writes: Ea
h pro
essor i writes to wi shared memory 
ells.



54 CHAPTER 2. CONCEPTUAL APPROACH
Global memory

��������������
��������������
��������������
��������������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

P1 P2 P3 ...

...

Bulk Synch. control

...
Queues

R/W

Pp

Figure 2.19: QSM 
omputing modelCon
urrent reads or writes in a given 
ell are possible during the same phase,but not both. The read/write restri
tions allow the emulation of a QSM ma
hinein a MIMD environment, pipelining the shared memory a

esses to amortize thelaten
y of remote a

esses. When multiple writes are issued, any one of them�nally su

eeds.A phase �nalizes when the lo
al 
omputations �nish in every pro
essor andall the read/write operations pending in the R/W queues of shared-memory 
ells�nish.QSM proposes only two parameters to model the ar
hite
ture features:p: The number of available pro
essors.g: The laten
y parameter for read/write operations in shared-memory. It repre-sents the gap between lo
al instru
tion rate and 
ommuni
ation rate dueto limited bandwidth in the pro
essor interfa
e.The 
ost model of a phase represents 
ontention vs. 
omputation vs. 
om-muni
ation. Let the maximum 
ontention k represent the maximum number ofpro
essors reading or writing to a given shared-memory 
ell during the phase.Let mop = maxif
ig, and mrw = maxfri; rwg for the phase. The total 
ost ofthe phase is: T = maxfmop; gmrw; kgSyn
hronization ar
hite
tureThe CS SA is bulk-syn
hronous. The model works in syn
hronized phases, noread/write are allowed in the same phase in the same shared-memory 
ell, andshared-read values are not obtained until the next phase begins. Thus, no 
on-dition dependen
es 
an be produ
ed ex
ept from one phase to the next. The
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 data-dependent stru
tures are redu
ed to stati
 ones due to the bulk-syn
hrony (see dis
ussion in se
tion 2.4.2). This model has no ME primitive,but it supports ME. Read/write operations invo
ated by the programmer 
an
ontent in the queues of the shared-memory 
ells, allowing programmed ME.Dis
ussionThe model presents the fa
ility of a shared memory spa
e, to be used with theusual read/write operations. However, the semanti
s of the read operations ismodi�ed (values 
an not be used before next phase), in a way that is equivalentto the 
onsisten
y statement of BSP model.In fa
t there is a highly inherent 
on
eptual equivalen
e between QSM andBSP model. The read/write a

esses to the shared-memory have similar seman-ti
s to message passing, and they are done in two phases that 
an be pipelinedby the pro
essors. Ea
h phase is 
harged with a similar laten
y parameter g.The h-relation is substituted by many 
on
urrent writes, and many 
on
urrentreads.The main di�eren
e with BSP is that in QSM the 
ontention in the arrivingmessages (read/write operations in this model), is a

ounted expli
itly. Thus, the
ost model 
an predi
t 
ontention problems due to non-balan
ed 
ommuni
ationpatterns (bottlene
ks that appear when many read/write 
on
urrent operationsare issued to the same shared-memory 
ell). An interesting remark is that themodel do not 
harge any 
ost for the syn
hronization me
hanism. This 
an fa-vors programming with too small 
omputation phases and many syn
hronizationpoints. The 
ost model does not penalize this pra
ti
e.EÆ
ient emulations of BSP are possible in QSM and vi
eversa [76℄. Therelationship of emulation possibilities between QSM, BSP and LogP models ispresented in [160℄. The main results indi
ate that these laten
y based modelsare quite similar in 
omputational power and modeling solutions of real ar
hi-te
tures. QSM has the advantage of a 
omfortable interfa
e based on simpleshared-memory operations, making the data-layout transparent for the program-mer.This model exploits the highly restri
ted bulk-syn
hronous stati
 SA to allowthe insertion in the 
ost model of a simple a

ount of the 
ontention s
heme(that allows ME), assuming that the bulk-syn
hronization waits for 
ontentionproblems to be solved. Again, a restri
ted stati
 SA shows its analyzabilitybene�ts.2.4.4 Class (NSP,ME,DS): LogPAnother important model based on messages and network laten
y modeling isLogP [49℄. It tries to over
ome PRAM and BSP models limitations by 
reating



56 CHAPTER 2. CONCEPTUAL APPROACHa more realisti
 and detailed model of real parallel 
omputers. In fa
t, its SA isin the most 
exible and expressive 
lass. Its su

ess is still 
ompromised by thehigher 
omplexity of use that it introdu
es.Des
riptionIn this model the idealized 
omputer ar
hite
ture is similar to the BSP 
on
ept ofindependent pro
essors with lo
al memory and a non topology-detailed networkrepresented by few parameters (see Fig. 2.20). This is a representation of a generi
distributed-memory multi
omputer where pro
essors 
ommuni
ate by point-to-point messages. Compare it with the blo
k diagrams of message-passing ma
hinemodels in Fig. 2.15.
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Interconnecting networkFigure 2.20: LogP 
omputing modelThe main new features are:Asyn
hrony: No syn
hronization devi
e is 
onsidered, as in BSP. In LogP, pro-
essors work at their own path and do not syn
hronize ex
ept by expli
itmessage-passing instru
tions in
luded in the program.Limited bandwidth: In LogP does not exist the 
on
ept of h-relations in syn-
hronized phases to limit the amount of traÆ
. Pro
essors 
an 
ommuni-
ate to their heart's 
ontent, limited only by the speed of their networkports (modeled with new parameters). Thus, the network 
apa
ity 
an beover
ome, produ
ing a stall state. The limited bandwidth of the networkmust be 
onsidered.The 
ost model in
ludes the following parameters:L: Laten
y upper bound of the 
ommuni
ation of a small message (in the orderof a few words).o: The overhead or time during whi
h a pro
essor 
annot work when engagedin sending a message. It has been argued that new network interfa
e te
h-nology has redu
ed this overhead to almost negligible times. Thus, someauthors 
laim that this parameter may be e�e
tively disregarded.



2.4. BRIDGING MODELS AND COST MODELS 57g: The gap. Time interval between 
onse
utive messages re
eption or transmis-sion in a given pro
essor.P : The number of 
omputing elements (pro
essor, memory and network interfa
emodules).The 
apa
ity of the network is limited by the parameters. No more than dL=gemessages 
an be in transit through the network at the same time. Pro
essorsthat try to transmit over the 
apa
ity of the network stall until the network isnot saturated. Messages that produ
e stall states 
an take more that L timeunits in being sent.The des
ription of the model in
ludes the following remark: \an algorithmmust produ
e 
orre
t results under all interleaving of messages 
onsistent withthe upper bound of L on laten
y" [49℄. For the general 
ost model all messagesare assumed to in
ur in the worst 
ase laten
y of L. Although some examples areprovided in the literature, no general pro
edures to derive 
ost model formulaeare proposed, as ea
h algorithm 
an present a 
omplete di�erent behavior thatmust be analyzed on its own.Syn
hronization ar
hite
tureThe model assumes asyn
hrony in the pro
essors work, and point-to-point 
om-muni
ation without restri
tions. Any stati
 as well as dynami
 syn
hronizationstru
tures are possible. The expressive power is big, being the SA in the NSPand DS 
lasses. ME 
an be expli
itly programmed due to the unknown interleav-ing of messages during network transit. No order rule exist in message arriving,allowing non-deterministi
 
ontention. Thus, the SA is in the (NSP,ME,DS)
lass.Dis
ussionDue to its NSP 
ondition syn
hronization, the LogP model does not o�er a sim-ple analyti
 
ost 
al
ulus for performan
e predi
tion. For a generi
 appli
ationthat 
an use unstru
tured programming 
onstru
tions, it is usually not possibleto redu
e the 
ost expressions to simple formulae only dependent in given ap-pli
ation and model parameters values. At the same time, the 
omplexity andasyn
hrony of unstru
tured 
omputations prevents simple debugging te
hniquesbased on global state 
he
king.S
heduling, data partition and mapping de
isions are 
ompletely fa
ed by theprogrammer. Even more, the stall states in the network must be dete
ted andprevented by the programmer, as the 
ontention is not represented in the 
ostmodel (see details about LogGPS below).
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e predi
tions are 
omputed in an unrestri
ted stru
ture of 
ommu-ni
ation produ
ed by the implementation of the appli
ation, and results 
annotbe proje
ted ba
kwards through the implementation transformations path (isimpossible to automati
ally determine what e�e
ts are produ
ed by ea
h trans-formation or implementation de
ision). The fast growing 
omplexity of testingany possible mapping or transformation make the testing of a wide range of
hoi
es impossible. Thus, the model gives little help for software development inthe generi
 
ase.LogP has been proven to be useful for optimal design and performan
e pre-di
tion of low level appli
ations [116, 50℄. Some low-level implementations ofmessage-passing 
ould support the LogP model of 
omputation. However, itssimpli
ity of parameters and ma
hine modeling is not enough to predi
t theoptimized operations of a 
omplex message-passing interfa
e su
h as PVM orMPI [5℄. Extensions to the LogP model in
lude:LogGP: Support for long-messages 
ommuni
ation laten
ies [6℄.LogGPS: Variable overheads to simulate impli
it syn
hronization of pro
es-sors before long-message transmission in message-passing interfa
es [109℄.LogGPS is indeed a 
omplex ar
hite
ture-oriented model, whi
h in
ludeshidden features of optimized messages-passing interfa
es like MPI.LoGPC: Contention in network traÆ
 [139℄.The �rst two extensions model the underlying ar
hite
ture with many low-leveldetails, obtaining improved a

ura
y for spe
ialized 
ases. However, the SA isnot 
hanged, and the diÆ
ulties of applying the model are still 
oming from theunstru
tured NSP syn
hronizations.The LoGPC model presents the same problem as long as the SA is also not
hanged. However, the 
ontention 
osts are 
onsidered and added to the 
ostmodel. Thus, it eliminates an important problem of the LogP 
ost model, whereappli
ations were not en
ourage to be designed with 
ommuni
ation patternsthat do not 
ause stall 
onditions due to 
ontention. Low level trade-o�s between
ontention, 
ommuni
ation and 
omputation 
an be modeled.Con
lusionAlthough it is similar to BSP as a laten
y oriented model, and substantially equiv-alent as a 
omputation model in asymptoti
 analysis [16℄, LogP presents worsesoftware development features (e.g. easy of programming, 
orre
tness 
he
kingand debugging). In this model, the programmer does not only fa
e data-layoutbut many other mapping problems like expli
it s
heduling. Any set of mappingde
isions lead to a new algorithm that must be analyzed in detail with the 
ost
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s. The LogP model has an NSP SA that prevents easy and methodi
algeneri
 algorithm design, driven by a 
ost model.Its extensions 
an better represent the behavior of the underlying ar
hite
-ture, and predi
t it with better a

ura
y than the basi
 model. Thus, they aremore suitable for low-level analysis of optimized routing, s
heduling and 
ommu-ni
ation s
hemes and tools. Portable low level layers or last phases of parallelappli
ations implementation 
an be designed and studied with these extendedmodels.2.4.5 Con
lusions about PCMs SAThe graphi
al 
lassi�
ation of the dis
ussed PCMs SA is shown in Fig. 2.21. Inthis se
tion we present some important 
on
lusions about it.After this review of parallel 
omputing models the main 
on
lusion is thatSA is a key 
omponent of a PCM for its expressive power and analyzabilityfeatures. Spe
i�
ally, the CS axis be
omes the most related to the 
omplexityof the asso
iated 
ost model. SP and NSP 
lasses show important di�eren
es.The analysis 
omplexity of the NSP stru
tures be
omes too hard for anythingbut toy problems. Restri
ting the CS stru
tures seems ne
essary for a
hievingthe PCMs/PPMs requirements proposed in se
tion 2.1.5. SP models appearto be good 
andidates for their simpli
ity of programming and analyzability.However, we must determine the expressive power of these models, whi
h types ofappli
ations may or may be not inherently SP, and 
he
k if it exists a systemati
form to map more unstru
tured parallel 
omputations into SP forms. Morerestri
ted CS sub
lasses of SP, as lo
kstep or bulk syn
hrony, provide only betteranalyzability if important expressiveness restri
tions are assumed (as PRAM),where programmer �nds even more troubles to map NSP appli
ations.We have 
lassi�ed PCMs in NDS or DS stru
ture from the point of view ofthe syn
hronization stru
tures 
reated at programming level. Highly restri
tedmodels (lo
kstep and bulk-syn
hronous CS) appear to be highly stati
 and data-independent. However, the implementation of the restri
tion me
hanisms (lo
k-step or barrier) is the responsible of hiding the dynami
s of the 
ommuni
ationin
luded by the programmer, to keep the stru
ture stati
. In this sense, re-stri
ted PCMs provide only stati
 syn
hronization stru
tures, but they anywayallow the programming of dynami
 or data-dependent appli
ations. It would bea risky restri
tion not to support data-dependent 
ommuni
ation stru
tures, asmany appli
ations need them (see se
tion 2.6). All PCMs, ex
ept PRAM model,
onsider a �xed number of pro
essors. Appli
ations that dynami
ally generatethreads may need extra programming to pre-s
hedule the threads into the �xednumber of pro
esses. This shows that PCMs are oriented to the mapping level,where 
ost models be
ome important. Models in full SP 
lass in
lude a dynami
slevel not whi
h does not appear in bulk-syn
hronous and lo
kstep SP sub
lasses.
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lassi�
ation of PCMsThe origin is the possibility of data-dependent 
ontrol of the parallelism nesting.This dynami
 makes the stati
 
ost analysis mu
h more diÆ
ult and not alwayspossible. Programming te
hniques that do not allow dynami
 
ontrol of nestingin SP models, would be more desirable with respe
t to 
ost analysis.Only more restri
ted PRAM models do not allow ME, be
ause it is inherentlyavoided by the lo
kstep system and 
ontention solving poli
ies. However, thissituation restri
ts some of the expressive power in the model. Some appli
ationsthat need mutual ex
lusion (see se
tion 2.6) 
an not be dire
tly programmedin these restri
ted PRAM models. The PCMs studied that in
lude ME me
ha-nisms have something in 
ommon: Instead of using primitives with impli
it MEsemanti
s (as lo
ks), the ME is programmable by queuing up memory a

esses ormessages, assuming non-deterministi
 orderings. Some restri
tions to the queuelengths may dire
tly or indire
tly help in 
ost modeling (for example limited
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essors, or limited number ofmessages in the same 
omputation step). The reason is that 
ontention queuesmodel real ma
hine e�e
ts produ
ed in the lowest level.It seems that exists a 
onvergen
e in the restri
tions that PCMs assumeto provide an a

urate 
ost analysis for generi
 appli
ations. Nowadays, bulk-syn
hrony is a typi
al feature whi
h allows the transformation of dynami
 and
omplex syn
hronization stru
tures in stati
 and analyzable ones. ME is sup-ported by programmable 
ontention through (somehow limited) queue systemsof non-deterministi
 re
eption. However, the 
ompletely unrestri
ted message-passing oriented models, as LogP, are popular be
ause they model the 
urrenttrends of high-performan
e programming, where 
omplex syn
hronization stru
-tures are generated due to manual low-level optimizations.2.5 Parallel programming languages and modelsOur trip is taking us now to the mountain shoulders, where PPLs provide theprogrammer with higher abstra
tion levels. In the shadowy depth of narrowvalleys, near the qui
k waters, we will �nd 
lassi
al approa
hes that lead dire
tlyto the PCMs low lands. Trekking up-hill through the more dangerous ro
kypaths, we will make to the more abstra
t PPLs. In hidden gla
ier valleys newmodels with di�erent 
on
eptual proposals feed the rainbowed waterfalls, whi
himpressive view we enjoyed from the valleys.We review many popular and 
on
eptually interesting parallel programminglanguages. They have been designed from the higher abstra
tion levels, butthey also impli
itly impose a PPM. Most of the time, languages that have beendeveloped with other design prin
iples in mind than to be good parallel 
om-putation models present di�erent approa
hes and solutions to the analyzabilityvs. expressiveness problem. We will study some of them in terms of their SAand other 
hara
teristi
s related to the de
isions taken during the model de-sign. The expressiveness vs. analyzability trade-o� is 
onsidered in ea
h 
ase.A more detailed study of parallel programming languages and a 
omprehensive
lassi�
ation 
an be found e.g. in [174℄.2.5.1 Class (SP,NME,DS): Pure nested parallelismSome languages in
lude only pure nested parallelism stru
tures of syn
hroniza-tion. A well-known example is Cilk [19, 42℄ (see other examples 
ommentedin [187℄). This language proposes a multi-threaded model, where spawning andjoining of threads is only possible hierar
hi
ally. The only possible syn
hroniza-tion between threads is through the spawning/joining pro
ess. Thus, the possiblesyn
hronization stru
tures are always in SP 
lass and no ME exists in the model.However, spawning of new threads 
an be data-dependent, with no restri
tion



62 CHAPTER 2. CONCEPTUAL APPROACHfor the number of threads that are spawn at any time (the programmer doesnot 
on
ern about the number of real pro
essors). Thus, the SA is in 
lass(SP,NME,DS).The good point of Cilk is that it uses the analyzability advantages of theSP stru
ture to implement a run-time work-stealing s
heduling algorithm. Ita
hieves good performan
e even with highly dynami
 stru
tures. Many appli
a-tions with typi
al non-stru
tured solutions have been programmed in SP stru
-tured Cilk, experimentally showing minimal loss of performan
e [42℄. The SPstru
ture 
an be further exploited with other simple s
heduling poli
ies to beeÆ
iently adapted to wide-area and hierar
hi
al networks [187℄.2.5.2 Class (SP,ME,NDS): Nested parallelism with METhe nested parallel SP programming languages that support ME in
lude spe
i�
primitives with ME semanti
s. We �nd in this 
lass an important programmingset of primitives oriented to shared-memory ar
hite
tures (OpenMP), as well asmore abstra
t proposals (as SPC). Both are oriented to stati
 and non-data-dependent syn
hronization stru
tures. Nevertheless, both examples may 
reateless restri
tive SA stru
tures when me
hanisms not promoted but supported inthe models are used.OpenMPThe OpenMP [149℄ programming tool has be
ome a major trend for program-ming in shared-memory ma
hines (and possibly distributed-memory in the fu-ture, as several proposals for mixed message-passing and shared-memory supportare appearing [36℄). The main advantage of OpenMP is that it provides the pro-grammer with a portable and easy to understand interfa
e of pragma dire
tives toparallelize sequential 
ode (for reusability purposes), getting pro�t of the sharedmemory 
apabilities of the underlying implementation. OpenMP is the result ofa 
ommon e�ort of several vendors and 
orporations, thus, it is well supportedand is widely being used.Shared memory a

esses should be 
ontrolled to avoid ra
e 
onditions. Thetypi
al way is to in
lude a dynami
 non-deterministi
 a

essing me
hanism to
reate ME. OpenMP provides two types of ME dire
tives to 
reate 
riti
al se
-tions: (1) For 
ode pie
es, or (2) for atomi
 a

ess to a given variable for asingle operation. At the same time it allows a parallel se
tion of 
ode to de
laretheir own private variables for programming 
exibility (whi
h do not introdu
enew properties in the syn
hronization me
hanisms). The main parallel 
ontroldire
tives provide only nested parallelism for 
ode se
tions, or for loops in adata-parallelism fashion. However, 
urrent implementations may support onlyone level of parallelism, running sub-threads sequentially in the main thread
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reates them. Thus, the main programming model is nested parallelism (SP
lass), while most implementations relay on a more restri
ted BSP like model.Global redu
tion operations3 and a barrier me
hanism is also supported. Al-though not popular, designers of OpenMP in
luded 
ompulsory support of anexternal library for lo
k-variable based syn
hronization. It has been added tolet the programmer to 
reate any kind of 
omplex CS stru
tures. Thus, the fullimplementation moves to NSP and DS 
lasses.Thus, the spirit of the OpenMP model is in the (SP,ME,NDS) 
lass, or eventhe (SP,ME,DS) 
lass if data-dependent 
ontrol of the (mostly unsupported)nested parallelism is allowed. But the use of the external lo
k variable me
hanismallows all kind of unrestri
ted stru
tures: (NSP,ME,DS) 
lass.OpenMP does not propose a spe
i�
 
ost model or software engineeringmethodology. However, while using only the nested parallelism (SP 
lass) 
on-dition syn
hronization s
heme, the restri
tions in
luded in the design allowsprogram 
ompilers to in
lude interesting mapping and optimization features.However, the semanti
s of OpenMP nested dire
tives are 
omplex and poorlyde�ned [44℄.Be
ause OpenMP is designed to operate in shared-memory environments,pro
esses have dire
t a

ess to the full memory spa
e. Thus, in NUMA ma
hinesany variable usage may imply a bounded but unpredi
table 
ost for the memorya

ess or 
ommuni
ation. Shared memory a

esses, not marked by a dynami
syn
hronization me
hanism, 
ould produ
e inherent 
ommuni
ations and syn-
hronizations that 
hange the apparent stru
ture or produ
e non 
orre
t results.These perturbations 
an only be dete
ted by the 
ompiler using data-dependen
eanalysis of the sequential 
ode and internal data deployment information.The OpenMP standard does not in
lude data distribution dire
tives. Al-though interesting for the uni�
ation with a distributed-memory environment [17℄,re
ent studies 
laim that for state-of-the-art 

NUMA shared memory 
omputers\reasonable balan
ed page pla
ement s
hemes in
ur modest performan
e losses,and the OpenMP runtime environment 
an use page migration for implementingimpli
it data distribution and redistribution s
hemes without programmer inter-vention" [144℄. Thus, the programmer 
an work in a proper abstra
tion level toa
hieve portability.SPC programming modelThe SPC (Series-Parallel & Contention) model [71℄ proposes a restri
ted SP syn-
hronization ar
hite
ture that allows improved analysis te
hniques to be usedduring the implementation path. SPC is a nested parallelism model plus non-deterministi
 
oordination expressed as mutual ex
lusion restri
tions. An an-3Redu
tion 
an be for
ed to be non-syn
hronized. But in this 
ase, the values of the redu
tionvariable are unde�ned until an expli
it syn
hronized dire
tive is issued.
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ost estimation model is asso
iated with SPC programs [71, 170℄. Thea

ura
y depends on the level of detail of the target ma
hine model used. SPCis designed to obtain bene�ts from expli
it and stru
tured syn
hronization. Itis a programming paradigm with respe
t to the 
oordination of the programparallelism, based on a pro
ess-algebrai
 spe
i�
ation model. The model is pre-sented as a 
oordination language. Thus, its 
onstru
ts 
an be used to expressparallelism and 
oordination, using any sequential programming language for
omputation.An SPC program 
onsist in a 
olle
tion of pro
esses equations, mutual ex-
lusion de
larations and 
omputation parts asso
iated with pro
esses. Computa-tions are fun
tional units de
lared in any sequential language, thus their syntax isnot spe
i�ed in SPC. The set of pro
ess equations 
onstitutes one parallel pro
essexpression through substitution. (By 
onvention, the expression tree is rooted bya spe
ial pro
ess 
alled main). Pro
esses 
an be 
omposed with serial (;) or paral-lel (jj) operators. For 
orre
t binding of 
ompound pro
ess expressions, delimitersare allowed (f; g). Parallel 
omposition works with 
obegin/
oend semanti
s [9℄,thus, it implies a full syn
hronization after tasks 
ompletion. No hidden 
ondi-tion syn
hronization is allowed. The programmer must avoid data-dependen
esbetween di�erent pro
esses for program 
orre
tness.Conditional and iterative exe
ution of tasks are supported, although they
an introdu
e a kind of probabilisti
 (data-dependent) e�e
t that produ
es dy-nami
 syn
hronization stru
tures, a�e
ting the performan
e analysis (see dis
us-sion below). Resour
es are 
omputation providers that introdu
e limitations onthe parallelism exploited. A resour
e 
an be logi
al (e.g. a 
riti
al se
tion, aserver) or physi
al (e.g. a pro
essor). In SPC, they are modeled with a globalname. The programmer spe
i�es whi
h resour
es are needed to pro
eed withea
h task. Mutual ex
lusion is asso
iated with task to resour
es assignment(task ! r1; r2; :::; rn). Tasks 
ontending for a resour
e will be serialized in thes
heduling phase.The SPC model restri
ts CS stru
tures to those whi
h the asso
iated taskgraph is Series-Parallel [184℄. The non-deterministi
 
ontention for global namedresour
es has impli
it ME semanti
s. Thus, the SA is in (SP,ME,NDS) 
lass. If
onditional and iteration statements are allowed in the pro
ess equations, thendynami
 stru
tures are possible: (SP,ME,DS) 
lass.The 
ost estimation in SPC is based on several performan
e modeling te
h-niques [70℄: When the model allows only series-parallel stati
 syn
hronizationstru
tures a simple analyti
 
ost 
al
ulus 
an be introdu
ed, based on 
riti
alpath analysis of the generated graph. (See the equivalent 
al
ulus for nested BSPin [172℄). The mutual ex
lusion e�e
t in performan
e 
an be only approximated.Algorithmi
 te
hniques that keep lower/upper bounds are provided in the 
ostmodel [70℄. Although synta
ti
ally not yet provided, the use of resour
es withseveral units is allowed in the asso
iated 
ost modeling language Pamela [69℄. In
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ase of iterative or 
onditional 
onstru
ts that are data dependent, with nopossible probability derivation, only 
lassi
al simulation te
hniques are availableto get performan
e approximations. However, the stati
 and dynami
 part of theappli
ation performan
e model 
an be substituted by the analyti
 and approx-imation expressions obtained by the previous te
hniques, highly improving thesimulation performan
e.Using only expli
it stru
tured syn
hronization (SP + ME), interesting analy-sis te
hniques are possible to help de
isions during the implementation traje
tory.Full 
ost-driven mapping to any ar
hite
ture is possible ex
ept for irregular data-dependent appli
ations with no load-balan
ing or s
alability properties.2.5.3 Class(NSP,NME,NDS): Mapping oriented modelsIn this se
tion we dis
uss features of models oriented to express syn
hronizationstru
tures generated by typi
al appli
ations (like neighbor syn
hronization, stati
a

ess patterns and spe
i�
 data mappings). We study two important examples:HPF as example of the long-ago introdu
ed data-parallelism programming model,and some new proposals evolved from the skeletons world.HPF and data-parallelismLanguages based on the data-parallelism paradigm are originated on the SIMD(Single instru
tion, multiple data) model. In this model, the operands of a givenparallel instru
tion are a set of data pie
es with the same type, and all pro
essorsexe
ute the same operation on a di�erent subset of them.In the 1980s there was a signi�
ant resear
h in parallelizing 
ompilers. How-ever, sequential languages obs
ure or eliminate the parallelism inherent to anappli
ation with sequential 
onstru
ts as loops or re
ursion, that are diÆ
ult toanalyze for parallelism dete
tion. Writing a parallel program in a sequential lan-guage is not a natural approa
h. In the early 1990s, there appeared extensions ofsequential languages that 
ould express the parallelism asso
iated with exe
utingthe same operations on di�erent pie
es of a data stru
ture partition (e.g. ViennaFortran [40℄, Fortran D [104℄). Compilers and environments for data-parallelismwere widely studied [1℄. The most famous language derived from these e�ortswas HPF (High Performan
e Fortran) [27, 108℄.Data-parallel languages typi
ally in
lude parallel 
onstru
ts su
h as parallelarray operations, forall and where statements, and intrinsi
 fun
tions.ME typi
ally 
annot be exploited in these languages. The data-parallel modelallows the programmer to 
reate repetitive stati
 CS stru
tures. The tasks as-so
iated with the data operations are syn
hronized with next tasks through a�xed pattern, as the model simply repli
ates the same operation, with the samedependen
es, in ea
h pie
e of data. Thus, the generated syn
hronization stru
-
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hronization pattern between ea
h 
onse
utive pairof task layers. In some situations this property 
an alleviate the analysis problemderived from the NSP stru
ture, but typi
ally any new pattern must be studiedand analyzed.Compilers take advantage of this stru
ture regularity to optimize the 
odes.Stati
 mapping and s
heduling is typi
ally easy. One problem with the model isthat the exa
t syn
hronization pattern must be extra
ted analyzing the 
ode in-side parallel 
onstru
ts. Many times the programmer must help the 
ompiler withdata-distribution or alignment information. The te
hnique is sensible to 
hangeswith the target ma
hine ar
hite
ture and 
ommuni
ation system. The se
ondproblem is the restri
tions of the model. Only data-parallelism (�ne-grain paral-lelism) 
an be eÆ
iently expressed. Many appli
ations (
oarse-grain, less regular,dynami
, fault prone ...) present task-parallelism that 
annot be eÆ
iently ex-pressed in this model [32, 33℄. Many e�orts to 
ombine data-parallelism with orwithin more generi
 task-parallelism languages exist [66, 94, 41, 15, 11, 150℄.Nevertheless, data-parallelism is an interesting and produ
tive model [30,145, 110℄. Many 
omputing intensive appli
ations or parts of bigger appli
ations(mainly latti
e and matrix 
omputations) 
an be eÆ
iently exploited by data-parallelism methods.From skeletons to stru
tured languagesAlgorithmi
 templates or skeletons try to identify and exploit the stru
ture ofa family of algorithms. Parallel stru
tures that have 
ommon properties 
an beused as a skeleton or a programming paradigm. The programmer must identifythe skeleton that �ts with her/his appli
ation, and �ll in the exa
t 
omputationdetails. Spe
i�
 
ompiler transformations and te
hniques 
an then be fully ex-ploited. Skeletons are usually implemented in high-order fun
tional languages,where a skeleton fun
tion that en
apsulates the parallel behavior 
an re
eive asparameters other fun
tions that are internally used as the 
omputation part ofthe generated tasks.Several libraries or sets of program skeletons have been proposed and stud-ied [43, 53, 26℄. Identifying parallel stru
tures present in appli
ations are a key for
onstru
ting su
h sets [31, 152℄. More information about skeletons 
an be foundin [45℄. A further re�nement of the skeletons idea, known as ar
hetypes [132℄,
ombines broadly-de�ned 
omputational patterns with data-
ow 
onsiderationsfor systemati
 development of parallel programs.Skeletons are �xed-stru
ture templates. Thus, the ME and CS stru
turesallowed are the ones de�ned in ea
h set or library. Ea
h skeleton en
apsulatesthe abstra
t des
ription of a very 
on
ise syn
hronization stru
ture. Many par-allel skeletons proposed are stati
 well-known syn
hronization stru
tures, su
h aspipeline or neighbor syn
hronization. They are spe
i�
 examples of high regular
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tures that have been individually studied and analyzed. There areskeletons that support ME. It is at least typi
ally supported in a given skeleton
alled farm (see se
tion 2.2.2 for the 
lose relation between ME and the farmparadigm). This spe
i�
 skeleton is in SP and ME SA 
lasses. Data-dependentand data-independent versions are possible.What skeleton libraries propose is a set of given syn
hronization ar
hite
tures
hemes for whi
h interesting appli
ations 
an be derived, and for whi
h eÆ
ientspe
i�
 mapping, s
heduling and optimizing methods are well-known. In thissense, the skeletons model is the most restri
tive one, sin
e only a given set of�xed stru
tures 
an be programmed. However, many parallel appli
ations �ts inthese skeleton stru
tures. The skeletons key is that they 
apture the 
ommonparallel stru
ture of many appli
ations, and 
an produ
e eÆ
ient and reusable
omponents (see e.g. [54℄).Stru
tured languagesA further step in parallel stru
ture analysis leads to the stru
tured languagesapproa
h. In these languages several parallel 
onstru
ts, based on typi
al stru
-tures found in appli
ations, 
an be 
omposed to form a more 
omplex appli
ationstru
ture (see e.g. P3L [152℄). The key of the appli
ability of this languages is a
ost model whi
h is able to 
ompose the predi
tions based on the basi
 stru
tures.At the same time, 
omposition of basi
 stru
tures leads to software developmentbased on well-de�ned de
omposition te
hniques of the problem.There are still appli
ations that do not properly �t in the basi
 stru
turesproposed. They must be modi�ed and mapped by the programmer. The 
ost
al
ulus is also not so simple and the di�erent te
hniques of 
omposition in
reasethe 
omplexity of the analysis.Skeletons in the nested parallelism frameworkA new approa
h to skeletons idea is introdu
ed in the Frame language [44℄. Inthis language a nested parallelism skeleton is implemented as a set of primitivesthat 
an be 
omposed generating high-level SP stru
tures. This s
heme provides
lear semanti
s and a familiar synta
ti
 framework for programming (SP advan-tages). In a further step, the programmer has the option of using inside the highlevel nested parallel stru
ture other low level unstru
tured 
omputations. This
an be done with other skeletal elementary units, or by allowing the programmerto a

ess the underlying 
ommuni
ation or parallel software layer in a 
ontrolledform. Thus, the programmer has a

ess to the advantages of both, SP program-ming semanti
s and spe
ialized and optimized non-SP parallelism. We see thisoption as a promising resear
h dire
tion. Currently, Frame does not support MEin the high level stru
ture.



68 CHAPTER 2. CONCEPTUAL APPROACH2.5.4 Class (NSP,ME,DS): Message passingThe message passing model is based on 
ommuni
ation models [107, 34, 188℄.Standard interfa
es and implementations of this model like MPI [48, 140℄ orPVM [178, 155℄ are widespread used, and it is nowadays one of the most 
ommonmodels for general parallel programming environments.Its su

ess is derived from the generi
 approa
h it uses, giving only the me
h-anisms to 
ommuni
ate and expli
itly syn
hronize isolated pro
esses throughabstra
t 
hannels. Thus, it allows the programmer to 
reate and exploit anykind of parallelism that �ts a problem solution. At the same time it is a low-levelmodel, for whi
h eÆ
ient and highly optimized implementations in real hard-ware are possible. In fa
t it is highly related to the implementation level and themessage-passing ma
hine model (see se
tion 2.3.1).In the message-passing model a pro
ess is an independent a
tive element. Itexe
utes a sequential 
ode and it uses a lo
al memory spa
e. Pro
esses 
an be
reated and destroyed dynami
ally, either by other pro
esses or externally bythe system (typi
ally in the 
ontext of distributed 
omputing). Abstra
t named
hannels 
an be established between pro
esses for 
ommuni
ation. The sequential
ode 
an send data through a named 
hannel, or try to re
eive data through anamed 
hannel. Sent data is kept in the 
hannel until the target pro
ess is in astate in whi
h it tries to read it. Syn
hronization is produ
ed when a blo
kingre
eive operation waits for the arrival of a message. Pro
esses 
an s
an several
hannels at the same time for data, rea
ting in di�erent ways depending on whi
h
hannel data is re
eived �rst.This kind of point-to-point 
ommuni
ation is enough to express any 
omputa-tion and 
ommuni
ation s
heme. Nevertheless, extended primitives for 
olle
tive
ommuni
ations (redu
tion, broad
ast, s
an, barrier syn
hronization ...) are in-
luded in interfa
es and implementations. For these 
olle
tive operations, usingrestri
ted pro
esses groups is typi
ally possible, in order to 
reate virtual 
om-muni
ation topologies. To hide many 
ommuni
ations in one primitive is a morehigh level abstra
tion. Thus, it simpli�es programming and allows better opti-mized implementations of the 
olle
tive operations. Furthermore, programmingwith 
olle
tive operations 
an lead to even more high-level transformations forperforman
e improvement and software development te
hniques [90, 88℄.The model allows any 
ondition syn
hronization s
heme. Thus, it is in theNSP 
lass. There are no ME primitives, but non-deterministi
 
ontention exist,be
ause a pro
ess 
an be waiting for data from di�erent sour
es at the same time,rea
ting in di�erent ways depending on the order in whi
h messages are arriving.This feature 
an be exploited to produ
e programmed ME. The sending andre
eiving of messages 
an be data-dependent. Thus, dynami
 syn
hronizationstru
tures are allowed. In many interfa
es even the number of a
tive pro
essesmay 
hange. Thus, the SA is in (NSP,ME,DS) 
lass.



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 69The 
ounterpart of the model advantages is that being a so low-level model,the programmer fa
es problems about parallelization grain, data-partition, mapand s
heduling of any new appli
ation 
onsidered. As the stati
 or dynami
 stru
-tures allowed are 
ompletely unrestri
ted, no spe
ial heuristi
s or te
hniques 
anbe exploited by the 
ompiler or run-time environment for a generi
 appli
ation.The 
ompiler 
an not mat
h the send and re
eive primitives for synta
ti
 orsemanti
 validation or reasoning.The theoreti
al models on whi
h message-passing is based, provide a 
al
ulusto derive possible or forbidden states of the system. Nevertheless, the fast growing
omplexity of the sear
h spa
e makes su
h tests intra
table for anything but toyproblems. Extensions of LogP also try to model the internal features of message-passing interfa
es (see se
tion 2.4.4), but they o�er no help in software design.They 
an predi
t the 
ommuni
ation behavior of a given 
ommuni
ation pattern,but do not provide a systemati
 pro
edure to analyze a full subset of the possiblesolutions or design sear
h spa
e, due to the NSP SA.However, the message-passing interfa
es hide the 
ommuni
ation details, and
an be used as an eÆ
ient abstra
t 
ommuni
ation layer when a

urate measuresof given 
ommuni
ation patterns are a�ordable. More high-level programmingte
hniques 
an be applied or integrated in an environment that, underneath, usesmessage-passing for 
ommuni
ation [87, 182, 191℄.Other authors 
omplain about the non-deterministi
 behavior of message-passing interfa
es. It leads to non-reprodu
ible and more diÆ
ult to debug de-velopments, that is antitheti
al to s
ienti�
 methods. An interesting approa
hto eliminate the non-determinism in a message passing model is FortranM [67℄.It is based on extensions to sequential languages (in this 
ase, Fortran) withsemanti
 and synta
ti
 restri
tions in the 
reation and manipulation of 
ommu-ni
ation 
hannels. Nevertheless, FortranM provides non-deterministi
 
onstru
tsfor appli
ations where it is needed. Thus, the programmer 
an restri
t the useof non-determinism and she/he has more 
ontrol on the type of SA used (NMEor ME). Its modular or obje
t-oriented approa
h make it easy to 
ouple withdata-parallel modules (see se
tion 2.5.3).2.5.5 Class (NSP,ME,DS): Maximum abstra
tionIn this se
tion we dis
uss two more abstra
t example models that �t in the SA
lass with maximum expressive power: Con
urrent obje
t-oriented programmingand tuple spa
es. They present a PPL/PPM with powerful semanti
s. ManyPPL solutions in
lude both of them. The 
ounterpart is the problems of 
ostanalysis and eÆ
ient implementation.
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urrent obje
t-oriented programmingIn a pure 
on
urrent obje
t-oriented model, a 
omputation is a 
olle
tion ofpro
esses that a

ess and use shared obje
ts with a 
ontention me
hanism toavoid ra
e 
onditions. Thus, it 
an be viewed as a model without CS that reliesonly in the 
ontention me
hanism to 
ontrol the parallelism. The 
ontention is
ontrolled by monitors asso
iated with obje
ts. A monitor also implements ame
hanism to wait for or notify the su

ess of a guarded 
ondition [106℄. Thus,
ondition syn
hronization is a�ordable if a 
omplete monitor implementation isprovided in the language.For example, the JAVA syn
hronization model is based on inherent monitorsasso
iated with the obje
ts. Not only methods, but also 
ode pie
es 
an be mademutually ex
lusive using the monitor asso
iated to a given obje
t. The primitiveswait, notify, and notifyAll, asso
iated with the Thread obje
t, 
an be used insidesyn
hronized methods, along with spe
i�
 
ondition �elds, to 
reate and 
ontrol
ondition syn
hronization.The underlying model for 
on
urrent obje
t-oriented programming is also amessage-passing model when non-shared-memory ar
hite
tures are used. Remotemethod invo
ations 
reate 
ommuni
ation 
hannels for the data interfa
e whena

essing obje
ts information a
ross pro
esses. Three main di�eren
es (advan-tages) 
an be observed with respe
t to pure message-passing:� The remote method invo
ation is done a
ross a shared name spa
e of ob-je
ts.� ME 
an be dire
tly used as it is impli
it in method invo
ations 
ontrolledby monitors.� Data are asso
iated with obje
ts and methods. Although data partitioningde
isions are still fa
ed by the programmer, they 
an be helped by thisarrangement.From the previous dis
ussion it follows that a basi
 
on
urrent obje
t-orientedmodel has no CS and uses only ME to 
ontrol parallelism. The impli
it 
on-tention me
hanisms (
alls to monitor prote
ted methods) have ME semanti
s.The SA is always in 
lass ME. However, monitors allow the 
reation of 
ondi-tion syn
hronization and 
ertain implementations make use of remote methodinvo
ation to 
reate other CS me
hanisms. Both lead to NSP stru
tures. Con-dition syn
hronization stru
ture is unrestri
ted and dynami
. New obje
ts are
reated and unpredi
tably used during exe
ution of the system. Compilers andrun-time systems do not get mu
h help to de
ide where to lo
ate obje
ts, or howto s
hedule pro
esses to pro
essors from the unknown and non-SP stru
ture. Themain syn
hronization 
ontrol in this model relies on monitors and mutual ex
lu-sion, then, in an impli
it dynami
 syn
hronization system. However, analyzing
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 mutual ex
lusion is not as easy or a

urate as 
ondition syn
hroniza-tion analysis [70℄. SA in NSP 
lass inhibits analyzability also in the dynami
syn
hronization spa
e.The monitor system and the global name/address spa
e makes this model amiddle point between pure message-passing and the more 
omplete global tuplespa
e model des
ribed below.Coordination languages a la Linda. Global tuple spa
es.The tuple-spa
es are a 
oordination and 
ommuni
ation system, independent ofthe 
omputation language [37, 38, 68, 148℄. Tuple-spa
es provide a PPM witha high-level abstra
t virtual ma
hine, separated from the 
omputational issues.The PCM is 
onsidered to provide a global shared spa
e of data pie
es 
alledtuples. A tuple is a named 
olle
tion of data �elds of any nature. Pro
esses workasyn
hronously and ex
hange data by writing, reading, inserting and extra
tingtuples in the tuple spa
e. The language also provides primitives for 
he
king thepresen
e of tuples and information in the global spa
e.The 
ondition syn
hronization is done through 
he
king, writing, and readingtuples. There is no restri
tion about whi
h pro
esses syn
hronize and when theydo it. Multiple pro
esses 
an 
he
k the same tuple at the same time. Thus,the language is ri
h in expressive power and full of possibilities for 
onditionsyn
hronization stru
tures. The 
ounterpart is that it leads to NSP SA 
lass.Operations of 
he
king and reading/writing/modifying tuples 
an be atomi
.Thus, the languages provide primitives with ME semanti
s. The SA is in theME 
lass. There are no restri
tions to the use of the syn
hronization me
hanismor even to the manipulation of threads. The system is fully dynami
 and data-dependent (thus, the model is in the 
lass DS).Due to the NSP 
ondition syn
hronization s
heme, the 
ost model presentsthe problems asso
iated to any NSP model. EÆ
ient implementations on realar
hite
tures are not so simple, as the 
ommuni
ation problems that arise tomaintain the shared tuples are 
omplex. However, the tuple synta
ti
s are 
lean,and the 
ompiler 
an do some semanti
 
he
king and veri�
ation. They providea good abstra
tion for a maximum expressive power PPL/PPM.2.5.6 Con
lusions about PPLs/PPMs SAIn Fig. 2.22 we show the lo
ation in the SA spa
e of the more relevant modelsreviewed in this se
tion. The arrows represent a possible 
hange in the SA 
lasswhen some extensions are added to the basi
 model. The main 
on
lusionsobtained previously for PCMs and bridging models (re
all se
tion 2.4.5), are
on�rmed and extended in this more abstra
t level. SA is an important featureof the PPLs/PPMs for its expressiveness and analyzability features.
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ation of PPLs/PPMs reviewedComparing with PCMs and bridging model, a �rst observation is that themore abstra
t models usually in
lude ME primitives instead of relaying in a low-level programmable ME me
hanism. The lower mapping level is oriented to easierimplementations in a full range of real ar
hite
tures, promoting programmablemutual ex
lusion. However, in the more abstra
t level of programming, themodels are more oriented to simplify the programming task. Primitives withimpli
it ME have 
lear semanti
s and are easy to use. Ex
ept for the 
ase ofOpenMP (
learly oriented to shared-memory ar
hite
tures), the implementationof ME in other ar
hite
tures is not so dire
t, although it is 
learly promoted fromthe higher abstra
tion levels.At this level we 
an also see that models whi
h allow NSP CS stru
tures arein the lower or higher extremes of restri
tiveness. Models in the NSP 
lassesthat o�er mapping solutions or reliable 
ost analysis are based on analyzing andusing only a small set of well-know stru
tures and solutions for parallel prob-lems. They are oriented to spe
i�
 appli
ations stru
tures, like data-parallelism



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 73or skeleton based models, that are all in the (NSP,NME,NDS) 
lass. On theother hand, full NSP models are oriented to maximum expressive power, like
on
urrent obje
t-oriented programming, tuple spa
es or message-passing, all in(NSP,ME,DS) 
lass. In these models, the programmer gets little help to under-stand or predi
t the system behavior. Mapping and optimization de
isions mustbe taken manually and must be based mainly on the programmer's experien
e.At the opposite side of the CS axis, we �nd SP models. In this 
ase, there isnot su
h an extreme diversi�
ation. In fa
t, the most popular SP based models,either do not support ME (pure nested parallel languages su
h as Cilk), or areoriented to stati
 syn
hronization stru
tures (as OpenMP or SPC). The reasonis that restri
ting the SA to the SP 
lass is always introdu
ed in a model toin
rease the analyzability 
hara
teristi
s of the model. In the 
ase of Cilk, thedynami
 s
heduling algorithm works with the CS information available. Thus,no ME me
hanism exists but data-dependent syn
hronization is available. In the
ase of OpenMP or SPC, ME me
hanisms are 
onsidered, but no data-dependentstru
tures are promoted to still get mapping bene�ts derived from the stati
 SPstru
ture. However, is important to noti
e that both SPC and OpenMP allowalso dynami
 
onstru
tions to let the programmer implement any kind of ap-pli
ation. In the 
ase of using data-dependent stru
tures, the programmer isresponsible for expli
itly programming some kind of s
heduling and mappingtasks. Therefore, the bene�ts of using SP stru
tures regarding automati
 map-ping are prevented. OpenMP goes even further, allowing the programmer to
reate NSP stru
tures with the lo
k-managing external library. For a modernand 
ommer
ial oriented language it would be a real short
oming if the so manyunstru
tured-mind oriented programmers 
ould not implement their ideas with-out restri
tions. Manual mapping and optimization is still 
urrent pra
ti
e inparallel programming.2.6 Syn
hronization ar
hite
ture of appli
ationsFinally, we are to 
limb the highest peaks of abstra
tion, where appli
ations liesurrounded by the 
louds of parallel algorithmi
s. For this upper perspe
tive,we will 
ontemplate all the lands we have previously traveled along. PPLs andPPMs are interfa
es to express the parallelism of an appli
ation. Thus, we studythe SAs present on typi
al parallel appli
ations, kernels, and parallel problemssolutions. We also dis
uss how do they map to restri
ted SA 
lasses.This 
lassi�
ation of the SA of appli
ations is intended to help the readerto understand the real purposes, bene�ts and disadvantages of the di�erent re-stri
ted and unrestri
ted PPMs. At the same time it will point us to 
ase-studyappli
ations for the mapping problem (systemati
ally transformation of syn
hro-nization stru
tures a
ross di�erent SA 
lasses). In the following 
lassi�
ation



74 CHAPTER 2. CONCEPTUAL APPROACHwe are not trying to be exhaustive, but we are only presenting some well-knownexamples of parallel solutions and appli
ations whi
h are representative of ea
hSA 
lass. The graphi
al representation of this 
lassi�
ation is shown in Fig. 2.26.2.6.1 Class (SP,ME,NDS/DS)There are two typi
al programming paradigms or problem solutions that arebased on the use of ME: Farms and non-ordered ma
ro-pipelines.Farms: Many irregular and dynami
 appli
ations are dire
tly programmed us-ing a pure ME s
heme through a workers-farm or work-stealing paradigm(
entralized or de
entralized load balan
ing s
heduling algorithms). Thus,many highly irregular appli
ations, derived e.g. from graph explorationor 
ombinatorial sear
h [156, 189℄, are transformed to this stru
ture. Thes
heduling module is then reported about the possibility of non-deterministi
syn
hronization between 
omputation pie
es. Appli
ations of this type aretypi
ally dynami
 (tasks generate new data pie
es to pro
ess), but thenumber of tasks may also be stati
ally determined by the problem nature.ME-Ma
ropipeline: Ma
ro-pipeline is a wide-a

epted name for a syn
hro-nization stru
ture that represents a generi
 solution for many problems.Consider ma
ro-pipelines representing problems based on the parallel exe-
ution of n pro
esses 
omposed by m tasks or stages, su
h that the stage iof a pro
ess needs ME with the i stages of all the other pro
esses (typ-i
ally due to the use of a shared resour
e). An example 
ode of su
ha ma
ropipeline programmed with semaphores is presented in Fig. 2.23.These ma
ro-pipelines 
an be programmed as a 
olle
tion of task serieswith no CS between di�erent series and ME among the i-depth tasks.Other ma
ro-pipelines not based on resour
e restri
tions are not in this
lass and will be dis
ussed below. The number of stages is known in almostall situations. If the number of pro
esses is also known the stru
ture willbe stati
, else it will be dynami
.(1) MEma
ropipeline() f(2) Semaphore s[m℄;(3) 
reateSemaphores(s);(4) initializeSemaphores(s,1);(5) spawnThreads(n);(6) pro
ess(...);(7) syn
Threads(n);(8) g
(1) pro
ess(...) f(2) int stage;(3) for(stage=0; stage<m; stage++) f(4) P(s[stage℄);(5) do(stage);(6) V(s[stage℄);(7) g(8) gFigure 2.23: Example of a ME-Ma
ropipeline
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ted for implementation dire
tly supports MEprimitives, the appli
ation stru
ture is formed by spawning n tasks that syn
hro-nize only by ME to obtain more data pie
es in the farm, or to avoid 
on
urrenta

ess to the same resour
e in ME-Ma
ropipelines. If ME is not supported, afalse order originally not present in the problem de�nition should be introdu
edwith CS (see se
tion 2.2.6). The solution probably will in
ur in high losses if SPsyn
hronization is for
ed.It is arguable whether this kind of solutions must be expli
itly programmedwith ME or they 
an be even automati
ally dete
ted and s
heduled by a 
ompiler.2.6.2 Class (NSP,ME,NDS/DS)No typi
al parallel appli
ations are found in these 
lasses. In problems where MEis used to provide a solution, it is frequent that no CS is needed ex
ept to 
reatesequen
es of pro
esses that use only ME to avoid intera
tions, or full barriersto syn
hronize between iterations. Thus, they 
an be programmed in a nested-parallel restri
ted model (SP,ME,NDS/DS). We are not taking into a

ount hereimplementations that use ME only to simplify 
ommuni
ation phases when usinga shared-data spa
e. In this 
ase the original appli
ation does not really need MEand they 
an also be programmed in their relative (NSP,NME,NDS/DS) 
lasses.2.6.3 Class (SP,NME,NDS)In this 
lass we found appli
ations that dire
tly map to CS stru
tures in the SP
lass. The problem or solution is hierar
hi
al or highly syn
hronous. Thus, it 
anbe programmed with hierar
hi
al self-syn
hronized pro
esses groups. The stru
-ture is also stati
, dependent only in the input data-size or number of pro
essors,and possibly �xed in 
ompilation phase.Types of appli
ations to be found in this 
lass are trivial parallel 
ompu-tations, stati
 stru
tures derivated from divide & 
onquer or bran
h & boundparadigm (sometimes as a data-partition s
heme), and syn
hronized loops.Trivial parallel 
omputations: Appli
ations that are easily and dire
tly par-allelized by a wise data-partitioning avoiding 
ommuni
ation between tasksduring normal 
omputation phases. The only syn
hronization needed is todistribute data and 
olle
t results. They do not need a powerful NSPlanguage or model to be programmed. Some examples are found in imagepro
essing algorithms: Geometri
al transformations of a set of di�erent ob-je
ts in n-dimensional spa
es, ray-tra
ing and other rendering algorithms.Other examples are sear
hing and optimization methods like simple MonteCarlo or hill 
limbing methods, spe
i�
ally when parallel random numbergenerators are used [31, 189℄.
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tion trees: Parallel pre�x sums, maximum or leader identi�
ation, et
[73, 156℄.Some sorting algorithms: Merge-sort and radix or bu
ket sort [189, 120℄.Parallel multigrid methods: The overall stru
ture of V-
y
le and multigridsimulation programs based in 
ellular automates (not the 
ellular automataitself) is hierar
hi
al. Grid lo
al operations to solve partial di�erential equa-tions, or SOR methods in general, present a divide & 
onquer SP stru
turethat 
an be implemented with only one syn
hronized 
ommuni
ation phaseper iteration. Many typi
al solutions to simulation programs in grids usesyn
hronized phases (see e.g. [111℄).Some numeri
al algorithms: Numeri
al integration [189℄. The overall stru
-ture of Strassen matrix multipli
ation [156℄ (although lo
al dependen
es
an be exploited in a 
ompli
ate NSP form).Syn
hronized parallel loops: Many appli
ations are programmed with par-allel loops or similar stru
tures. After a 
omputation phase, pro
essesinter
hange boundary information with neighbors, or 
ommuni
ate in anunpredi
table pattern with other pro
esses. If the problem semanti
s needa full barrier syn
hronization after the 
ommuni
ation phase, they 
an bedire
tly programmed in an SP form.Be
ause of the easy of programming and understanding of su
h syn
hro-nized stru
tures have, they are used in most situations, even when thesyn
hronization is not in the original problem semanti
s. For example, theOpenMP [149℄ model assumes this kind of behavior for its main primi-tives for parallel loops and se
tions, although variable-lo
ks 
an be use toprodu
e NSP patterns at programmer dis
retion. For well-balan
ed appli-
ations the delay introdu
ed by pro
esses waiting for other pro
esses tosyn
hronize is negligible.2.6.4 Class (SP, NME, DS)Divide & 
onquer may be used as a load balan
ing te
hnique. In this 
ase data-partitions should be dynami
ally 
onstru
ted. Many appli
ations also present anadaptable hierar
hi
al stru
ture that is further or re
ursively spawned in a data-dependent form. For example, solutions that are re
ursive over sele
ted pie
es ofdata (like qui
ksort algorithm) for
e dynami
 stru
ture. However, appli
ationsthat split data into equal size 
hunks generate a stati
 stru
ture if the data sizeis known from the beginning (like mergesort). Some examples of dynami
 SPappli
ations are:Unbalan
ed sorting: Qui
k-sort [189℄.



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 77Some geometri
 problems: Convex hull or Voronoi diagrams [56℄.N-body simulations: Barness-Hutt, Fast Multipole Methods and other non-adaptative hierar
hi
al algorithms for N-body simulation are based on ahierar
hi
al divide & 
onquer paradigm. (See e.g. [136, 189℄). They areintuitively programmed in SP, as they basi
ally 
onstru
t and evaluatedynami
 trees.2.6.5 Class (NSP,NME,NDS)In this 
lass we dis
uss appli
ations whi
h their problem natures imply stati
non-hierar
hi
al CS stru
tures. The exa
t syn
hronization pattern is quite dif-ferent for di�erent appli
ations. For example, many high regular and s
alableappli
ations are generated by repli
ation of a lo
al 
ommuni
ation pattern. Mostof them are well-known data-parallel solutions, where pro
esses re
eive a pie
e ofa data-stru
ture partition and pro
eed in two phases: Computation and 
ommu-ni
ation of boundaries of the data stru
ture with neighbor pro
essors (in a virtualtopology de�ned by the problem, the data partition, and the mapping). They arewidely used in simulation and engineering �elds and they are spe
i�
ally studiedto obtain spe
i�
 high-performan
e optimized solutions. Iterations of a neighborsyn
hronization pattern de�nes an NSP CS stru
ture. Many of them present awell-known repetitive syn
hronization stru
ture that s
ales-up easily.
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k matrix multipli
ation.Irregular divide & 
onquer: Not all divide & 
onquer te
hniques lead to SPstru
tures. When the 
onquer phase merges partial solutions generatedby other pro
esses, an NSP 
ommuni
ation pattern may be natural. InFig. 2.24 we show the NSP pattern generated by a typi
al divide & 
onquerblo
k matrix multipli
ation, where ea
h pro
essor uses only 7 of the 16pie
es 
omputed in the previous phase.



78 CHAPTER 2. CONCEPTUAL APPROACHStati
 dependent pipelines: Pipelines produ
ed by stati
 
ode dependen
esleads to a typi
al NSP stru
tures. For example, the data-parallel looppresented in Fig. 2.25 
reates a ma
ro-pipeline stru
ture that 
annot beexpressed by ME.(1) FOR i=1,n-1 parallel=8(2) V [i+ 1℄ = V [i+ 1℄ + f(V [i℄)(3) ENDFORFigure 2.25: Example of stati
 dependent pipelineSimple neighbor syn
hronization: Cellular-automata and other grid/latti
esimulation programs based on sten
ils or lo
al syn
hronization patterns [162℄.Example appli
ations in
lude many physi
s and 
hemistry simulations orimage pro
essing programs.Problem solving networks: Many appli
ations based in a spe
i�
 topologyex
hange network as FFT [153℄, odd-even redu
tion or sorting networks [156℄.Matrix s
ienti�
 
omputing: Most dense matrix s
ienti�
 
omputing algo-rithms like Gaussian elimination, matrix multipli
ation, QR and LU re-du
tions [79, 78℄ 
an be programmed in an NSP form to exploit all possibleparallelism. The syn
hronization stru
tures generated for these appli
a-tions is not so symmetri
 as in previous examples. However, they areregular and easily s
alable.For most of these problems, the 
omputation phase is exe
uting the same pie
e of
ode on a approximately equal sized pie
e of data for every pro
ess. Syn
hronizediterations (see se
tion 2.6.3) are very popular for these very regular and high-balan
ed 
omputations. The performan
e degradation e�e
t of programmingthem in an SP PPM is very small [86℄.Moreover, spe
ifying these regular 
omputations in a hierar
hi
al syn
hro-nization stru
ture, with �ne grain parallelism, may allow automati
 mappingte
hniques that perform a good data-partition and load balan
e, minimizing po-tential performan
e degradation.Another solution is to en
apsulate an eÆ
iently programmed solution basedon the NSP 
ommuni
ation stru
ture into a skeleton [45℄ or a given language
onstru
tion [152℄. Thus, it 
an be used 
ompositionally as a language primitiveand inside a hierar
hi
al nested-parallel s
heme [44℄.



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 792.6.6 Class (NSP,NME,DS)In this 
lass we �nd appli
ations that generate non-repetitive spe
i�
 NSP 
om-muni
ation patterns depending on the input data and partial 
omputation re-sults. Appli
ations in this 
lass in
lude:Sparse linear-algebra algorithms: Although most sparse linear solvers try toredu
e their behavior to regular ve
tor operations [99, 186℄, in many spe-
i�
 te
hniques the syn
hronization stru
ture is dependent on the matrixdensity stru
ture (e.g. [124℄). In these appli
ations all the stru
ture may bepredi
ted if the matrix stru
ture is known. Sparse linear solvers are an im-portant 
ategory of algorithms for many di�erent domain appli
ations, anddire
t solving methods for sparse linear systems is an important resear
h�eld (see e.g. [96℄).Simulations in graphs: Many stru
tural engineering appli
ations and similarproblems based on iterative PDEs solvers. A graph partitioning algorithmis applied to the input graph to distribute data among pro
essors, minimiz-ing the 
ommuni
ation needed due to intera
tions between points assignedto di�erent partitions [154℄.Adaptative grids: PDEs solvers where an adaptative grid is dynami
ally re-�ned [147℄. These problems need dynami
 evolution of the data partition,that 
an lead to dynami
 modi�
ation of 
ommuni
ation patterns.Dynami
 simulations: Adaptative N-body simulations [136℄ and 
hemistry orphysi
s simulations, where parti
les or points are in motion, 
hanging thedata elements with whi
h they intera
t to [115℄. In some solutions, thedata partition must evolve dynami
ally.When the irregular syn
hronization stru
ture is predi
table, on
e the data stru
-ture (e.g. an sparse matrix stru
ture) is known, sophisti
ated algorithms 
an beused to transform the stru
tures to SP form trying to minimize the losses [85℄.These algorithms may be used even as a pre-s
heduling phase. Multilevel graphpartitioning may also be used to 
reate nested disse
tion orderings for solvingsparse linear systems of equations [154℄.The highly dynami
 solutions to simulation problems where 
ommuni
ationpatterns evolve along iterations are still a big 
hallenge on themselves. In most
ases these solutions are heuristi
 hard-wired load-balan
ing te
hniques highlydependent on the problem. Most of the time 
omplex knowledge about the appli-
ation behavior and de
omposition is needed. Good results may be obtained bythe hierar
hi
al appli
ation of di�erent s
heduling poli
es for pro
esses that showdi�erent syn
hronization roles instead of only one plane poli
y [115℄. However,the identi�
ation of su
h pro
esses 
lasses is not dire
t and it is not 
lear how ahierar
hi
al spe
i�
ation of the original problem 
ould help.
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Figure 2.26: Classi�
ation of example appli
ations2.6.7 Con
lusions about appli
ations SAIn Fig. 2.26 we show a diagram that summarizes the 
lassi�
ation of some ex-ample appli
ation types des
ribed in this se
tion. Dashed lines indi
ate typi-
al transitions between 
lasses to map appli
ations stru
ture into restri
ted SPPPMs.An important observation is that ME is used only to program appli
ationsmainly based on two SP paradigms that impli
ate a spe
i�
 load-balan
ings
heduling solution, useful for many dynami
 appli
ations. In fa
t, some dy-nami
 NSP appli
ations may be transformed to �t into the farm paradigm, and
onsequently into SP 
lass. It is important for a PPM to support ME to easilyprogram this kind of dynami
 solutions.Most appli
ations do not need ME. We have found many of them suitable forSP PPMs. For the appli
ations that do really have NSP CS stru
ture we haveidenti�ed representative examples for any SA 
lass. Simple possible mappingsolutions to 
onvey their syn
hronization stru
ture into SP SA 
lasses have beendis
ussed.



2.7. SUMMARY 812.7 SummaryIn this 
hapter we have presented the syn
hronization ar
hite
ture 
on
ept andits relevant 
lasses a

ordingly to three important 
riteria: CS, ME and data-dependen
e. Then, we have explored the di�erent programming abstra
tion lev-els to dete
t the SA 
lasses of PCMs, PPMs, PPLs and appli
ations.At the lowest abstra
tion level, exe
ution models provide maximum expres-sive power and syn
hronization opportunities. However, as we travel up to thehigher abstra
tions proposed by parallel programming models, we noti
e thatlow-level based implementation models (as e.g. message-passing interfa
es) arebeing substituted by higher level models with two main trends:1. High abstra
tions with maximum expressiveness power (as e.g. tuple spa
es)2. Restri
ted models with eÆ
ient mapping and software development initia-tives (as e.g. BSP).A parallel 
omputation is a mu
h more 
omplex obje
t than a sequential 
om-putation. More and more parallel programmers are a

epting that a higherlevel of abstra
tion is needed to introdu
e software development and debuggingte
hniques in parallel programming [89℄. However, implementation and map-ping problems plague the highly abstra
t but unrestri
ted programming models.Nowadays, the programming models that look more promising are those whi
hanalyzability 
apabilities are improved by introdu
ed expressiveness restri
tions.In our study we have found that the most relevant frontier in this analizabilityvs. expressive power trade-o� is the SP vs. NSP 
hoi
e in the 
ondition syn
hro-nization axis. Programmers who take the de
ission of 
rossing this frontier andfor
e the CS stru
tures to SP form (nested-parallelism), a
hieve an importantin
rease in their analizability 
apabilities, opening a full new world of 
ompil-ing and run-time te
hniques for veri�
ation, performan
e predi
tion, mapping,s
heduling, portability and software development in general.Although many typi
al parallel appli
ations are perfe
tly suitable for theseSP restri
ted models, some important ones still present a 
hallenge for beingeÆ
iently transformed to nested-parallel form. Intuition indi
ates that in many
ases the impa
t of su
h a transformation in the appli
ation performan
e is lim-ited. However, the potential performan
e loss produ
ed by the SP restri
tionintrodu
ed at the programming level, before the appli
ation is 
oded, has notbeen yet fully studied. The rest of this dissertation addresses this importantproblem. In 
hapter 2 we use graph theory to 
hara
terize both NSP and SPstru
tures and we study systemati
 transformations from NSP to SP forms. Wealso investigate the potential performan
e impa
t of su
h transformations. Anexperimental framework to verify the propositions introdu
ed in our study, that
an also be extended for quantitative evaluation of PPMs in general, is presentedin 
hapter 3.
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Chapter 3Theoreti
al approa
h\This is how I will do it: if there is a whelp ofthe same breed to be had in Ireland, I will rearhim and train him until he is as good a houndas the one killed; and until that time, Culain,"he said, \I myself will be your wat
hdog, toguard your goods and your 
attle and yourhouse." \You have made a fair o�er," saidCon
hubar. \I 
ould have given no betteraward myself," said Cathbad the Druid. \Andfrom this out," he said, \your name will beCu
hulain, the Hound of Culain."Cu
hulain of Muirthemne, 1902Lady GregoryIn the previous 
hapter we have 
lassi�ed SAs and identi�ed the SP (nested-parallelism) restri
tion as the most important frontier between expressivenessand analyzability. We have also determined that many appli
ations dire
tly mapto models in the SP SA 
lasses, but others do not. Although strategies for thismapping are proposed, two important questions arise:� How mu
h potential parallelism loss is introdu
ed by a transformationwhi
h map NSP appli
ation stru
tures to SP form, and is it possible topredi
t it?� Is it possible to derive automati
 transformation te
hniques to map NSPstru
tures to SP form?The latter question is motivated by the fa
t that (1) tool support is an importantenabling fa
tor in the use of SP models for NSP problems, and (2) su
h tools
an be used to partially automate the experiments needed to address the �rstquestion. 83



84 CHAPTER 3. THEORETICAL APPROACHA formal approximation to the mapping of NSP stru
tures to SP form maybe developed with the help of graph theory. The syn
hronization stru
tures ofappli
ations have been for a long time represented with graphs. More pre
isely,DAGs (Dire
ted A
y
li
 Graphs) have been used to represent the Posets (PartialOrder Sets) or dependen
es that CS introdu
e between tasks. These graphs donot dire
tly support spe
i�
ation of ME dependen
es or alternative stru
turesof data-dependent programs. They may be used to represent only one possi-ble stru
ture 
reated during the exe
ution of a given program in a given PPM(when ME and data-dependen
es are transformed to CS). Nevertheless, we areinterested mostly in the CS stru
tures, as long as we have previously show thatCS and ME are orthogonal, and we have determined the impa
t of ME in theexpressiveness vs. analyzability trade-o�. To represent the stru
tures 
reated bydata-dependent programs we 
an use several graph representations of the pos-sible stru
tures generated by the program. A 
omplete study of how to extra
ttask graphs from appli
ations is presented in se
tions 4.2.2 and 4.2.3.Hen
e, we will study graph transformations to approximate NSP stru
turesto SP form. The devised transformations will try to minimize the potential par-allelism loss introdu
ed by added dependen
es, that may be responsible of theperforman
e degradation. We study not only the topology impa
t of a trans-formation, but the potential impa
t in the performan
e through 
riti
al pathanalysis. For su
h an study, the workload distribution of the graph nodes is 
riti-
al. At the highly abstra
t level of programming, no exa
t (or even no) workloadinformation is typi
ally available. In our study, several syntheti
 workload mod-els are 
onsidered. In an experimental study with real appli
ations, presentedin se
tion 4.2, we validate and re�ne these workload models to 
onsider realexe
ution workloads.In this 
hapter we use graph theory to formally present de�nitions and prop-erties of NSP and SP graphs. We also study and 
ompare basi
 te
hniques andfull algorithms to transform NSP syn
hronization stru
tures to SP form, min-imizing the potential parallelism loss. The impa
t of su
h transformations istheoreti
ally analyzed and dis
ussed.
3.1 Graph preliminariesWe present here a 
olle
tion of mathemati
al notations used throughout the restof this dissertation. They are organized in se
tions about spe
i�
 subje
ts: Basi
graph 
on
epts, transitive 
losure and redu
tion, simple topologi
al parameters,and task graphs.



3.1. GRAPH PRELIMINARIES 853.1.1 Basi
 graph 
on
epts and notationsSin
e graph-theoreti
al de�nitions di�er somewhat in the literature, we de�nehere the basi
 
on
epts. De�nitions are mainly adapted from referen
es [12, 28,93, 184℄. A reader who is familiar with graph theory may skip this se
tion andrefer to these de�nitions later if it is needed.In this dissertation we denote sets with upper 
ase alphabeti
 
hara
ters(A;B;C; :::), and elements of a set with lower 
ase (a; b; 
; :::). Calligraphi
 upper
ase alphabeti
 
hara
ters denote set partitions:De�nition 3.1.1 The symbol P denotes a partition of a set in non-overlappingsubsets: PS = fS1; S2; :::; Sng : Si � S;\i Si = ;;[i Si = S 2De�nition 3.1.2 A dire
ted graph G is a pair (V;E), where V is a �nite setof nodes or verti
es and E � V � V is a set of ordered pairs 
alled edges. Thenumber of nodes in a graph is denoted by n = jV j, and the number of edges bym = jEj.There 
an be multiple edges between the same nodes. Graphs with multipledire
ted edges are 
alled multidigraphs. Self-
y
les (nodes in the form (v; v)) willnot be used in our study. 2De�nition 3.1.3 Two graphs G1 = (V1; E1) and G2 = (V2; E2) are isomorphi
(G1 � G2) if there exists a bije
tive fun
tion f from V1 to V2 su
h that (v; v0) 2E1 () (f(v); f(v0)) 2 E2.For the following de�nitions let G = (V;E) be a dire
ted graph.De�nition 3.1.4 For ea
h edge (v; v0) 2 E, v is the sour
e of the edge and v0is the target of the edge. 2De�nition 3.1.5 For ea
h node v 2 V , indeg(v) is the indegree or number ofedges for whi
h v is the target and outdeg(v) is the outdegree or number of edgesfor whi
h v is the sour
e:indeg(v) = jfe 2 E : e = (v0; v)gjoutdeg(v) = jfe 2 E : e = (v; v0)gj 2



86 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.6 A root or sour
e of a graph is a node v with indeg(v) = 0.R(G) is the set of all roots in G: A leaf or sink of a graph is a node v withoutdeg(v) = 0. L(G) is the set of all leaves in G.R(G) = fv 2 V : indeg(v) = 0gL(G) = fv 2 V : outdeg(v) = 0g 2De�nition 3.1.7 The su

essors set of a node v is the set of target nodes ofedges for whi
h v is the sour
e. The prede
essors set of a node v is the set ofsour
e nodes for whi
h v is the target:Su

(v) = fv0 : (v; v0) 2 EgPred(v) = fv0 : (v0; v) 2 Eg 2De�nition 3.1.8 A subgraph of G is another graph S = (VS ; ES) in whi
hVS � V and ES � E. 2De�nition 3.1.9 A Path from a given node to another p(v; v0) is non-empty asequen
e of nodes 
onne
ted by edges that de�nes a possible way from v to v0:p(v; v0) = v; v1; v2; :::; vp; v0;(v; v1); (v1; v2); :::; (vp; v0) 2 EThe length of the path is the number of edges p in the path:length(p(v; v0)) = jp(v; v0)j � 1A non-dire
t path is a path with length more than 1:pnd(v; v0) = p(v; v0) : length(p(v; v0)) > 1A Full path is a path p(v; v0) where v is a root and v0 is a leaf. Pf (G) is the setof all possible full paths in G:Pf (G) = fp(v; v0) : v 2 R(G); v0 2 L(G)gA Cy
le is a path from/to the same node: p(v; v). 2



3.1. GRAPH PRELIMINARIES 87De�nition 3.1.10 A node v0 is said to be rea
hable in the graph G from anothernode v i� exists p(v; v0) or v = v0:v �G v0 () 9p(v; v0) _ v = v0Where it is obvious by the 
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.11 A node v0 is said to be stri
tly rea
hable in the graph G fromanother node v i� exists p(v; v0) and v; v0 are di�erent:v �G v0 () 9p(v; v0) ^ v 6= v0Where it is obvious by the 
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.12 Two nodes v; v0 are 
onne
ted in the graph G i� one of themis rea
hable from the other:v��Gv0 () v �G v0 _ v0 �G vv���Gv0 () v 6�G v0 ^ v0 6�G vWhere it is obvious by the 
ontext in whi
h graph is this relation de�ned, we omitthe name of the graph G and we use the symbol �� alone. 2De�nition 3.1.13 For any node v 2 V , the depth level or d(v) is the length ofthe longest path from a root to that node:d(v) = max(length(p(r; v)) : r 2 R(G)) 2De�nition 3.1.14 A dire
ted a
y
li
 graph (DAG) is a dire
ted graph G =(V;E) with no 
y
le. For any node v there is no p(v; v):G 2 DAG () 8v 2 V :6 9p(v; v) 2In this dissertation we only study dire
ted a
y
li
 graphs. From here on, theword \graph" always refers to a DAG.De�nition 3.1.15 A two-terminal dire
ted a
y
li
 graph, also 
alled standardtwo-terminal or STDAG is a DAG su
h that there is only one root and only oneleaf in the graph:G 2 STDAG () G 2 DAG; jR(G)j = 1; jL(G)j = 1 2



88 CHAPTER 3. THEORETICAL APPROACHProposition 3.1.16 Properties of STDAGs:1. Any node in an STDAG is rea
hable from the root.2. The leaf of an STDAG is rea
hable from any node in the graph.3. Any STDAG is a 
onne
ted graph.4. For any node v 2 V exists at least one full path that 
ontains v.Proof: A node v 2 V , is the root or it has at least one prede
essor. If it isnot the root, take any prede
essor of v and pro
eed by indu
tion. Use the samerationale for su

essors and the leaf. The rest is trivial using the de�nitions. 2De�nition 3.1.17 The normalized STDAG G of a DAG G is a two-terminaldire
ted a
y
li
 graph, 
onstru
ted from G, adding at most two nodes and O(n)edges to resyn
hronize the possible multiple roots and possible multiple leaves ofG, as follows:Let G = (V;E) be a DAG, G = (V 0; E0):V 0 = V [ fvrg if jR(G)j > 1V 0 = V [ fvlg if jL(G)j > 1E0 = E [ f(vr; v) : v 2 R(G)g if jR(G)j > 1E0 = E [ f(v0; vl) : v0 2 L(G)g if jL(G)j > 1 2Proposition 3.1.18 The normalized STDAG G of any DAG G 
an be 
on-stru
ted in O(n) time 
omplexity.Proof: Dete
ting the R(G) and L(G) sets implies 
he
king only the in-degreeand out-degree of every node in V . Ea
h node appears at most on
e on ea
h set.Thus, ea
h set has O(n) nodes. When the two sets are known, at most two newnodes are added, and exa
tly one edge per node in ea
h set. 23.1.2 TransitivitiesThe rea
hability relation established by edges in the graph is transitive. Thus,we de�ne the following 
on
epts as in [137℄:De�nition 3.1.19 An edge in a graph e = (v; v0) 2 E is a transitive edge i�there is a non-dire
t path between the nodes pnd(v; v0). 2



3.1. GRAPH PRELIMINARIES 89De�nition 3.1.20 The transitive 
losure of a graph G = (V;E) is another graphG+ = (V;E+) su
h that E+ 
ontains an edge (v; v0) i� exists a path p(v; v0) inG. 2De�nition 3.1.21 The transitive redu
tion of a graph G = (V;E) is a subgraphG� = (V;E�), minimal under in
lusion, whose transitive 
losure 
oin
ides withthat of G. 2De�nition 3.1.22 A topologi
al order of a graph G = (V;E) is any total order�t of V su
h that if (v; v0) 2 E then v �t v0. Ea
h DAG has at least onetopologi
al order. 23.1.3 Topologi
al graph parametersWe de�ne the following basi
 graph topology parameters that we will use to
hara
terize the graphs.De�nition 3.1.23 We de�ne Maximum Degree of Parallelism as the maximumnumber of nodes in a graph that are not dependent on ea
h other:mP (G) = max jL 2 V=���jThis number 
an be approximated by the 
ardinality of the biggest layer (subsetof nodes with the same depth level) in the graph. We 
all it simply Degree ofParallelism: P (G) = maxi jfv : d(v) = igj 2De�nition 3.1.24 The Depth of a graph is the maximum depth level of anynode in it: D(G) = maxv2V d(v) 2De�nition 3.1.25 Syn
hronization Density of a graph G is the amount of edgesrelative to the number of nodes: S(G) = jEj=jV j 2In a graph G, the S parameter (number of edges related to the number of nodes)may provide information not only about dependen
es, but about the overall shapeof the graph. For very high sizes of jEj, the graph will have so many dependen
es



90 CHAPTER 3. THEORETICAL APPROACHthat most nodes will be serialized. For very low number of edges, most nodeswill be dis
onne
ted and the degree of parallelism will be higher. We may de�nea more topology-independent parameter to represent the overall number of edgesin a graph.De�nition 3.1.26 We de�ne Relative Syn
hronization Density as the syn
hro-nization density relative to the number of nodes:Rs(G) = S(G)=jV jOr in other words, the amount of edges relative to the square of the number ofnodes. It represents the amount of edges relative to the maximum number ofpossible edges in a DAG with jV j nodes:Rs(G) = jEj=jV j2 23.1.4 Task graphsIn this thesis we use a
tivity on nodes (AoN) graphs. The nodes represent ana
tivity and the edges a pre
eden
e order for the exe
ution of the a
tivities. Morespe
i�
ally we introdu
e the following de�nitions:De�nition 3.1.27 For a given system, a task is an atomi
 a
tivity whi
h mod-i�es the global state of the system and 
an be exe
uted independently of the lo
alstate of other a
tivities (tasks), provided a 
olle
tion of pre
onditions. After theexe
ution of the a
tivity a task may produ
e a 
olle
tion of post
onditions (de-pending on the system state), in order to allow a
tivation of other tasks. 2De�nition 3.1.28 A task graph T = (V;E) is a DAG in whi
h a node v 2 Vrepresents a task and an edge e = (v; v0) 2 E represents the pre
eden
e relationestablished between two tasks when a post
ondition of v is a pre
ondition of v0.2De�nition 3.1.29 In the 
ontext of task graphs, the rea
hability property is also
alled dependen
e. A node v0 is dependent on another node v i� v �G v0. 2A task graph represents a possible evolution of a system given an initial state.In the 
ase of a parallel program, a task graph represents the dependen
es of thetasks generated by the program when exe
uted with spe
i�
 input data. Thetask graph generated by a parallel program for a given initial state (input data)is unique only if the program has no ra
e 
onditions, and the evolution of thesystem state is independent of the s
heduling of the tasks.



3.1. GRAPH PRELIMINARIES 91A task graph is some times transformed to an STDAG adding a root and aleaf that represent the starting and ending points of the whole system a
tivity.Then, properties of STDAGs 
an be exploited.De�nition 3.1.30 The load of a node is a positive number that represents the
ost or span of exe
uting the task in a given parameter axis. The load distribu-tion of a graph is the fun
tion that maps nodes to their load values:� : v 2 V ! R+ 2A typi
al parameter for whi
h load is de�ned is time, where load representsthe exe
ution time of the a
tivity. The total 
ost of a graph (the summation ofall its node's load) is asso
iated with the 
ost of the 
omputation represented bythe graph. The notions of path 
ost, and 
riti
al path are also de�ned.De�nition 3.1.31 The 
ost or load of a graph G, is the sum of the loads of allits nodes: �(G) = Xvi2V �(vi) 2De�nition 3.1.32 The 
ost or load of a path, is the sum of the loads of all itsnodes: �(p(v; v0)) = Xvi2p(v;v0) �(vi) 2Let us 
onsider some usual 
on
epts in distributed 
omputing. In 
ompleteasyn
hronous 
ommuni
ation models, the 
omplexity of an appli
ation is relatedto the largest 
hain of messages [122℄. Modifying the syn
hronization stru
tures,the 
hains of messages are altered, and probably, also the length of the largest
hain. The 
omputation times should also be in
luded if they are signi�
ant [122℄.Appli
ation and program syn
hronization stru
tures are modeled with taskgraphs. In our 
ase we use AoN graphs, with nodes representing tasks or 
om-muni
ations. Thus, the a

umulated load value of the nodes in a full path rep-resents the estimated performan
e time of exe
uting this 
hain of nodes, withthe pre
eden
e restri
tions expressed by the whole graph. The maximum loadof any full path, or 
riti
al path value (
pv) of the graph, represents the largest
hain of 
ommuni
ations or dependen
es, with 
omputation times 
onsidered.Consequently, the 
pv of a graph may be used as an indi
ator of the modeledappli
ation performan
e.



92 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.33 For a given graph G = (V;E) and a given load distribution,the Criti
al paths of the graph P
(G) are the full paths with maximum load. TheCriti
al path value 
pv(G) is the load of any 
riti
al path.P
(G) = fp 2 Pf (G) : �(p) = max(�(Pf (G))g
pv(G) = �(p) : p 2 P
(G) 23.2 Series-parallel graphs3.2.1 De�nitionsSeries-parallel DAGs, their 
onstru
tion and their relation with general DAGs arethe main fo
us of this 
hapter. We present here formal de�nitions and propertiesof this kind of graphs. The following de�nitions are adapted mainly from [14,184℄.SP-graphs preliminariesThe 
lass of edge series-parallel dire
ted graphs is de�ned re
ursively as follows:De�nition 3.2.1 Edge series-parallel multidigraphs (ESP):1. A DAG with a single edge joining two nodes is ESP.2. If G1 = (V1; E1) and G2 = (V2; E2) are ESP multidigraphs, so are theDAGs 
onstru
ted by ea
h of the following operation:� Two-terminal parallel 
omposition: Identify the root of G1 with theroot of G2, and the leaf of G1 with the leaf of G2.� Two-terminal series 
omposition: Identify the leaf of G1 with the rootof G2. 2De�nition 3.2.2 Series-parallel graphs (SP-graphs):A DAG is SP i� its normalized STDAG is ESP:G 2 SP () G 2 ESP 2De�nition 3.2.3 Non-series-parallel graphs (NSP-graphs):A DAG is NSP i� it is not in the 
lass of SP-graphs. 2



3.2. SERIES-PARALLEL GRAPHS 93The 
lass of SP-graphs 
an be 
hara
terized by not exhibiting a forbiddensubgraph. This subgraph represents the basi
 topologi
al 
hara
teristi
 asso
iatedwith an NSP stru
ture. We use the term homeomorphi
 to refer to graphs withsimilar topologi
al features, or in other words, graphs that 
ontains nodes withthe same partial order relation. We �rst introdu
e a formal de�nition of thehomeomorphi
 term to help us to 
hara
terize the relation of a graph with theforbidden subgraph.De�nition 3.2.4 An indu
ed subgraph G0 = (V 0; E0) of another graph G =(V;E), is a subgraph obtained by eliminating some nodes from V and eliminatingfrom E the edges in
ident to those eliminated nodes:G � G0 () V 0 � V;E0 = f(u; v) 2 E : u; v 2 V 0g 2De�nition 3.2.5 A graph G = (V;E) is homeomorphi
 to another graph G0 i�its transitive 
losure does 
ontain G0 as an indu
ed subgraph:G w G0 () G+ � G0 2Theorem 3.2.6 A DAG is an SP-graph i� it is not homeomorphi
 to the Wgraph of Fig. 3.1; or using an equivalent 
hara
terization, i� its transitive 
losuredoes not 
ontain the W graph of Fig. 3.1 as an indu
ed subgraph. (See proofin [59℄). 2
Figure 3.1: The forbidden subgraph for SP-graphsSP graphs are a sub
lass of planar graphs, and also a sub
lass of k�terminalgraphs (see e.g. [28℄). SP graphs are equivalent to partial 2-trees, a sub
lassof bounded tree-width graphs (see e.g. [21, 28℄). Based in the properties ofthese graph 
lasses, linear time 
omplexity algorithms to re
ognize SP-graphsare possible.



94 CHAPTER 3. THEORETICAL APPROACHProposition 3.2.7 The re
ognition of a series-parallel digraph 
an be done inlinear time. (See proof in [184, 168℄). 2EÆ
ient parallel re
ognition algorithms also exist for SP-graphs and derivated
lasses (see [98, 61, 22, 105, 23℄).An interesting property of SP graphs, that justi�es the tight 
omplexitybounds of many algorithms for these graph 
lass, is the bounded number ofedges:Lemma 3.2.8 Let G=(V,E) be an SP-graph with no multiple edges. The numberof edges is bounded by (see e.g. [168℄):jEj � 2jV j � 3This lemma is easily proven by indu
tion on the SP-graphs de�nition. 2Lemma 3.2.9 Let G=(V,E) be an SP-graph with no multiple edges and no tran-sitive edges (G = G�). The number of edges is bounded byjEj � 2(jV j � 2)A proof may be found in [84℄. 2SP redu
tionTwo operators whi
h redu
e the series or parallel stru
tures in a graph to a singleedge have been proposed [14℄. The result of the use of these operators in simplegraphs is shown in Fig. 3.2.
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Figure 3.2: Redu
tion operatorsDe�nition 3.2.10 The series redu
tion operator or s�, is a mapping,s� : STDAG � V ! STDAG, a

ording to:Gs�v = (V 0; E0);indeg(v) = outdeg(v) = 1;E0 = E n f(s; v); (v; t)g [ (s; t);V 0 = V n v 2



3.2. SERIES-PARALLEL GRAPHS 95De�nition 3.2.11 The parallel redu
tion operator or pÆ, is a mapping,pÆ : STDAG �E ! STDAG, a

ording to:GpÆ(v; v0) = (V 0; E0);jf(v; v0) 2 Egj > 1;E0 = E n f(v; v0) 2 Eg [ (v; v0) 2De�nition 3.2.12 A trivial graph is a graph with only two nodes and one edge:Gt = (V;E); V = fv; v0g; E = f(v; v0)g 2De�nition 3.2.13 The symbol ` denotes a sequen
e of one or more redu
tionoperations in a graph: `� fs�; pÆg+`s�� fs�g+`pÆ� fpÆg+ 2De�nition 3.2.14 A series graph is a graph whi
h 
an be redu
ed to a trivialgraph using only series redu
tion operations:G 2 SG () G `s� G0 � Gt 2De�nition 3.2.15 The minimal SP redu
tion graph of G, is another graph [G℄obtained by using all possible series and parallel redu
tion operations in G:G ` [G℄;�G0; [G℄ ` G0 2Proposition 3.2.16 A graph G is an SP-graph i� its normalized STDAG, 
anbe redu
ed to a trivial graph by series and parallel redu
tion operations.G 2 SP () [G℄ � GtThis result is easily proven by indu
tion on the ESP and redu
tion operationde�nitions. 2
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e from NSP to SP graphsIn this se
tion we present formal methods to de�ne and measure the distan
efrom an NSP to an SP approximation graph. These de�nitions motivate sometransformation te
hniques and a distan
e 
on
ept to be used later to try tomeasure the impa
t of NSP to SP transformations.We 
an measure the distan
e from an NSP to an SP form by the numberof indu
ed forbidden subgraphs it has. This distan
e has shown to be a veryimportant parameter of a graph. Many graph analysis problems that show tobe feasible when the graph is bounded to an SP form, are NP-hard to solvein a generi
 NSP graph. Nevertheless, it is possible to derive algorithms thatare exponential in the distan
e from the graph to an SP form, instead of in thenumber of nodes [14℄.Node redu
tion and 
omplexityThe number of forbidden subgraphs in a graph G 
an be algorithmi
ally mea-sured by redu
tions or path expressions [14, 143℄. The redu
tion system usesseries and parallel redu
tions to eliminate the parts of the graph that are al-ready SP. After that, only nodes and edges asso
iated with forbidden subgraphsremain. To eliminate one node and its asso
iated forbidden subgraph, a newoperator 
alled node redu
tion operator is introdu
ed. It operates on a node thatis 
onne
ting one to many or many to one nodes. In the �rst situation, it substi-tutes a node with only one prede
essor for a 
olle
tion of edges between its onlyone prede
essor and its su

essors. In the se
ond situation it substitutes a nodewith only one su

essor for a 
olle
tion of edges between its prede
essors and itsonly one su

essor. The e�e
t of a node redu
tion in both 
ases (indeg(v) = 1and outdeg(v) = 1), is shown in Fig. 3.3.De�nition 3.2.17 The node redu
tion operator or n?, is a mapping,n? : STDAG � V ! STDAG, a

ording to:Gn?v = (V 0; E0); indeg(v) = 1 _ outdeg(v) = 1;If indeg(v) = 1;E0 = E n f(s; v); (v; ti) : ti 2 Su

(v)g [ f(s; ti) : ti 2 Su

(v)gV 0 = V n fvgIf outdeg(v) = 1;E0 = E n f(v; t); (si; v) : si 2 Pred(v)g [ f(si; t) : si 2 Pred(v)gV 0 = V n fvg 2
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tion operatorAfter all possible series-parallel redu
tions are applied all nodes ex
ept theroot and the leaf are asso
iated with a forbidden subgraph. Any one 
an be
hosen for elimination. At least the 
hildren of the root have indeg(v) = 1,and at least the parents of the leaf have outdeg(v) = 1. Thus, there are alwaysnodes that 
an be node redu
ed. After applying a node redu
tion, new series andparallel redu
tions are usually possible. They should be applied before new noderedu
tions.Dupli
ation of nodesAlthough previous works whi
h present the node redu
tion do not rationale it,this operator is intrinsi
ally related to an NSP to SP transformation based onthe dupli
ation of nodes, also dis
ussed in se
tion 3.3.1. See Fig. 3.4. The noderedu
tion operation intrinsi
ally 
reates multiple instan
es of the node that isbeing redu
ed. A di�erent path from/to the unique parent/
hild is 
onstru
tedthrough any of the multiple 
opies. The dupli
ated nodes are inherently redu
edby serial redu
tion. Thus, the node redu
tion does not add new dependen
es tothe graph, and the non-SP 
on
i
t (the forbidden subgraph) disappears.We may de�ne a distan
e from any graph G to an SP form based on theredu
tion 
omplexity of G:De�nition 3.2.18 The redu
tion 
omplexity of a graph G, denoted by �(G), isthe minimal number of node redu
tions suÆ
ient to redu
e G to a trivial graph.�(G) = min(
); [:::[[[G℄n?v1℄n?v2℄:::n?v
℄ � Gt 2De�nition 3.2.19 The sequen
e of �(G) nodes (v1; v2; :::; v
) that redu
e thegraph G to a trivial graph is 
alled the redu
tion sequen
e. 2As was shown by Bein, Kamburowsky and Stallman in [14℄, it is possibleto 
ompute �(G) and the redu
tion sequen
e in polynomial time 
omplexity.
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Figure 3.4: Intrinsi
 operations in node redu
tionAt the same time the maximum distan
e of a graph to an SP form (redu
tion
omplexity) is limited by the number of nodes:�(G) � n� 33.3 Transformation problem (NSP to SP)In this se
tion we investigate the foundation of full transformation methods toapproximate the stru
tural di�eren
es between NSP and SP graphs. The usualasymptoti
 notation is used for 
omplexity bounds throughout the following se
-tions. We use O, and � notation as de�ned in [13℄.3.3.1 SP-izationWe are interested in methods to approximate NSP graphs to an SP form thatboth: (1) keeps the dependen
es information of the original graph; and (2) min-imizes the potential parallelism loss. Di�erent approa
hes are possible:Dupli
ation of nodes: As shown in se
tion 3.2.2, a method to transform anNSP graph into an SP form by the dupli
ation of nodes is possible. The



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 99main interest of this transformation is that it does not add dependen
esto the task graph, and it produ
es no potential parallelism loss. However,the dupli
ation of tasks in
reases the total 
ost of a 
omputation (it is nota work-preserving transformation). In spe
i�
 
ir
umstan
es it 
an trade
ommuni
ation 
osts for 
omputation and memory 
osts. Dupli
ation oftasks (in other pro
essors) in
rements the total 
omputation and resour
es
ost, but it may lead to a higher lo
ality degree, redu
ing the number of syn-
hronization or 
ommuni
ation operations among pro
essors that exe
utethe dupli
ated tasks. Task dupli
ation is known to have a favorable e�e
ton minimizing the total exe
ution time in distributed systems s
heduling(see e.g. [158℄).The 
ost in
rease is determined by the number of node dupli
ations. Takinginto a

ount that every node redu
tion dupli
ates the node a number oftimes equal to the number of in
ident edges minus one, the number ofnode dupli
ations 
an be O(m)! In 
ases of small degree of parallelism,very low �(G) and spe
i�
 topologies where the nodes to redu
e have avery small indeg ; outdeg , the bene�ts obtained may 
ompensate the global
ost in
rease. Let �(G) be the total 
ost of a 
omputation represented byG. Let G0 be the SP version of G produ
ed by dupli
ating nodes withany redu
tion sequen
e. Then, if maxv2V (indeg(v); outdeg(v)) = k, thefollowing result 
an be derived:�(G0) � k�(G)Also, in the 
ase where all nodes in G have the same load, 8v 2 V; �(v) = 
,we 
an exert the result: �(G0) � 
k�(G) + �(G)Although a linear time algorithm for dete
ting the shorter redu
tion se-quen
e exists [14℄, it does not assure that the nodes with less in
ident edgesare the ones sele
ted. The problem of sele
ting a redu
tion sequen
e whi
hminimizes the edges a�e
ted (node dupli
ations) is, as far as we know, notstudied.Another problem with this approa
h is that we are only 
onsidering theCS problem. However, if the PPM supports mutual ex
lusion me
hanisms,the nodes to dupli
ate may need to 
ontend with others for exe
ution priv-ilege. The dupli
ation of a node involved in a mutual ex
lusive operation
an in
rease the 
riti
al path, as the 
opies of a dupli
ated node 
annot beexe
uted in parallel, leading to more 
ontention and more syn
hronization
osts. Indeed, most of the time, dupli
ation only minimizes exe
ution timeif additional (CPU) resour
es are available. Moreover, a task that uses a



100 CHAPTER 3. THEORETICAL APPROACHpreviously non-shared resour
e 
annot be safely dupli
ated without mod-i�
ation; dupli
ated operations on the resour
e may lead to a 
orre
tnessfault.For general parallel 
omputing, espe
ially in massive parallel 
omputing orappli
ations with many inter-task dependen
es the total 
ost in
rease 
aneasily be una�ordable. The appli
ability s
ope of this te
hnique is narrow.Adding dependen
es: The alternative me
hanism to transform an NSP graphto SP form without dupli
ating nodes and without in
reasing the total
omputation 
ost is adding new dependen
es. These work-preserving te
h-niques are not dire
tly based on redu
tion sequen
es, and the number oftopology modi�
ations may be not related to �(G). Indeed, graphs withhigher �(G) may need less added dependen
es to be transformed to SP.We study in se
tion 3.6.2 an algorithmi
 metri
 of the impa
t, in a givengraph, of a given te
hnique based on adding dependen
es. The main draw-ba
ks of these te
hniques are that: (1) they serialize previous potentiallyparallel tasks, and (2) the sele
tion of dependen
es to add is guided byheuristi
s whi
h should make assumptions about the task workloads, inorder to minimize the potential impa
t of the task serialization.Mixed te
hniques: Mixed te
hniques that mainly add dependen
es but strate-gi
ally sele
t a small subset of nodes to dupli
ate 
ould be interesting.However, no 
onvenient one has yet been proposed. A good starting pointto devise su
h te
hniques will be: (1) the methods based on adding depen-den
es studied in this thesis, and (2) the works about redu
ing expensive
ommuni
ation 
osts by 
omputation redundan
y, or s
heduling with re-dundan
y in UTC (Unit Time Cost) graphs [24, 60, 141℄.In this work we study new methods and heuristi
s to transform NSP to SPgraphs by adding dependen
es, trying to minimize the potential loss of parallelismintrodu
ed by them. We denote su
h transformation methods as SP-izations.De�nition 3.3.1 An SP-ization is a graph transformation te
hnique T whi
htransforms any generi
 STDAG into an SP form, keeping the same nodes anddependen
es as in the original graph, and possibly adding new zero loaded nodes(resyn
hronization points) and edges (dependen
es).T : STDAG �! SP ;T (G) = (V 0; E0);V � V 0; V 0 n V = fw; �(w) = 0g8u; v 2 V; u �G v =) u �G0 v 2



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 1013.3.2 Lo
al resyn
hronizationSeveral SP-ization te
hniques may be proposed. We will fo
us �rst in the ap-proximation of graphs 
ontaining in its transitive 
losure only one basi
 NSPproblem, or in other words, only one instan
e of the forbidden subgraph pre-sented in theorem 3.2.6. Then, more elaborated te
hniques for 
omplex NSPproblems (
ombinations of several instan
es of the forbidden subgraph) will bestudied.In the following examples and �gures we will not present full NSP graphs,but only the indu
ed subgraph whi
h 
ontains nodes related to the NSP problemwe want to illustrate. Thus, every edge in the example graphs may represent afull SP-redu
ible subgraph of the original graph, and the propagated dependen
eis not eliminable by a transitive redu
tion. We name these edges as SP bran
hes.De�nition 3.3.2 The SP bran
hes of a graph G are the subgraphs S � G thatare themselves SP graphs, S 2 SP. 2Consider for example the graphs in Fig. 3.5. The graphs on the right siderepresent the forbidden indu
ed subgraphs found in the transitive 
losure of theleft side graphs. The light-grey edges represent SP bran
hes of the original graph.Thus, the original left-side graphs are homeomorphi
 to the forbidden subgraph,and the transformation solutions presented below 
an be applied to both of them.We present three di�erent methods to resyn
hronize the forbidden subgraph.The �rst two methods 
an be applied in two di�erent forms. The �nal �vetransformations are illustrated in Fig. 3.6. Any of them 
an be used to eliminatean isolated NSP problem. The four nodes related to the forbidden subgraph arenamed s; v; v0; t, a

ordingly to their role to simplify the referen
es in the text.Up syn
hronization: An SP bran
h is resyn
hronized 
hanging the leaf of thebran
h for an an
estor of the original leaf. This transformation 
an beapplied to two di�erent SP bran
hes related to the forbidden subgraph(v; t) or (s; v0).� G0, resyn
hronizing (v; t): New dependen
es are 
reated from thenodes in the SP bran
h represented by (v; t) to v0 and, thus, to nodesin the SP bran
h represented by (v0; t). New dependen
es added arede�ned by: fw : v � w � tg � fw0 : v0 � w0 � tg� G00, resyn
hronizing (s; v0): New dependen
es are 
reated from thenodes in the SP bran
h represented by (s; v0) to v and, thus, to nodes
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G W

Figure 3.5: Example graphs homeomorphi
 to the W forbidden subgraphin the SP bran
hes represented by (v; t) and (v; v0). New dependen
esadded are de�ned by:fw : s � w � v0g � � fw0 : v � w0 � v0gfw0 : v � w0 � tgDown syn
hronization: An SP bran
h is resyn
hronized 
hanging the rootof the bran
h for a des
endant of the original root. This transformation
an be also applied to two di�erent SP bran
hes related to the forbiddensubgraph (v; t) or (s; v0).� G0, resyn
hronizing (s; v0): New dependen
es are 
reated from thenodes in the SP bran
h represented by (s; v) to nodes in the SP bran
hrepresented by (s; v0). New dependen
es added are de�ned by:fw : s � w � vg � fw0 : s � w0 � v0g� G00, resyn
hronizing (v; t): New dependen
es are 
reated from thenodes in the SP bran
hes represented by (s; v0) and (v; v0) to nodes
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Figure 3.6: Methods for resyn
hronization of graphs homeomorphi
 to Win the SP bran
h represented by (v; t). New dependen
es added arede�ned by: fw : s � w � v0gfw : v � w � v0g � � fw0 : v � w0 � tgA
ross syn
hronization: In this third more general transformation, the threeSP bran
hes (s; v0); (v; v0); (v; t) are splited in two parts. The �rst part ofthe three bran
hes is resyn
hronized over a new zero loaded node. Edgesfrom this node to the se
ond parts of the three bran
hes are added to
onne
t the graph. Let S1; S2; S3 be the subgraphs 
orresponding to thethree SP bran
hes:S1 � G : S1 2 SP ;R(S1) = fsg;L(S1) = fv0gS2 � G : S2 2 SP ;R(S2) = fvg;L(S2) = fv0gS3 � G : S3 2 SP ;R(S3) = fvg;L(S3) = ftg



104 CHAPTER 3. THEORETICAL APPROACHLet A1; A2; A3 be the sets of nodes in the �rst part of the three bran
hes,and B1; B2; B3 be the sets of nodes in the se
ond part of the three bran
hes.The �rst part will 
ontain at least the root of the bran
h, and the se
ondpart will 
ontain at least the leaf of the bran
h:Ai; Bi � Si : Ai [Bi = Si;Ai \Bi = ;;8w0 2 Bi; w0 6� w 2 AiThe transformation works adding the node and dependen
es de�ned by:V = V [ f
gw 2 Ai � 
 � w0 2 BiIt is possible to eliminate any NSP problem (or 
ombinations of them) byapplying several up/down syn
hronizations in order to eliminate lo
al problems.With no information about the workload of the impli
ated nodes it is not possibleto de
ide when up or down syn
hronization may in
ur in a higher penalty in the
riti
al path. On general graphs, the up/down syn
hronization may serialize bigsubgraphs with high probabilities of many added dependen
es.The a
ross syn
hronization 
an be applied in only one way in the 
ontext ofthe basi
 NSP problem or forbidden subgraph elimination. However, when theedges represent non-empty SP bran
hes, we must propose a rule or strategy tode
ide whi
h nodes will be in the �rst and se
ond parts of the bran
h. In Fig. 3.7we show an example of two di�erent strategies for 
utting subgraphs duringan a
ross syn
hronization (dotted edges represent original graph edges whi
hdegenerate in transitivities, and 
an be eliminated). The de
ision relies again inthe information we have about the workload of the nodes in these subgraphs. Ifproperly applied, a
ross syn
hronization may derive in lesser amount of addeddependen
es 
ompared with up/down syn
hronization, espe
ially when appliedto 
ombined NSP problems, as the ones presented in next se
tion.3.3.3 Combinations of NSP problemsWhen a graph presents several NSP problems, the indu
ed forbidden subgraphsmay be 
omposed. (In [14℄ three 
omposed forbidden subgraphs are studied tode
ide whi
h nodes must be 
hosen to minimize the redu
tion sequen
e. Someof those graphs are somehow related or inspiration for our resyn
hronizationsolutions).We present here di�erent 
ompositions of the basi
 NSP problem suitableto be resyn
hronized with the three previous methods. Further 
ombinations ofthese 
ompositions may reprodu
e any NSP graph topology.To simplify the mathemati
al notation of pre
eden
es, for the following de-s
riptions we assume there exists a sour
e and a target node s; t 2 V that are
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Figure 3.7: Example of di�erent strategies for a
ross syn
hronization
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tively before and after all nodes related to the NSP problems in the 
om-bination (denoted by W � V ): s � fw : w 2Wgfw : w 2Wg � tSeries NSP 
omposition: There exists two similar problems, 
hara
terized bya series 
omposition of several v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01 � v02; v �Gnfv01g v02Problem2 : W = fv1; v2; v0g; v1 � v2 � v0; v1 �Gnfv2g v0This 
ombination 
an be eliminated by several up/down syn
hronizations.Both problems 
an also be eliminated by a 
ombined a
ross syn
hroniza-tion. See in Fig. 3.8 an example of ea
h type of transformation whereG0 and G00 represent solutions with up/down syn
hronizations respe
tively,and G000 the a
ross syn
hronization solution.
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Figure 3.8: Resyn
hronization of graphs homeomorphi
 to Series-NSP



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 107Parallel NSP 
omposition: There exists two similar problems, 
hara
terizedby a parallel 
omposition of several non-dependent v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01; v � v02; v01���v02Problem2 : W = fv1; v2; v0g; v1 � v0; v2 � v0; v1���v2The 
omposition 
an be eliminated by several up/down syn
hronizations.Both problems 
an also be eliminated by a 
ombined a
ross syn
hroniza-tion. See in Fig. 3.9 an example of ea
h transformation where G0 and G00represent solutions with up/down syn
hronizations respe
tively, and G000the a
ross syn
hronization solution.
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Figure 3.9: Resyn
hronization of graphs homeomorphi
 to Parallel-NSPChain NSP 
omposition: An NSP problem is 
hained with another NSP prob-lem when the v0 node of the �rst of them is inserted between the v and tnodes of the se
ond.W = fv1; v2; v01; v02g; v1 � v01; v2 � v01; v2 � v02; v1���v2; v01���v02Several problems may be 
onse
utively 
hained. Su
h a 
hain of NSP prob-lems 
an be eliminated by a full a
ross syn
hronization. See an example
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hained NSP problems and their resyn
hronization with a
ross syn-
hronization in Fig. 3.10.Up/down syn
hronizations may be also used to eliminate a 
hain of NSPproblems. However, it is a 
ompli
ate operation that must be done in sev-eral phases, ea
h of them with several 
hoi
es for up/down syn
hronization.For example, a 
hain of two NSP problems has three NSP problems. Thetwo original ones and the problem originated by the 
hain 
omposition. Wemust eliminate �rst the lo
al problems (ea
h of them with up or down syn-
hronization), before the problem originated by the 
hain is exposed and
an be eliminated itself (with two up or two down syn
hronization possi-bilities). Apart from the amount of 
hoi
es, other problem asso
iated withthis up/down syn
hronizations is that the 
hained problems, will be 
om-pletely serialized, probably loosing a big amount of the original parallelism.
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v v

s

v’ v’

v

G

t t

G’

Figure 3.10: Resyn
hronization of graphs homeomorphi
 to 2 Chained-NSPCrossed NSP 
omposition: Two NSP problems are 
rossed when both v0nodes are inserted between the v and t nodes of the other problem. Multi-ple NSP problems may be 
rossed with one or several of the others to formmultiple 
rossing NPS 
ompositions.W = fv1; v2; v01; v02g; v1 � v01; v02; v2 � v01; v02; v1���v2; v01���v02A 
olle
tion of 
rossed NSP problems 
an be solve with a
ross syn
hroniza-tion. See an example of this resyn
hronization on a 
rossed 
omposition oftwo NSP problems in Fig. 3.11.As in the 
hain problem, many 
hoi
es for up/down syn
hronizations exist,but �nally they serialize all the v nodes, and all the v0 nodes impli
ated in
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tFigure 3.11: Resyn
hronization of graphs homeomorphi
 to 2 Crossed-NSPthe 
rossing, leading to a high loss of the original parallelism due to addeddependen
es.For simple 
ombinations of NSP problems (series or parallel NSP problems)any te
hnique may be appropriate, and no 
lear 
lues about whi
h one to 
hoose
an be given without workload information or full topology inspe
tion. For 
om-plex 
ombinations (
hain and 
rossed NSP problems) we dete
t that if up/downsyn
hronizations are used, the serialization of nodes in
reases with the numberof lo
al NSP problems impli
ated. For these problems it seems more appropriateto try the a
ross syn
hronization method. However, the 
utting strategy mustbe 
arefully sele
ted, as it 
ould have an important impa
t on the results.3.3.4 Simple SP-ization te
hniquesWe present here two simple graph transformations that 
orrespond to SP-izationte
hniques. They introdu
e the idea of SP-ization and motivate the presentationof our 
omplex algorithms in the following se
tions.Te
hnique 1: SerializationThis �rst te
hnique is a trivial example of what an SP-ization 
an be, but uselessfor pra
ti
al purposes. It 
onsists in a full serialization of the graph nodes,transforming the partial order de�ned by the graph in any total order that honorsthe original partial order. The result is a series graph, that is also SP.De�nition 3.3.3 Let �t be any topologi
al order of G = (V;E). Then, an SP-ization Ts 
an be de�ned by:



110 CHAPTER 3. THEORETICAL APPROACHTs(G) = (V;E0);E0 = f(v; w) : v �t w;�
; v �t 
 �t wg 2An example of the appli
ation of this te
hnique is shown in Fig. 3.12. Withthis transformation most of the information provided by the original dependen
esis lost, and so many new dependen
es are added that all parallelism expressed inthe original graph disappears.
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One topological order: 1, 2, 4, 6, 5, 7, 10, 8, 9, 3, 12, 11, 13, 15, 14, 16, 17, 18
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Figure 3.12: Te
hnique 1 - Serialization based on topologi
al orderTe
hnique 2: WSSyn
h (Simple layering syn
hronization)The se
ond te
hnique 
onsists in a full barrier syn
hronization of node layers.For this te
hnique the information provided by the graph dependen
es is usedonly to determine the layers with a wide or breadth �rst sear
h of the graph.Thus, the name WSSyn
h (Wide �rst Sear
h Syn
hronization). The wide �rstsear
h of a graph visits the nodes in level or depth order. Ea
h layer 
ontainsthe nodes with the same depth.De�nition 3.3.4 Let G = (V;E) be a graph, with a maximum depth level k =D(G). The Wide �rst sear
h layering LWS (G) is a partition of the graph nodesa

ording to:LWS (G) = PG = fl1; l2; :::; lkg; li = fv : d(v) = ig; i = 1:::k 2



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 111Based in the previous layering de�nition, we de�ne the WSSyn
h or layeringtransformation as follows. An example of the appli
ation of this te
hnique isshown in Fig. 3.13.De�nition 3.3.5 Let G = (V;E) be a graph, then an SP-ization Tp 
an bede�ned by: Tp(G) = (V 0; E0);LWS (G) = fl1; l2; :::lkgV 0 = V [ fb1; b2; :::; bk�1gE0 = f(v; bi) : v 2 lig [ f(bi; v0) : v0 2 li+1g 2The te
hnique does not exploit the possible short distan
e of the graph to anSP form. The number of dependen
es added 
an be really high for graphs withlow redu
tion 
omplexity �(G). Spe
i�
ally it destroys the SP subgraphs of Gthat 
ould be preserved.The advantage of this te
hnique is that there exist fast algorithms with lowtime 
omplexity bounds O(max(n;m)) to 
ompute the level of the nodes andthe layering (see e.g. [29℄). Moreover, the result is the only possible SP-izationfor many spe
i�
 regular stru
tures related to 
ommon appli
ations (see 4.2). Infa
t this te
hnique has been previously exploited with modeling te
hniques fors
alability and performan
e analysis of 
ommon parallel stru
tures [130℄. At thesame time it 
an be used to trivially map su
h stru
tures to the BSP model of
omputation.
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Figure 3.13: Te
hnique 2 - Full barrier syn
hronization based on layering
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hniques not based in wide �rst sear
h (or node level) arepossible, and for some graphs the in
rease of the number of dependen
es 
an belesser. However they are spe
i�
 for the graph topology.3.4 Algorithm 1: Lo
al explorationWe present here our �rst full SP-ization algorithm, introdu
ed in [83℄ and fullyexplained in [82℄. It was the result of our introdu
tory exer
ises to the NSPto SP transformations, and it was qui
kly superseded by our se
ond algorithmpresented in se
tion 3.5. Thus, a formal proof of 
orre
tness was never devised.Instead, an implementation was heuristi
ally tested with about twenty thousandrandom graphs with up to hundreds of nodes. Its main interest is the lo
alstrategy used. The algorithm sear
hes for the less 
omplex or more lo
al NSPproblem 
ombinations, to solve them before 
ontinue in an inside-outside style.The te
hnique uses a mixed approa
h of up and a
ross syn
hronizations. The
ore of the algorithm is the sear
h te
hnique that identi�es the nodes related to alo
al NSP problem. Depending on the input order (node labeling) the solutions
an be di�erent. In this se
tion we will present some new notations used in thealgorithm, a formal de�nition of the transformation, and a full explanation ofthe algorithm strategy with an example.3.4.1 NotationsDe�nition 3.4.1 We 
lassify nodes in three broad 
ategories in terms of theirsyn
hronization role in the graph:Fnodes(G) = fv 2 V : jSu

(v)j > 1gJnodes(G) = fv 2 V : jPred (v)j > 1gJFnodes(G) = Fnodes \ Jnodes 2The algorithm gathers information of NSP problems and their 
ompositionfrom a minimal SP redu
tion ([G℄) of the original graph. During the 
omputa-tion of [G℄, several series or parallel redu
tion operations are applied to redu
eSP bran
hes to a single edge (see se
tion 3.2.1). We use an annotation sys-tem to keep tra
k of the ending edges of an SP bran
h, to modify them in theresyn
hronization phase.De�nition 3.4.2 We asso
iate a Set of edges Z to any edge in the graph:Z : E 7! 2E



3.4. ALGORITHM 1: LOCAL EXPLORATION 113After a series redu
tion operation, let e be the new edge introdu
ed by Gs�v, and(s; v); (v; t) the edges that disappear, thenZ(e) = Z(e0); e0 = (v; t)After a parallel redu
tion operation, let e be the new edge introdu
ed by GpÆ(v; v0)then Z(e) = [fZ(e0) : e0 = (v; v0)g 23.4.2 SP-ization te
hniqueHere, we de�ne formally the transformation applied by the algorithm. It is basedon the appli
ation of a resyn
hronization operation on a 
olle
tion of nodes re-lated to a 
ombination of NSP problems. The strategy we propose now worksproperly when the input is the transitive redu
tion G� of the graph to be trans-formed. Edges whi
h represent transitive dependen
es 
onfuses the algorithmand makes it serialize unne
essary nodes. Thus, a previous phase must 
omputethe transitive redu
tion of G.We de�ne the handles (F; J) of an NSP problem, as a pair of node sets withthe properties to be de�ned below. The F and J sets will 
ontain the v andv0 nodes related to an NSP problem 
ombination, whi
h is suitable to be solveby one a
ross syn
hronization. We present �rst the properties of these sets, andthen the sear
h strategy to �nd them.De�nition 3.4.3 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redu
tion. (F; J) is a pair of node sets (F � VR; J � VR), 
alled handleswith the properties: (a) All nodes in F are 
onne
ted with at least one node inJ , and all nodes in J are 
onne
ted with at least one node in F ; (b) all nodes inF have all their su

essors in J , ex
ept su

essors that are des
endents of othernodes in J , and su

essors that are also in F ; (
) all nodes in J have all theirprede
essors in F , ex
ept prede
essors with an an
estor in J .Let us denote the nodes in (F; J) sets with f 2 F ; j; j0 2 J . Then,J � Jnodes([G℄); F � Fnodes([G℄);8f;9j : (f; j) 2 ER;8j;9f : (f; j) 2 ER;8f;8t 2 Su

(f); t 2 J _ 9j0; j0 � t8j;8s 2 Pred(j); s 2 F _ 9j0; j0 � s 2



114 CHAPTER 3. THEORETICAL APPROACHThe sear
h strategy to �nd a pair of (F; J) sets 
an be des
ribe as follows (allthe graph operations are related to the minimal redu
tion graph [G℄):1. Sele
t an initial F node related to an NSP problem. The only 
ondition isthat it must have a su

essor that is a J node.f0 2 Fnodes([G℄) : 9j 2 Su

(f); j 2 Jnodes([G℄)2. Create empty set pairs. One for exploration (F 0; J 0) and one for �nal nodes(F; J). Put f0 in the initial F 0 set:F 0 = ff0g; J 0 = fg; F = fg; J = fg3. DO UNTIL F 0 = fg(a) Lo
ate su

essors of F 0 nodes. The new J 0 set has those su

essorswhi
h are not in J , and are not dependent on other J nodes:J 0 = fj0 2 Su

(f 0 2 F 0) :6 9j 2 J; j � j0g(b) Eliminate J and J 0 nodes dependent on other new J 0 nodes:J = J n fj : 9j0 2 J 0; j0 � jgJ 0 = J 0 n fj0 : 9j00 2 J 0; j00 � j0g(
) Move explored F 0 nodes to F :F = F [ F 0(d) Eliminate F nodes whi
h has no more su

essors in J and J 0 due toelimination: F = F n ff : (J [ J 0) \ Su

(f) = ;g(e) Lo
ate prede
essors of J 0 nodes. The new F 0 set has those prede
essorsthat are not in F and are not dependent on any J node:F 0 = ff 0 2 Pred(j0 2 J 0) : f 0 62 F ; 6 9j 2 J; j � f 0g(f) Move explored J 0 nodes to J :J = J [ J 0



3.4. ALGORITHM 1: LOCAL EXPLORATION 115At the end of this pro
edure, the (F; J) sets have the properties de�ned previ-ously. We de�ne now a resyn
hronization operator that modi�es G su
h thatthe 
olle
tion of [G℄ edges with its sour
e node in F and its target node in J aresubstituted for: (1) a new syn
hronization node, and (2) a 
olle
tion of edgesfrom the nodes in F to the new node, and from the new node to the nodes in J .De�nition 3.4.4 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redu
tion. For a given pair of node sets (F; J), let A = f(f; j) 2 ER :f 2 F; j 2 Jg be the set of edges with the sour
e in F and the target in J . Wede�ne the resyn
hronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [ frgE0 = E n fZ(e) : e 2 Ag[f(s; r) : (s; t) 2 Z(e); e 2 Ag[f(r; t) : t 2 Jg 2To improve the SP 
ompositional looking of the result, we may syn
hronizethe bran
hes of any node in the F set with its own dummy syn
hronization point,and then, syn
hronize all dummy nodes over the general resyn
hronization point.This similar, although more 
omplex, resyn
hronization operator may be de�nedas follows.De�nition 3.4.5 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its min-imal SP redu
tion. For a given pair of node sets (F = ff1; f2; :::; fng; J), letA = f(f; j) 2 ER : f 2 F; j 2 Jg be the set of edges with the sour
e in F and thetarget in J . We de�ne the resyn
hronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [ fri : i = 0; :::; ngE0 = E n fZ(e) : e 2 Ag[f(ri; r0) : i = 1; 2; :::; ng[f(s; ri) : (s; t) 2 Z((fi; j) 2 A)g[f(r0; j) : j 2 Jg 2



116 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.4.6 Let G = (V;E) be a graph, then an SP-ization TAlg1 
an bede�ned by the re
ursive appli
ation of a resyn
hronization operator . for any(F; J) sets until the result is an SP graph:TAlg1 (G) = ( (((G . (F; J)) . (F 0; J 0)) ::: . (F n; Jn) ) 2 SP 2This strategy leads to some troubles in spe
ial situations that must be 
onsidered.They are dis
ussed in the following se
tions.3.4.3 JF 
ombinationsA JF 
ombination is a topologi
al feature of a graph 
hara
terized for dependen
erelations des
ribed as follows (See an example in Fig. 3.14):JF
ombination = (f; j); f 2 Fnodes(G); j 2 Jnodes(G) :9f 0; j0; f 0 2 Fnodes(G); j0 2 Jnodes(G);f 0 � j � f � j0
j

f

j’

f’

f/j

j’

f’

Figure 3.14: Example of JF 
ombinationsIn a JF 
ombination, the relation j � f implies that all j0 nodes su
h thatf � j0, will be erased from J set be
ause of transitive relation with other nodesin the J set (j � f � j0). Consequently, f will have no su

essors in the J setand it will be also erased from the F set. The only nodes in handles sets will be�nally f 0 and j0.However, dete
ting a JF 
ombination as soon as possible 
ould avoid some for j re
ursive exploration from nodes that we know they are going to disappearfrom the set. Or even we 
an mix two di�erent NSP problems as we explain inthe following se
tion.



3.4. ALGORITHM 1: LOCAL EXPLORATION 1173.4.4 Mixing problems through JF 
ombinationsSometimes, the topology of the graph presents a JF 
ombination in whi
h thef node has two j nodes asso
iated to di�erent NSP problems. See Fig. 3.15.Depending on the order in whi
h the nodes are explored and introdu
ed in the
f

Problem B

a

b

c d

e

Problem A

f’

j

1j’ j’2Figure 3.15: Example of mixed problems through a JF 
ombinationsets, we 
an add J nodes and F nodes from the di�erent problems in the exploringsets, before dete
ting and eliminating the JF 
ombination. In the Fig. 3.15example, if node f is added to F set and is explored, j01; j02 are added to J set.In the next phase, new nodes in J set are explored to �nd their F handles. Theexploration of j01 will add nodes 
; d to F , and j02 exploration will add f 0 to Fset. In next phase the transitivity relation from f 0 to j; f; j0 will be dis
overedand f; j will be eliminated from their sets. But at this point, we have in Fset the non-dependent nodes 
; d; f 0, that are related to two di�erent lo
al NSPproblem 
ombinations named problem A, and problem B in the �gure. If theexploration begins with f 0 or 
; d instead of f , this situation does not happen. Inthis 
ase, the way the resyn
hronization is done is not in
orre
t but non-optimal.In Fig. 3.16(a) is shown what is the result after resyn
hronizing problem A �rst,and then problem B in a natural way. Fig. 3.16(b) shows how the algorithmresyn
hronizes the bran
hes when it mixes the problems.Dete
ting and eliminating JF 
ombinations as soon as possible minimizes theprobability of mixing the problems. Ea
h time we add a new f or j node to thesets, we 
an 
he
k for the transitivity relation from j nodes to f nodes. Thus,the JF 
ombinations are dete
ted and the wrong f node eliminated. Althoughthis te
hnique minimizes the probabilities of mixing the problems it may stillhappen. The lo
al sear
h for J,F nodes, in whi
h the algorithm is based, 
an notavoid this problem.
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Figure 3.16: Solutions of a mixed problem through a JF 
ombination3.4.5 ExampleWe demonstrate the way our algorithm works with an example graph shown inFig. 3.17(a). Its minimal SP redu
tion graph, shown in Fig. 3.17(b), has theedge annotations presented in Table 3.1.
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(a) (b)Figure 3.17: Example NSP graph and its minimal SP redu
tionThe evolution of the J and F sets during the problem handle dete
tion phase
an be seen in Table 3.2. The �rst 
olumn of this table (
he
kpoint number N)des
ribes the event sequen
e. The algorithm would then pro
eed as follows:We 
an 
hoose as initial F node either nodes 3, 4, 5 or 7. All of them have



3.4. ALGORITHM 1: LOCAL EXPLORATION 119e Z(e)(4,9) (6,9)(5,9) (8,9)(7,18) (10,18)(3,17) (12,17) (16,17)Table 3.1: Edge annotations in the minimal SP redu
tion graphSP bran
hes to at least one J node. If we suppose that node 7 is the initialNSP problem, we would add it to the F set and explore it to lo
ate its related Jnodes 9 and 18, whi
h should be in
luded in the J set (
he
kpoints 1 ! 2). In
he
kpoint 3, we explore the J nodes just added in the previous step and theirrelated F nodes 4, 5 and 17 |whi
h is taken as an F handle be
ause it is also theorigin of an SP bran
h. In 
he
kpoint 4, we explore the next unexplored nodein the F set, e.g. 4, and a new J node is obtained for the J set, namely node 7.In 
he
kpoint 5, we test transitivities in J set, whi
h implies the elimination ofnodes 9 and 18, sin
e node 7 represents their transitive 
losure and is the onlyone kept in the J set. In 
he
kpoint 6, we dete
t how node 7 is also present inthe F set, whi
h represents a J{F 
ombination to be ruled out from the F set.In 
he
kpoint 7, the F handle 17 is taken out from the F set be
ause there is noJ node related to it in the J set. In 
he
kpoint 8, we explore the next F node(5) and introdu
e a new J node in the J set (11). As a 
onsequen
e, a new Fnode has to be added to the F set (3) after the exploration of this last J node;when this new F node (3) is explored, a new J node is added to the J set (17)whi
h is then ruled out be
ause of the transitivity relation with node 11. Whenwe rea
h this point, we are at 
he
kpoint 11 and there are no more J or F nodesunexplored, whi
h 
on
ludes the sear
h of the handles.N F set J set1 7 -2 7 9,183 7,4,5,17 9,184 7,4,5,17 9,18,75 7,4,5,17 76 4,5,17 77 4,5 78 4,5 7,119 4,5,3 7,1110 4,5,3 7,11,1711 4,5,3 7,11Table 3.2: Dete
ting the problem handles



120 CHAPTER 3. THEORETICAL APPROACHAfter the resyn
hronization phase, both graphs, original and the minimalSP redu
tion with the same transformation, looks like Fig. 3.18(a) and (b) re-spe
tively. Computing the new minimal SP redu
tion graph, we obtain a trivialgraph, be
ause it is already SP. No more algorithm iterations are needed.
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Figure 3.18: Solving the NSP problem in the original and SP redu
ed graph3.4.6 ComplexitySpa
e 
omplexityWe use no more than two graphs at the same time; the original one and itsminimal SP redu
tion. Any graph needs spa
e for the nodes and for the edges.The nodes spa
e is O(n) and the edges O(m). During the algorithm work weadd a �xed amount of extra information in the nodes O(n), and we also addannotations in the edges whi
h represent SP bran
hes. Annotations are non-overlapping subsets of the edges from the original graph. Thus, the whole amountof edges information is bounded by O(m).On the syn
hronizations we are adding more nodes. For ea
h F node that issyn
hronized we add a new node. And one more node for ea
h resyn
hroniza-tion. The number of F nodes 
an be (n � 1). (All the nodes ex
ept the leaf).The number of resyn
hronizations depend on the number of independent NSP



3.4. ALGORITHM 1: LOCAL EXPLORATION 121problems, bounded by the number of F nodes, at most (n � 1). So the numberof solves we need is in the worst 
ase (n� 1). (All the nodes ex
ept the leaf).The number of �nal nodes on the SP graph is at most n + 2(n � 1) that isO(n). The �nal graph is SP, and it does not 
ontain redundant edges and/ortransitivities. Thus, the number of �nal edges is also O(n) (see lemma 3.2.9).The �nal spa
e 
omplexity bound is:O(n+m)Time 
omplexityThe 
omplexity of the di�erent operations that the algorithm does are:� Computing the transitive redu
tion of the graph: Transitive edgesmislead the algorithm to resyn
hronize non ne
essary parts of the graph.To improve solutions, transitive edges should be eliminated.Transitive 
losure and redu
tion is a well studied problem. The typi
alalgorithm to 
ompute transitive 
losure/redu
tion is Warshall's algorithm,based on Floyd's, with time 
omplexity O(n3). However, faster algorithms,based on Strassen's matrix multipli
ation algorithm have been devised toobtain 
omplexity O(n2:81). See for example [29℄.� Compute the minimal SP redu
tion graph: A node is series-redu
edonly on
e, eliminating two graph edges and introdu
ing another (redu
tionsfor the whole graph are done in O(n)). When a node is series-redu
ed, itis possible to 
he
k if the edge already exists in the graph, avoiding in-
luding redundant edges and also parallel redu
tion operations. When aseries redu
tion is performed, the sour
e and target nodes 
an be 
he
kedto dete
t if the new 
hange makes them available for series redu
tion re
ur-sively. Considering this strategy the total number of 
he
ks and redu
tionoperations is done in O(n), but the annotations update may need O(m)time 
omplexity.� Choose an NSP Problem: Any F node 
an be 
he
ked. For any 
he
kednode we must traverse through any leaving edge looking for su

essors. Inthe worst 
ase, all edges of the graph are evaluated to dete
t an F nodewith only J nodes as su

essors. Thus, the operation 
an be done in O(m).� Identify problem handles: This pro
ess is repeated until the problemis fully dete
ted. We do not know how many nodes are related to theproblem as F nodes or as J nodes, and some nodes 
an be explored in thetwo ways before the J/F problem is dete
ted.To 
ompute the upper bound we 
onsider that any node 
ould arrive atthe F or J set, or both. Ea
h time a node arrive at a J set we must 
he
k



122 CHAPTER 3. THEORETICAL APPROACHdependen
es in both dire
tions. Dependen
ies for all the graph 
an bepreviously pre-
omputed, during the transitive redu
tion phase. Thus, thisphase 
an be done in O(n).The 
he
k for old F nodes implies looking forward the su

essors of all Fnodes in the set. As we 
onsider that any number of nodes 
ould be in theset, in the worst 
ase we must traverse all the edges in the graph. Whenwe look for prede
essors of new J nodes, and su

essors of new F nodes weuse the same 
onsiderations, so �nally we 
an explore all the edges in thegraph in both dire
tions (O(m)).Identify problem handles 
an be done in O(n+m).� Solve problem: The resyn
hronization moves the SP bran
hes involveddeleting their �nal edges (original edges from the graph) and adding onenew edge to the syn
hronization point for every SP bran
h. In the worst
ase all the nodes minus one are in the F set, and all the leaving edges areSP bran
hes, so all the edges in the graph are reallo
ated in O(m).Then, the algorithm adds one edge from the syn
hronization point to any Jnode in the set. As no more than n�1 nodes 
an be J nodes, the operation
an be done in O(n).All the operations des
ribed above are done on
e for any NSP problem. Thealgorithm does several operations with a maximum order O(n + m). We donot know how many non-related NSP problems may be in a graph. We mayassume a bad upper bound in whi
h any F node is asso
iated to a di�erent NSPproblem. The �nal number of dete
tion and resyn
hronization iterations wouldbe n � 1. In ea
h resyn
hronization we add one dummy node, so the numberof nodes is growing in ea
h iteration from n to 2n � 1. The number of nodesis always O(n). The number of resyn
hronizations is O(n). The number ofoperations for ea
h resyn
hronization is O(n +m). The time 
omplexity of allproblems resyn
hronization operations is: O(n2 + n�m). In a 
onne
ted DAG,O(m) � O(n). Hen
e, the time 
omplexity is bounded by: (1) the transitiveredu
tion 
omputation (optional but strongly re
ommended), and (2) the graphresyn
hronizations O(n�m). Algorithm time 
omplexity is:O(n2:81 + n�m)Considering that transitive redu
tion is more ne
essary as the number ofedges grows, and that O(m) � O(n2), when the produ
t n �m is in O(n3) theproblem solving dominates the transitive redu
tion. On the other hand, whenn �m is in O(n2:81), the transitive redu
tion 
ould be skipped with minimumpenalty for the algorithm solution. Thus, we 
on
lude that the algorithm time
omplexity is dominated by: O(n�m)



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1233.5 Algorithm 2: Lo
al layering te
hniqueIn this se
tion we introdu
e a new SP-ization algorithm with the following inter-esting features [85℄:� A redu
ed time 
omplexity: O(m+ n logn).� Lo
al resyn
hronization of minimum number of nodes, guided by globaltopology information.� It does not in
rease the 
riti
al path for UTC (Unit Time Cost) graphs,keeping the nodes layering stru
ture of the original graph.� The solution of the algorithm is the same for a given topology independentlyof the input order (node labeling).The algorithm is based on a depth level sear
h, solving lo
al NSP problemswhile it traverses the graph. At any time, the already pro
essed subgraph is SP.A tree representing the minimal series-parallel redu
tion graph of the pro
essedsubgraph is used to help in the sear
h for handles, transitivity 
he
ks and op-erations that have lesser 
omplexity bounds in a tree than in a generi
 DAG.Evaluation of edges that express dependen
es a
ross several layers is delayeduntil the targeting layer is pro
essed. A full implementation in JAVA language
ould be provided by the author upon request.3.5.1 NotationsLet G = (VG; EG) be the input graph:De�nition 3.5.1 We de�ne d-edges as the subset of edges whi
h sour
e andtarget have non-
onse
utive depth levels:(u; v) 2 EG : d(v) � d(u) > 1 2De�nition 3.5.2 A Layer is the subset of graph nodes with the same depth level:Li � VG;Li = fv 2 VG : d(v) = ig 2



124 CHAPTER 3. THEORETICAL APPROACH3.5.2 Algorithm des
riptionInitialization phase:i. Transform the input DAG into an STDAG using the method presented inde�nition 3.1.17.ii. Layering of the graph. Compute a partition of VG, grouping nodes with thesame depth level.iii. Initialize an an
illary tree T = (VT ; ET ) to L0. This tree will represent theminimal series-parallel redu
tion of the step by step pro
essed subgraphs.Graph transformation:For all layers (sorted) i from 0 to D(G)� 1:a. Split layer in 
lasses of relatives: Let us 
onsider the subgraph S � Gformed by Li [ Li+1 and all edges from G in
ident to two nodes in thissubset. We 
onstru
t the partition of this nodes into 
onne
ted subgraphs.We de�ne relatives 
lasses as the subsets of nodes that belong to the same
onne
ted 
omponent of S and the same layer, as in Fig. 3.19.
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U U

i

i+1

2 3

31

1

D D

U

D 2Figure 3.19: Example of relatives 
lasses indu
ed between two layersPU = fU1; U2; :::; Ung will be the up 
lasses (of nodes in Li) and PD =fD1;D2; :::;Dng will be the down 
lasses (of nodes in Li+1). Ea
h 
lassU 2 PU indu
es a 
lass D 2 PD that belongs to the same 
onne
ted
omponent (U ! D).b. Tree exploration to dete
t handles for 
lasses of relatives: We look inthe tree for handles. For ea
h U 
lass, the U-handle (h0(U)) is the nearest
ommon an
estor of all nodes in U :H 0(U) = fv 2 VT : 8w 2 U; v �T wgh0(U) = h 2 H 0(U) : 8h0 2 H 0(U) : d(h) � d(h0)



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 125We de�ne KT (U) as the set of sour
e nodes to the indu
ed 
lass D (itin
ludes U and sour
e nodes of d-edges targeting D): Sour
es of edgesshowing transitive dependen
e to D through the U-handle are to be dis-
arded from KT (U):KT (U) = fv 2 VT : (v; w) 2 EG; w 2 D; v 6�T h0(U)g [ fh0(U)gThe handle node of 
lass U , h(U) is de�ned as:H(U) = fv 2 VT : 8w 2 KT (D); v �T wgh(U) = h 2 H(U) : 8h0 2 H(U) : d(h) � d(h0)We also de�ne the forest of a 
lass, as the set of 
omplete sub-trees belowh(U) that in
lude nodes in KT (U):SubF (U) = fu 2 VT : v �T u; (h(U); v) 2 ET ; v �T w : w 2 KT (U)gIn Fig. 3.20 we show a diagram of all 
on
epts de�ned in this se
tion.
Nodes in K T

d-edges (Not in T)

Normal edges or dependencies

Normal nodes

h(U)

Other branches of h(U)

h’(U)

U

SubF(U)

D

T

Nodes transitive through h’(U)

Figure 3.20: Example of handles and forest for an U 
lass
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. Merge 
lasses with overlapping forests: Classes with overlapping forestsare merged in an unique U and D 
lass. They will be syn
hronized withthe same barrier.8U;U 0 2 PU : SubF (U 0) \ SubF (U) 6= ;U = U [ U 0;PU = PU n U 0U ! D;U 0 ! D0;D = D [D0;PD = PD nD0d. Capture orphan nodes: We de�ne orphan nodes as the leaves of the treeT that are not in any U 
lass (they are nodes in layers previous to i withonly d-edges to layers further than i+ 1). These nodes are in
luded in theU 
lass of the forest they belong to.8v 2 SubF (U); v 2 L(T ); v 62 U ;U = U [ fvge. Class barrier syn
hronization: For ea
h �nal U ! D 
lasses:� Create a new syn
hronization node bU in the graph and the tree.VG = VG [ fbUgVT = VT [ fbUg� In G, eliminate all edges targeting a node in D. Add edges from everynode in U to bU and from bU to every node in D (barrier syn
hroniza-tion). EG = EG n f(v; w) : w 2 DgEG = EG [ f(v; bU ) : v 2 UgEG = EG [ f(bU ; w) : w 2 Dg� Substitute every d-edge (v; w) with sour
e v 2 SubF (U) and targetinga node w 2 Lk : k > i + 1 (a further layer) for an edge (bU ; w). Thisoperation eliminate d-edges from the new syn
hronized SP subgraph,but avoiding the loss of dependen
es in the original graph.dE(U) = f(v; w) 2 G : v 2 SubF (U); w 2 Lk; k > i+ 1gEG = EG [ f(bU ; w) : (v; w) 2 dE(U)gEG = EG n dE(U)� Substitute the forest SubF (U) in T for an edge (h(U); bU ) represent-ing the minimal series-parallel redu
tion of the new syn
hronized SPsubgraph. T = T n SubF (U)ET = ET [ f(h(U); bU )g



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1273.5.3 ExampleAn example of the algorithm applied to a given graph is shown, step by step,in Fig. 3.21,3.22,3.23. For ea
h step, the �rst and se
ond 
olumns present thegraph and tree respe
tively, as a result of the previous step. For step 1 we presentthe original graph with a layering diagram and the root initialized tree. The third
olumn is a diagram of the exploration phase on the tree. U and D node 
lassesare shown with di�erent grey shades, showing the graph related edges (not inthe tree) by dashed lines.We also mark with names the orphan nodes, d-edges to further layers and thetransitive/non-transitive property over the U-handle, of the d-edges arriving at D
lasses. U-handles are marked with h0(U) and �nal handles with h(U). Forestsunder ea
h handle are surrounded by trapezoids. New added syn
hronizationnodes are represented with smaller 
ir
les.We 
omment now the remarkable algorithm features in the example. Step1 presents a 
ase with only one U 
lass with one node in the U 
lass (handle)and two nodes in the indu
ed D 
lass. A new node 19 is added to the graph tosyn
hronize over the nodes in the D 
lass. In step 2, there are two U 
lass tosyn
hronize, being the handles the nodes in U 
lasses. A d-edge appears from anode in the se
ond 
lass, and it sour
e node 3 is 
hanged in the original graph tothe new syn
hronization node 21. Exploring phase in step 3, dete
ts node 20 asthe U-handle of the �rst U 
lass as the nearest 
ommon an
estor of all nodes inU 
lass (4,5). However, a d-edge to a node in the indu
ed D 
lass (21,11), whi
hsour
e node 21 is not transitive through the U-handle node 20, for
es to explorefurther. The handle for 
lass 1 is not equal to the U-handle, but the nearest
ommon an
estor of nodes 20 and 21, namely node 19. Moreover, forests underthe handles of 
lasses 1 and 2 overlaps in node 13, and they are merged andsyn
hronized together. Noti
e how the orphan node 12 is in
luded in the mergedU 
lass and syn
hronized over the new node 22. Step 4 presents a situationwhere two U 
lasses have the same handle node 22, but non-overlapping forests.Thus, they are not merged, but syn
hronized with di�erent nodes 23 and 24. Instep 5 there is only one U 
lass, be
ause nodes 9 and 10 have only d-edges tofurther layers. The U-handle is the same node 16 in U 
lass. Nevertheless, thereare d-edges from previous layers. Edge (22,17) is dis
arded due to its transitiveproperty through the U-handle 16. However, edge (23,17) is not transitive. Thus,the handle node is the nearest 
ommon an
estor of nodes 16 and 23, namely node22. The forest in
lude now orphan nodes 9 and 10. In last step 6, there is onlyone U 
lass and two dis
arded transitive edges. The resulting graph is showntogether with the �nal tree, that is always a series graph in whi
h ea
h edgerepresents the minimal series-parallel redu
tion of a full SP subgraph.
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3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1313.5.4 Corre
tnessSin
e any tree 
an be easily transformed to a trivial SP STDAG, any graphwhi
h minimal series-parallel redu
tion is a tree, will be SP. As 
an be easilyshown by indu
tion on the depth of the STDAG, the minimal series-parallelredu
tion graph at ea
h step is always a tree and, thus, has the SP property.We de�ne TDAG as the subset of DAGs that are one-rooted 
onne
ted trees.Proposition 3.5.3 A tree is SP:T 2 TDAG) T 2 SPProof: The STDAG of T (
alled 
losure of T ) is the original T with an addedleaf bU 
onne
ted to all the leaves L(T ). Applying series redu
tion to all originallyleaves of T and parallel redu
tions where there were several leaves with the sameparent, the result is equal to the 
losure STDAG of T 0, being T 0 the tree obtainedeliminating L(T ) from T . Pro
eed re
ursively until only the root of T and thenew leaf bU remain and the redu
tion is the trivial graph. 2Proposition 3.5.4 A graph G whi
h series-parallel redu
tion is a tree is SP.Proof: Compute the series-parallel redu
tion of G until it is a tree. As provedpreviously the series-parallel redu
tion of the 
losure of a tree is the trivial graph.Thus, the STDAG of the original graph 
an be series-parallel redu
ed to the trivialgraph and is also SP. 2Corre
tness proof:1. The result does not loose dependen
es: No node is eliminated from thegraph. During syn
hronization, all times an edge (v; w) is eliminated it issubstituted by two edges (v; bU ) and bU ; w). Thus, the original depen-den
e is transitively keep through bU . All times a d-edge (v; w) : v 2SubF (U); v 2 Lj; j � i ^ w 2 Lk; k > i + 1 is moved down to the syn-
hronization node, the original edge disappears and another edge (bU ; w)is added. After adding edges from U to bU , 8u 2 SubF (U); u � bU andv � bU � w.Thus, during the syn
hronization phase neither, the substitution of edgesor moving down d-edges eliminate original dependen
es in G. No otheredge alteration is done in G.2. The result is SP: We 
all Si the subgraph of G that in
ludes all nodes inlayers L0; L1; :::; Li and all G edges in
ident to both nodes in Si.



132 CHAPTER 3. THEORETICAL APPROACHWhen the algorithm begins (for i = 0) T is initialized with the root of G.S0 is a one node tree. For i = 1 the 
losure of T and S0 is 
omputed andnodes in L1 are hanged from the new syn
hronization node. T and S1 aretrees and, thus, they are SP.In ea
h subsequent iteration (for i = i+ 1), we 
ompute PU , PD and theirhandles. Then we merge 
lasses with overlapping forests. Ea
h forest is
omposed by trees that represent the series-parallel redu
tion of a subgraphof Si. Eliminating in G edges from U to D and d-edges from SubF (U) forall 
lasses, Si gets dis
onne
ted from the rest of the graph, being a tree (ora graph that is a tree after series-parallel redu
tions). New syn
hronizationnodes and edges are added to 
losure every tree in T and G in
luded in aforest of an U 
lass. Thus, after syn
hronization, Si+1 is a tree or a graphthat is a tree after series-parallel redu
tions. Si+1 is SP. T represents theseries-parallel redu
tion of Si+1.Pro
eed by indu
tion until the last iteration. In last iteration (for i =D(G) � 1), Li+1 is formed by the only one leaf of G. There is only one U
lass and one D 
lass. All resting sub-trees in T (and G) are 
losed togetherwith only one syn
hronization node and only one node (the leaf of G) isadded hanging from that new node. T , that represents the series-parallelredu
tion of G is a series of nodes, its series redu
tion is the trivial graph.Thus, G is SP.3.5.5 Criti
al path property for UTC graphsAn interesting feature of the algorithm is that it does not in
rease the 
riti
alpath value if the original graph has unit time 
ost per node. Transforming a graphto SP form, this property minimizes the possibilities for 
riti
al path in
rementwhen no knowledge of the task load distribution is available.Proposition 3.5.5 For an UTC (Unit Time Cost) input graph G, the result G0is not UTC (nodes added by the algorithm 
arry no load), but despite the addeddependen
es, the 
riti
al path is not in
reased.Proof: For UTC graphs, the 
riti
al path value of G is equal to the maximumnumber of nodes that 
an be traversed from a root to a leaf (
pv(G) = 1+D(G)).The algorithm adds zero loaded syn
hronization nodes between layers. Theonly way of in
reasing the 
riti
al path is due to added dependen
es that make anode from a layer i dependent on a node from layer j, being j > i. However, thealgorithm keeps the layers stru
ture.Moving d-edges sour
es to a node in a layer previous to the target node layer,does not 
hange the depth level of any node. Substituting edges from nodes in U
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lasses to nodes in D 
lasses to in
lude bU nodes keeps the depth level of U nodesand adds one to the depth level of every node in D 
lasses.In the resulting graph, all even layers are populated by zero loaded nodes andodd layers by nodes in the original layers. The longest path from the root to theleaf alternatively 
rosses nodes with unit and zero time 
ost. The number of unittime 
ost nodes in the longest path is at most 1 +D(G), and, thus, the 
riti
alpath value in G0 is the same as in G. 23.5.6 ComplexitySpa
e 
omplexityLet n be the number of nodes and m the number of edges in the original graph.The number of nodes in the graph in
reases with one more node for ea
h U 
lass.Every node appears just on
e in an U 
lass over the full algorithm run. Thus, thetotal number of nodes is upper bounded by 2n. The number of edges is upperbounded be
ause the pro
essed subgraph (after ea
h iteration) is SP, and thenumber of edges in an SP graph is bounded by m � 2(n� 2) (see lemma 3.2.9).Other an
illary stru
tures (as the tree) store graph nodes and/or edges. Thus,spa
e 
omplexity is: O(m+ n)Time 
omplexitySTDAG 
onstru
tion 
an be done in O(n) and getting layers information in O(m)with a simple graph sear
h.Classes of relatives for two 
onse
utive layers 
an be 
omputed testing a
onstant number of times ea
h edge. Thus, all the 
lasses along the algorithmrun are 
omputed in O(m).Exploration of the tree for handles 
an be self-destru
tive: Nodes are elimi-nated during the sear
h. While sear
hing for the handle of a 
lass, all the forest
an be eliminated and orphan nodes and other 
lasses to be merged dete
ted (seese
tion 3.5.7 for a des
ription of su
h an implementation).Che
k and eliminate a transitive edge 
an be done in O(1) if appropriate datastru
tures are used for the tree [21℄, but assuming tree modi�
ations are done inO(log n). O(n) nodes and edges are inserted and eliminated in the tree. Thus,all tree manipulation has a time 
omplexity O(n logn).The syn
hronization phase adds O(n) nodes, eliminate O(m) edges and adda bounded number of edges (O(n) be
ause it is an SP graph). The movement ofd-edges 
an be tra
ed in O(n log n) with a tree-like groups joining stru
ture toavoid real edge manipulation (see 3.5.7 for details).
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omplexity is: O(m+ n logn)3.5.7 ImplementationWe propose an implementation for the tree exploring phase. This implementa-tion is based on a self-destru
tive sear
h of the tree that eliminates the alreadyused forests from the tree and dete
t handles with only one 
he
k per node.This implementation is needed to bound the time 
omplexity as explained inse
tion 3.5.6.Sear
hing for handles: For any given U 
lass, we 
reate an exploration stru
-ture 
all explorers (E). This stru
ture stores nodes in sets indexed by depth level.E = (m;VE);m 2 N; VE = fV1; V2; :::; VmgWe initialize it with the nodes in any 
hosen U 
lass.8v 2 U : Vd(v) = Vd(v) [ fvgm = max d(v) : v 2 UFor all nodes in E with maximum depth, we eliminate them from the tree,and we add the parent of the eliminated node to the explorers stru
ture (avoidingrepetition by marking the parent node when �rst visited).To eliminate a tree node, we 
he
k previously if it is a leaf. If it is not,we pro
eed to eliminate all sub-trees hanging from it. The leaves of these sub-trees will be orphan nodes (that we immediately add to U) or nodes in other U
lasses. In this last 
ase, both 
lasses are merged, adding the new U nodes tothe explorers stru
ture.When the explorers stru
ture has only one node, this node is the U-handleh0(U). Then we 
he
k the transitive 
ondition of all d-edges arriving at D in thetree with h0(U) to 
ompute K 0T (U). Non-transitive d-edges sour
es are addedto explorers and the sear
h is 
ontinued until the stru
ture has again only onenode. This last node is the handle h(U), and is marked in the tree (a node 
anbe handle of several 
lasses at the same time).During exploration, a node that is pro
essed to be eliminated 
an also bemarked as handle of other previously explored 
lass or 
lasses. In this 
ase these
lasses are also merged with the one being explored.When this exploring operation is performed for all U 
lasses, all handles havebeen dete
ted and marked, related 
lasses already merged, and forests SubF (U)deleted from the tree.
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king of d-edges: During the elimination of tree nodes we keep tra
k ofd-edges from these nodes to further layers. Ea
h 
lass maintains a set of thesesour
e nodes. When 
lasses are merged, these sets are also merged. When a 
lassis syn
hronized, this set will provide information for d-edges to be moved to thenew syn
hronization node.To keep tra
k of d-edges movements without performing modi�
ations in thegraph, we use a modi�ed version of a disjoint-sets data stru
ture with union byrank and path 
ompression (see e.g. [47℄). The stru
ture will map any node labelto the node label of the �nal sour
e of the asso
iated d-edges. A joining operationof a pair of node labels (i; j) will indi
ate that d-edges with sour
e i are to bemapped to sour
e node j. The stru
ture has the property that for any sequen
eof joining operations (i1; j1); (i2; j2); :::; (in; jn) where i1 6= i2 6= ::: 6= in all joiningoperations take O(n logn) to be performed, and any mapping query takes O(1).De�nition 3.5.6 We de�ne the Joining stru
ture J = (~I; ~W; ~S), where ~I; ~Ware arrays of indexes and ~S is an array of sets of node labels (we de�ne N as theset of all possible node labels). Let n = jVGj:N = fi : N; i 2 [1::2n℄g~I; ~W : N2n~S : S2n; Si � fv : NgThe J stru
ture is initialized as follows:Ii = i;Wi = i;Si = figIt supports a joining operation indi
ating that i must be mapped to j de�ned as:J t (i; j) : J ! J 0;J = (~I; ~W; ~S); J 0 = (~I 0; ~W 0; ~S0);I 0(Wi) = I(Wj)big = � Wi if jSWi j � jSWj jWj otherwisesmall = � Wi if jSWi j < jSWj jWj otherwiseW 0i =W 0j = bigS0big = Sbig [ Ssmall8k 2 Ssmall : W 0k = bigThe query fun
tion is de�ned as:J : VG ! VT ;J(i) =Wi 2
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essary syn
hronization nodesSome syn
hronization nodes may be eliminated. In situations where the U 
lass,the indu
ed D 
lass, or both, have only one node, the new syn
hronization nodeis not ne
essary. The lonely node 
an play that role. This redu
es the number ofnodes and edges added, produ
ing a 
ompletely equivalent graph result in termsof stru
ture and dependen
es between nodes from the original graph.We modify the algorithm syn
hronization phase along the following lines. Forea
h �nal U ! D 
lasses:� Dete
t/
reate syn
hronization node, and eliminate/add edges:1. If U = fug, bU = u:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig2. Else if D = fdg, bU = d:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig3. Else (normal 
ase where jU j > 1; jDj > 1): Pro
eed as in the originalalgorithm 
reating a new syn
hronization node bU , eliminating in Gall edges targeting a node in D, and adding edges from every node inU to bU and from bU to every node in D (barrier syn
hronization).� Substitution of d-edges with sour
e v 2 SubF (U), as in the original algo-rithm.� Substitute the forest SubF (U) in T for an edge (h(U); bU ), as in the originalalgorithm.In Fig. 3.24 we show the solutions obtained with the normal and the improvedalgorithms for the same graph example used previously. The dependen
es stru
-ture 
reated on the original graph nodes is the same for both solutions, althoughthe improved algorithm uses less nodes and edges.3.6 Measuring the SP-ization impa
tWe dis
uss now methods to evaluate the SP-ization impa
t in terms of stru
turalmodi�
ation of the original topology and potential loss of performan
e after thetransformation. We study di�erent possible alternatives of the transformationimpa
t. The obje
tive is to propose a measure whi
h allows us: (1) to evalu-ate how di�erent SP-ization te
hniques perform on a given graph, in order to
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Figure 3.24: Solutions obtained by the normal and improved algorithms
ompare the te
hniques themselves, and (2) to study, for an ideal transformationalgorithm, whi
h topologi
al or workload parameters of the graph are related tothe potential parallelism or performan
e loss indu
ed by the added dependen
es.After proposing a measure, we try to relate the potential transformation impa
tto simple topologi
al graph parameters as the depth level, the degree of paral-lelism or the syn
hronization density (see formal de�nitions on se
tion 3.1.3).Analyti
al models and experimental measures are dis
ussed.3.6.1 Potential performan
e impa
tIn this se
tion we fo
us into the analysis of the potential impa
t of an SP-izationin the �nal performan
e of the appli
ation through 
riti
al path value (
pv ) anal-ysis. We say potential be
ause we are applying transformations at the program-ming level of abstra
tion. The program will su�er subsequent transformations inorder to optimize and map it to a spe
i�
 ma
hine. The transformation path willbe quite di�erent in NSP and SP 
ases, leading to unexpe
ted bene�ts or lossesin the �nal performan
e. However, we are interested in the potential impa
t ofthe programming high-level transformations, as it will be an important part ofthe �nal performan
e e�e
t.We use the 
riti
al path value 
pv to measure the performan
e of an ap-pli
ation, modeled as a task graph, for a given workload distribution � (see
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tion 3.1.4). Thus, for the analysis of the performan
e degradation of an ap-pli
ation when programmed in an SP PPM, we 
ompare the 
pv of the graphsthat model: (1) the original syn
hronization stru
ture of the appli
ation and (2)the stru
ture produ
ed by an SP-ization.De�nition 3.6.1 Given two graphs G;G0 modeling the same appli
ation, and aload distribution � , we de�ne the Relative 
riti
al path di�eren
e between the twographs G;G0 or 
� (G;G0), as:
� (G;G0) = 
pv(G0)
pv(G)The mean of the relative 
riti
al path di�eren
e between two given graphs G;G0,for several workload distributions, is de�ned as:
(G;G0) = nXi=1 
�i(G;G0)nThe upper bounds of the performan
e loss 
orrespond to very unlikely 
asesof highly unbalan
ed 
omputations, where pathologi
al workload distributionsappear. However, parallel appli
ations are designed with load-balan
e and regu-lar work distribution in mind. Also for dynami
 
odes, where stru
ture and taskworkloads are generated by pro
esses taking random or data dependent 
hoi
es,an average 
ost study is more appropriate [122℄.The average 
ost will be studied as a fun
tion of the topology 
hara
teristi
s,workload model and SP-ization te
hnique used for the transformation.De�nition 3.6.2 Let T be an SP-ization te
hnique, we de�ne:
T� (G) = 
� (G;G0) : T (G) = G0
T (G) = 
(G;G0) : T (G) = G0From now on, we will use 
 as 
T when the transformation te
hnique used isobvious from the 
ontext. As this measure is dependent on the transformationapplied, it 
an be also used to evaluate and 
ompare how di�erent transformationte
hniques may a�e
t performan
e (see se
tion 3.6.3).This indi
ator, 
, is de�ned for a given graph and transformation te
hnique.Thus, it is an experimental measure. Several 
 measures may be distinguisheddepending on the level of detail or abstra
tion level at whi
h the graph model ofa given appli
ation is derived (see Fig. 3.25). A program is an expression of analgorithm to solve a problem in an spe
i�
 PPM. At this �rst level, the graphrepresents the syn
hronization stru
ture that the program 
reates; or may 
reatefor a given input data in 
ase of dynami
 appli
ations (see se
tion 2.6). When a
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Figure 3.25: Implementation traje
tory. Abstra
tion levelsprogram is mapped to a given ma
hine, with a �xed number of resour
es (su
has pro
essors), the graph stru
ture may 
hange. We say that these modi�edgraphs are modeling the appli
ation at mapping level. Graph models may be
onstru
ted even for lower levels of detail, in
luding even spe
i�
 
ommuni
ationand syn
hronization tasks. Then, they are modeling appli
ations at implemen-tation or ma
hine level, where the underlying 
ommuni
ation system is relevant.Thus, we distinguish several 
 levels: 
1 for programming level; 
2 for mappinglevel; and 
3 for implementation level.Our study is mainly fo
used at 
1. Transformations made to an appli
ation
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ompilers and implementation systems during the mapping and the implemen-tation phases are diÆ
ult to predi
t and in general are favored by a restri
tedPPM as dis
ussed previously. Thus, our interest is to determined (analyti
allyor experimentally) the potential performan
e degradation at programming level.How, or how mu
h, the underlying te
hnology may improve 
1 estimations isnot part of this work. However, for experimental measurement of 
 a suÆ
ientlevel of detail should be 
onsidered in the graph model to assure enough a

u-ra
y. Thus, sometimes it will be ne
essary to measure 
2 or even 
3 values withmapping or implementation level graphs. Appli
ation modeling with graphs atdi�erent detail levels is dis
ussed in se
tions 4.2.2 and 4.2.3.To determine the a

ura
y and relevan
e of 
 predi
tions, we must 
he
kour results against measurements of real performan
e when appli
ations are im-plemented through di�erent PPMs. We de�ne � as a measure of the real per-forman
e degradation when the same algorithm or appli
ation is programmed,implemented and exe
uted through di�erent PPMs.De�nition 3.6.3 Let imp1; imp2 be two di�erent implementations of an appli
a-tion or kernel algorithm for a given ma
hine; and t(imp1); t(imp2) the exe
utiontimes of these implementations as measured in the real ma
hine. We de�ne theRelative real performan
e degradation � as:�(imp1; imp2) = t(imp2)t(imp1)A full experimental framework, 
omparing � measurements with more ab-stra
t level 
 predi
tions, is presented in 
hapter 4.3.6.2 Stru
tural impa
tIn this se
tion we explore measures of the stru
tural impa
t of an SP-izationin the graph topology and we will try to relate them to the 
riti
al path valuein
rement represented by 
. A �rst approximation to a measure of the impa
tof an SP-ization in a graph may be the distan
e to SP form (as de�ned in se
-tion 3.2.2). Another 
ould be the number of lo
al barrier syn
hronizations addedby the transformation. However, these indi
ators are not good measures. Theloss of parallelism is produ
ed by the added dependen
es that serialize poten-tially parallel tasks, and the number of dependen
es added by ea
h te
hniquefor a lo
al resyn
hronization 
an be 
ompletely di�erent even if the number ofresyn
hronizations is the same. The possible impa
t on the �nal performan
e isrelated to the probability of a 
riti
al path in
rease, indu
ed by new dependen
es.Generally, as long as we do not have information about the exa
t workloadof the graph nodes, our �rst proposal for a measure to represent the probabilityof 
riti
al path in
rease is the number of added dependen
es itself. The number
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es in a DAG is the number of edges m in the transitive 
losureG+. Hen
e, the number of added dependen
es is the di�eren
e in the numberof edges between the transitive 
losure of the SP transformed graph and thetransitive 
losure of the original NSP graph. The edges from/to new nodeseventually introdu
ed by the transformation does not a

ount for the number ofadded dependen
es.De�nition 3.6.4 The transformation distan
e �(G;T ) produ
ed by the SP-izationT in the graph G is the di�eren
e of the number of edges (only related to nodesin V ) between the transitive 
losure of G0 and G.G = (V;E); G+ = (V;E+);G0 = T (G) = (V 0; E0); G0+ = (V 0; E0+);�(G;T ) = jf(v; w) 2 E0+ : v; w 2 V gj � jE+jThis transformation distan
e 
an be used to 
ompare how di�erent SP-izationte
hniques perform for a given graph topology without knowledge of spe
i�
workloads. The Fig. 3.26 shows an example graph of low syn
hronization densitytransformed with four di�erent te
hniques: Layering; both algorithmi
 te
hniquesproposed in 
hapter 3 (Algorithm1,Algorithm2) and a manual solution obtainedby applying down syn
hronizations guided by personal experien
e. The nodelabels show the number of dependen
es from other nodes. Dark nodes are addedfor syn
hronization and they are not 
onsidered in the dependen
es 
ount. Thetransformation distan
es obtained, point to the manual solution as the transfor-mation with the lower stru
tural impa
t (� = 1:5). However, an important graphparameter, the maximum depth level (D), has been dupli
ated. Our transfor-mation algorithms are the se
ond option (� = 1:64), while layering te
hniquehas a great stru
tural impa
t (� = 1:93). However, our se
ond algorithm doesnot in
rease the maximum depth level of the original graph (always dis
ardingnew syn
hronization nodes), while the �rst algorithm te
hnique does in
rease it.In fa
t, the maximum depth level value is an important parameter for 
riti
alpath values in a graph, (see dis
ussion about the transformation algorithms inse
tion 3.6.3).In Fig. 3.27 we show the results obtained in an experiment 
ondu
ted torelate the � indi
ator with the mean in
rease of the 
riti
al path value (
pv). Wesele
t random workloads with four di�erent Gaussian random distributions (seese
tion 4.1.1): �(v 2 V ); N(�; �) : � = 1:0; � 2 f0:1; 0:2; 0:5; 1:0gThe di�erent deviations represent di�erent load balan
ing situations. From verywell balan
ed (� = 0:1) to highly unbalan
ed (� = 1:0). For ea
h example graph,
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Dependences = 23Figure 3.26: Measuring transformation distan
e (�)and ea
h Gaussian model, we measure the mean 
pv produ
ed when drawing1000 di�erent random workloads. The results indi
ate that for this spe
i�
 lowS (syn
hronization density) topology, the te
hniques that do not in
rease D valuehave lower impa
t in the 
riti
al path value in balan
ed situations. In these 
asesall nodes have very similar load values, and the number of nodes in the 
riti
alpath be
omes a key fa
tor. However, when the loads are highly unbalan
ed andrandom distributed, the te
hniques that minimizes � may obtain better results.All these results, although typi
al, may not be extended to any other topology.Thus, we 
on
lude that the stru
tural impa
t of a transformation te
hniquealone, measured as the relative number of added dependen
es �, is not a good
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Figure 3.27: Experimental 
pv measurements for the example graphindi
ator of the potential performan
e impa
t. Other fa
tors, as the maximumdepth level D or the workload deviation are as important as � to determine thepotential in
rement of the 
riti
al path value of a transformed graph.For low deviated workloads the D parameter is a key fa
tor of 
riti
al pathvalue in
rease. Thus, keeping the original 
pv for UTC (Unit Time Cost) graphsis an interesting design prin
iple for SP-ization te
hniques (see 3.5). For moreunbalan
ed workloads, no relation between the in
rement of the 
riti
al pathvalue and a 
ombination of stru
tural impa
t parameters have been yet foundfor any graph topology or size. It is still an open problem.3.6.3 Algorithms 
omparisonIn this se
tion we 
ompare the te
hniques and algorithms previously des
ribed.Complexity, suitability for any kind of graphs, and mean in
rement of the 
riti
alpath value 
 are to be 
onsidered to evaluate the appli
ability of these te
hniques.The �rst te
hnique presented in se
tion 3.3.4, whi
h serializes all nodes intopologi
al sear
h order, is not suitable for parallel 
omputing purposes, as allthe parallelism is lost after the transformation. For simpli
ity we will refer tothe other three te
hniques as Layering, Algorithm1 and Algorithm2. Results aresummarized in Table 3.3.Experimentally transforming many stru
tures from highly regular appli
a-tions (see se
tion 4.1.3), we have found that, for these highly regular stru
-tures, the three te
hniques obtain similar results. Nevertheless, the SP formsobtained di�er for more irregular stru
tures. While the simple layering te
h-nique (Layering), has the lower time 
omplexity bounds it does not o�er good
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Figure 3.28: Comparison of algorithms in
rease in 
pv for random graphs sampleresults for irregular stru
tures. Algorithm2 minimizes the expe
ted 
riti
al pathvalue in
reases as 
ompared with the layering te
hnique due to the 
apabilityto exploit lo
al resyn
hronizations instead of using only global barriers. Exper-iments with random generated topologies and workloads have been 
ondu
tedto 
ompare whi
h algorithm produ
e SP approximations with lower expe
ted
riti
al path value in
rement (see se
tion 4.1.2). We study mean values of the 
indi
ator (as de�ned in se
tion 3.6.1). All our experiments with di�erent graphsizes and workload models 
on�rm the 
 trends for ea
h algorithm. For example,Fig. 3.28 illustrates how Algorithm2 typi
ally �nds better solutions for two dif-ferent samples of 128 and 256 nodes graphs respe
tively. The size of ea
h sampleis 1000 graphs. The syntheti
 random workload model used for this example ishighly deviated �(v); N(1; 1). Details about the experiments design and more
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tion 4.1.Spe
i�
ally, for syn
hronization density S values below 2, the highly unstru
-tured graphs are mu
h better transformed by Algorithm2. For small S values, thedistribution of the loads a
ross the same topology has an important impa
t on 
,in
rementing the dispersion of the results for any te
hnique 
onsidered (see dis-
ussion about Fig. 4.6 in se
tion 4.1.2). For these random irregular graphs bothfull SP-ization algorithms o�er very similar results (if not the same). Neverthe-less, the Algorithm1 presents higher time 
omplexity and 
ould generate di�erentresults depending on the input order of the graph nodes. The se
ond SP-izationalgorithm (Algorithm2) presents interesting improvements: Its time 
omplexityis tightly bounded, the output is always the same, and it ensures no 
riti
al pathvalue in
rease for UTC graphs. Hen
e, we 
onsider Algorithm1 superseded byAlgorithm2 for general purposes.We 
on
lude that for highly regular appli
ations, the solution obtained witha layering te
hnique (or bulk syn
hronous parallelism) is similar to a nested-parallelism solution, but the layering te
hnique 
omputes the solution faster. Formore irregular problems, nested parallelism is more appropriate and Algorithm2may obtain better results than the Layering te
nique at only a logarithmi
 time
omplexity in
rease on the number of graph nodes.Algorithm Spa
e Time UTC-
pv Regular graph Irregular graphLayering O(m+ n) O(m+ n) Yes Good BadAlgorithm1 O(m+ n) O(m� n) No Good GoodAlgorithm2 O(m+ n) O(m+ n logn) Yes Good GoodTable 3.3: Algorithms 
omparison3.6.4 Analyti
al modelsDeriving an analyti
al model for the potential performan
e degradation, due tothe loss of parallelism introdu
ed at the high abstra
t level of programming, isnot an easy task. We must derive approximation models for the 
riti
al pathvalue of SP and NSP DAGs.For SP graphs, analyti
al upper bounds and mean expe
ted value of 
pv maybe derived under 
ertain 
onditions. In absen
e of any workload information, weassume the simpli�ed 
ase where the load in ea
h node is an i.i.d. (independentidenti
ally distributed) random value with a given distribution:�(v 2 V ); D(�; �)In this 
ase, we may apply order statisti
s results [95℄ to estimate the expe
tedvalue of the parallel 
omposition of m tasks. Results for serial 
omposition (ad-dition of i.i.d. variables) 
an be found in simple statisti
s literature (see e.g. [10℄).
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hronization exampleThus, the serial 
omposition of n layers, ea
h of them formed bym parallel tasks,is easily derived. Thus, for very simple and regular SP graphs, we 
an derive for-mulae for the expe
ted 
pv . However, when the parallel se
tions have di�erentnumber of tasks, the formulae may not be so easily derived.Unlike in SP graphs, general 
ost estimation is analyti
ally intra
table un-less the workloads have a negative-exponential distribution [164℄. However, astask workloads are 
lose-to-normally distributed (partly as result of the CentralLimit Theorem), negative-exponential workload distributions are extremely rare.Thus, a full a

urate analyti
 
ost model is not possible. We 
an try to deriveapproximations to the 
pv of NSP DAGs. In [183℄ we presented an study aboutthe approximation of the 
pv of two example regular NSP DAGs (pipeline andneighbor syn
hronization stru
tures). These examples represent the basi
 mod-els of regular stru
tures, with D layers of P tasks, 
onne
ted with non-transitiveedges in an almost perfe
t distribution of S edges per node (S = 2 for ma
ro-pipeline and S = 3 for neighbor syn
hronization). See se
tion 4.1.3 for a full
hara
terization of this important 
lass of graphs and appli
ations. The SP ver-sions of these graphs are easily obtained with the Layering te
hnique, applyingfull barrier syn
hronizations. For these regular stru
tures our resyn
hronizationalgorithms (Algorithm1, Algorithm2) obtain similar solutions. In Fig. 3.29 weshow an example of the original NSP neighbor syn
hronization stru
ture and itsSP approximation. A full dis
ussion of experiments with these regular stru
turesis presented in se
tion 4.1.3.Although other random distributions may be used, in the following dis
ussionwe will assume all nodes exhibit an i.i.d. Gaussian distribution.�(v 2 V ); N(�; �)In the SP version, the formulae for the 
riti
al path value of a layer (a parallel
omposition of P nodes), and the full graph (series 
omposition of D layers) are
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pvP = �+ �p2 log(0:4)P
pvSP = D(�+ �p2 log(0:4)P )For normal distributions the approximation error is in the per
ent range.To apply the same order statisti
s approa
h to the NSP original graph, weapproximate its 
pv with the 
pv of a virtual 
ore SP DAG. This virtual 
ore isrelated with the syn
hronization density and width of the original graph. The
ore is 
omposed by the same number of layers as the original graph D, syn
hro-nized by barriers; but the width of the layers di�ers. We 
ompute the theoreti
alwidth of the 
ore graph P 0 as a fun
tion of the original P and S parameter values.Noti
e that the 
ore does not really exist, and the P 0 value may be a non-integernumber: P 0 = S + log(P=2)Again, order statisti
s are used to derive a formulae that approximates the 
pvof the original NSP graph from the 
ore graph:
pvNSP = D(�+ �p2 log(0:4(S + log(P 0=2))))The approximation error is now higher as a result of the 
ore approximation of theNSP graph. Making simple substitutions we obtain a 
 approximation that agreeswith our experiments within 10% and 25%, depending on the example graph, andhas similar asymptoti
 behavior. A 
oarse, but meaningful simpli�
ation of theformulae for (typi
al) large P values is given by:
 � �+ �plog(P )�+ �plog(S)Indeed, for graphs representing this 
lass of regular appli
ations, the asymptoti
alin
uen
e of P is 
learly logarithmi
, while the e�e
t of S is inverse, whi
h is inperfe
t agreement with the results presented in se
tion 4.1.3. The e�e
t of theworkload distribution is also in agreement with our measurements (
onsideringthe typi
al 
ases where P � S).Unfortunately, these analyti
 approximations may not be safely extended toany other, spe
i�
ally more irregular topology, whi
h limits the generality of theanalyti
al study.3.6.5 Con
lusions about SP-ization impa
tIn this se
tion we have propose a general measure 
, based on 
riti
al path analy-sis, for the potential performan
e impa
t of an SP-ization on a given graph. TheSP-ization te
hniques studied in previous se
tions have been evaluated in termsof their behavior and impa
t on di�erent graph 
lasses. The study shows that



148 CHAPTER 3. THEORETICAL APPROACHour Algorithm2 is a good general-purpose SP-ization te
hnique, only mat
hed bythe simple Layering in spe
i�
 highly regular stru
tures, where both solutions aresimilar, but the time 
omplexity bound of the Layering te
hnique is even lower.No stru
tural impa
t measure, obtained only from the topology of the originaland transformed graphs, has been yet found to be dire
tly related to the 
pvalteration, representing the modeled appli
ation performan
e. More 
omplexmodels, based on other topologi
al parameters (D;P; S), are more promising butstill not a

urate enough. Moreover, even when simple random distributionsare 
onsidered for workload distributions, general analyti
al models for the 
pvmodi�
ation are not possible; formulae for NSP graphs 
pv 
annot be derivedfor sto
hasti
 workloads. Approximations for some regular stru
tures have beenpresented, but they 
annot be extended for any graph topology. Thus, in many
ases, only experimental work may give us an idea of the impa
t of a transfor-mation for given graph 
lasses. Fortunately, experimental measures are simple(measuring 
pv of original and transformed graphs). Nevertheless, modeling anappli
ation with a graph may be done at di�erent levels of implementation de-tail with di�erent a

ura
ies. Predi
tions obtained with graph models should be
ompared with measures obtained with real appli
ations to determine if generaltenden
ies are preserved.3.7 SummaryIn this 
hapter we have presented a theoreti
al approa
h to the NSP vs. SP 
om-parison problem. Appli
ation syn
hronization stru
tures have been representedby graphs. Thus, we have used graph theory to formally de�ne and study the
hara
teristi
s of SP and NSP stru
tures. Simple methods to resyn
hronize lo
alNSP stru
tures have been studied. Furthermore, algorithms to resyn
hronize fullgraphs have been presented. These algorithms try to minimize the potential lossof parallelism 
reated by new added dependen
es. Our last algorithm presentsinteresting features (no in
rement of 
riti
al path for unit time 
ost graphs, andtighter time 
omplexity bounds), that make it useful for experimental or produ
-tion work.We have also introdu
ed a study about measures of the NSP to SP transfor-mation impa
t in terms of stru
tural modi�
ation of the graph, and 
riti
al pathvalue in
rement. In the absen
e of experimental workload information, a graphshould be provided with sto
hasti
 workloads. Order statisti
s are a useful toolfor deriving the mean 
pv of simple SP graphs, due to their 
ompositional nature.Although similar 
pv analysis is intra
table for NSP graphs, some analyti
 ap-proximations to the 
pv modi�
ation are possible for typi
al regular stru
tures.This analyti
 formulae predi
ts the asymptoti
al behavior of the 
pv after a sim-ple transformation, as a fun
tion of basi
 graph and workload parameters. The
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h are in agreement with experimental results presented in the next
hapter, give us an idea of the general tenden
ies of performan
e when regularappli
ations are programmed in an SP PPM. Unfortunately, this kind of analysis
annot be extended to generi
, more irregular NSP graphs. As a 
onsequen
e,a further experimental study is ne
essary to state if the predi
ted performan
ebehavior for regular stru
tures 
an be extended to other appli
ation 
lasses. Thisstudy is presented in the next 
hapter.The theoreti
al study of the NSP stru
tures has shown serious limitationsderived from their inherent 
omplexity. SP 
ompositional nature and limiteddependen
es 
omplexity present many advantages for analyti
al study. This isthe origin of the many good properties of the SP PPMs, in terms of formalsoftware development te
hniques, analyzability, and program 
ost modeling.Our theoreti
al study of the NSP and SP task graph stru
tures has pro-du
ed interesting results and tools (like the transformation algorithms), as wellas a deeper insight about the problems asso
iated with NSP stru
turing. It hasalso provided 
lear dire
tions in whi
h way to 
ondu
t the experimental studypresented in 
hapter 4.
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Chapter 4Experimental study\My attention, for the last three years, hadbeen repeatedly drawn to the subje
t ofMesmerism; and, about nine months ago ito

urred to me, quite suddenly, that in theseries of experiments made hitherto, therehad been a very remarkable and mostuna

ountable omission."The Fa
ts in the Case of M. Valdemar, 1845Edgar Allan PoeIn this 
hapter we des
ribe the work we have 
arried out to experimentallymeasure the expe
ted performan
e impa
t when appli
ations are programmed inSP restri
ted PPMs, 
ompared with more generi
 (NSP) solutions. The spa
e ofNSP graph topologies is immense and impossible to 
he
k exhaustively. More-over, most NSP graphs do not represent any useful parallel appli
ation. Thus,we dire
t our sear
h in two dire
tions to 
over the most interesting appli
ationsin parallel programming. We propose two experimental frameworks based on:1. Syntheti
 graphs: We 
onstru
t sets of graphs representing a random sam-ple of the NSP graph spa
e, and randomly inter
onne
ted regular topolo-gies. We measure the e�e
t of SP-ization for simple graph parameter values.2. Empiri
al graphs: In this framework we fo
us on graphs obtained at di�er-ent abstra
tion levels from real parallel appli
ations, 
overing the relevantNSP SA 
lasses. We are guided by the examples and 
lassi�
ation of ap-pli
ations SA presented in se
tion 2.6.Our main interest is the overall e�e
t of programming appli
ations lo
ated inthe NSP 
lasses using SP models. We are �rst trying to establish if the perfor-man
e e�e
ts found in the theoreti
al study are general e�e
ts, and if they 
an151



152 CHAPTER 4. EXPERIMENTAL STUDYbe extended to all appli
ation 
lasses when an \ideal" transformation algorithmis used. The mean 
riti
al path analysis is our basi
 experimental tool to mea-sure the performan
e in our graph models. An extended analysis of performan
ee�e
ts follows. This study 
overs several phases. We investigate empiri
al pre-di
tion me
hanisms for the expe
ted performan
e e�e
ts when using SP forms torepresent generi
 NSP syn
hronization stru
tures. For simple graph stru
tureswe 
an further study the expe
ted performan
e e�e
ts of simple appli
ation modi-�
ations, as s
aling up, adding more iterations, or 
hanging lo
al syn
hronizationpatterns when the appli
ation is in SP form. Thus, in our study we have sele
tedsimple graph parameters (see de�nitions of P;D; S in se
tion 3.1.3) to studythe impa
t of SP-ization te
hniques in graphs whi
h present di�erent topologi
al
hara
teristi
s. We experimentally relate their values with the potential and realperforman
e loss of appli
ations when mapped to an SP form. After study thesyn
hronization stru
tures of simple appli
ations in the more abstra
t level, theproblem of extending the study to real appli
ations is ta
kled. This study in-
ludes an important methodology se
tion about how to model appli
ations withgraphs at di�erent detail levels, and how to transform them to SP form with ourte
hniques, measuring the potential performan
e loss with 
riti
al path analysis(see se
tion 3.6). Thus, the exploration of the SP-ization e�e
ts is open to repre-sentative graphs of more irregular appli
ation 
lasses. Indeed, we investigate thepropagation of the P;D; S predi
ted e�e
ts on 
, to the lower run-time level �,before bene�ts of SP programming are exploited. We also resear
h the e�e
ts ofload balan
ing and other 
ommon parallel programming te
hniques for irregularappli
ations when an SP programming framework is used. We 
ompare resultsobtained in more abstra
t levels, with performan
e measures of the equivalentreal appli
ations, running in di�erent parallel ar
hite
tures.4.1 Syntheti
 graphsIn this se
tion we present the �rst experimental framework. This part of thestudy is oriented to evaluate the mean performan
e e�e
ts of our \ideal" SP-ization transformation on random, irregular topologies, representing a sampleof the whole graph spa
e. We test if the 
 tenden
ies related to the simplegraph parameters P;D; S derived from the theoreti
al study (see se
tion 3.6),are general e�e
ts found in generi
 graphs.The experiments are based on 
onstru
ting sets of syntheti
 DAG topologies,generate di�erent syntheti
 workload distributions for the nodes, and 
omparethe 
pv in the original graph with the 
pv of an SP approximation generated witha suitable SP-ization te
hnique. After the experiments we relate 
 measurementsto topology and workload 
hara
teristi
s.The phases of ea
h experiment may be summarized as:



4.1. SYNTHETIC GRAPHS 1531. Generate a syntheti
 topology G(V;E).2. Transform G to SP form: G0 = T (G). (We apply Algorithm2, whi
h usesno workload but only topologi
al information).3. Repeat:(a) Generate a syntheti
 workload distribution for the nodes in the origi-nal graph: �(v); v 2 V(b) Copy the same workload information to the transformed graph. Nodesintrodu
ed by the transformation have zero load:� 0(v 2 V 0) = � �(v) if v 2 V0 if v 62 V(
) Compute 
omparison indi
ator:
 = 
pv(G0)
pv(G)In the following se
tions we present te
hniques to generate syntheti
 workloadsand topologies. Di�erent topology sets are presented and analyzed.4.1.1 Workload modelingSyntheti
 workloads must be supplied for the nodes in the generated graphs.No spe
i�
 patterns or regularities between topology and distributions should beused in this part of the experimental framework. Thus, the fairest assumption isto 
onsider ea
h node workload �(v) to be an i.i.d. (independent identi
ally dis-tributed) random variable. Considering that we will use graphs with big numberof nodes, we will assume Gaussian distributions for the workloads:�(v 2 V ); N(�; �)The relative in
rement of the 
riti
al path value is not a�e
ted by propor-tional modi�
ations of the mean and deviation parameters. Consider the examplegraphs in Fig. 4.1. G0 is an SP approximation for G. The number inside ea
hnode represent the workload �(v) of that node. The new grey node in G0 has beenintrodu
ed by the transformation te
hnique. Thus, it is only a syn
hronizationpoint with no load �(v) = 0. For the loads in the example we obtain the fol-lowing mean and deviation values: x = 1:1667; sn�1 = 3:1047. The 
riti
al pathvalues are 4 and 5 for G and G0 respe
tively. Thus, the relative in
rease of the
riti
al path is 
� = 
pv(G0)
pv(G) = 1:25. Consider now the same graphs, but assume
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Figure 4.1: Example of relative 
riti
al path value in
reasea workload distribution where � 0(v) = �(v)�2. The mean and deviation are nowdoubled: x = 2:3333; sn�1 = 6:2093. The 
riti
al path values will be 8 and 10for G and G0 respe
tively. The relative in
rement is the same: 
� 0 = 1:25. Thisexample illustrates that the exa
t values of the workload distribution parameters� and � are not so important on themselves. Their ratio is mu
h more relevant.Thus, we de�ne a unique parameter for task workload variability:De�nition 4.1.1 We de�ne the relative deviation or variability (&) of a randomworkload distribution as the proportion between the deviation and the mean:& = ��For our experiments we de
ide to generate di�erent workload distributionsbased on di�erent & values, representing from well-balan
ed 
omputations tohighly irregular workloads: & 2 f0:1; 0:2; 0:5; 1gFor simpli
ity, we always �x the mean to a 
onstant and 
hange the deviationa

ordingly to sele
ted & values. To make the result analysis more intuitive, we
hoose 1 as the �xed 
onstant mean, being the 
orresponding �nal deviationsequal to the 
hosen variabilities:� = 1;� 2 f0:1; 0:2; 0:5; 1gFor ea
h generated topology and ea
h & value, we draw 25 random workloaddistributions (with 25 di�erent seeds for reprodu
ibility of experiments). The
riti
al path is measured in both topologies, G and G0, with ea
h workload, andmean 
 
omputed.



4.1. SYNTHETIC GRAPHS 1554.1.2 Random sample of the graph spa
eIn the �rst experiment sets we test a sample of random task graphs, with nospe
i�
 topologi
al restri
tions, to obtain an idea of the general trends of SP-ization e�e
t in performan
e.Most DAGs in the graph spa
e do not represent typi
al parallel appli
ations(s
alable 
omputations with repli
ated patterns), but irregular stru
tures that
an only be generated by the most unstru
tured, dynami
 and data dependentprograms. Our experiments will show general trends that will be improved whenmore realisti
 topologies are studied (see following se
tions).Random topology generation te
hniqueTo sample the NSP topology spa
e we want to generate graphs with similarprobabilities for any topology to be sele
ted. After 
onsidering several methods,we have 
hosen a standard task graph generation te
hnique originally devisedfor graphs representing heterogeneous parallel appli
ations [7, 181℄. In this te
h-nique, every possible edge has the same probability to exist in the graph. Toassure that a DAG is generated, the nodes are numbered, and only edges with asour
e node number lower than the target number are 
onsidered.Formally, let V = fv1; v2; :::; vng be the set of nodes in G and p the edgeprobability fa
tor. Then, this te
hnique produ
e edges in the graph with thefollowing probabilities P :P [(vi; vj) 2 E℄ = p; if 1 � i < j � nP [(vi; vj) 62 E℄ = (1� p); if 1 � i < j � nP [(vi; vj) 62 E℄ = 1; if i � jThe parameter p will let us dire
t the sear
h of the whole DAG spa
e alongthe edge density axis (measured by the syn
hronization density S). For a givenp, the mean number of prede
essors/su

essors be
omes larger with the numberof nodes in the graph. However, the maximum number of edges for a given nis n(n� 1)=2. Thus, we 
an sele
t p as a fun
tion of n to generate graphs withapproximately the same syn
hronization density independently of the size:p = nSn(n� 1)=2The 
omplexity bounds of this generation te
hnique is related to the graphsize. This te
hnique traverses all possible edges in the graph, 
he
king randomlyif the edge is or is not added to the graph. Thus, the time 
omplexity of thete
hnique is �(n(n� 1)=2). It uses only the spa
e needed to store the graph.This te
hnique may generate non-
onne
ted graphs, espe
ially for low p val-ues. Re
all in se
tion 3.3.1 that SP-ization te
hniques work on STDAG graphs.
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hnique presented in de�nition 3.1.17 to build a 2-terminal DAG,possibly adding two new syn
hronization nodes, to 
onne
t the generated graph.The original dis
onne
ted subgraphs are then parallel se
tions of the �nal STDAG.Chosen parameter valuesWe generate graphs for a wide range of node numbers. From small ones (32nodes) to big ones (1024 nodes):n 2 f32; 64; 128; 256; 512; 1024gFor ea
h size, we want to test topologies ranging from very low to very highsyn
hronization densities. The maximum syn
hronization density is limited bythe graph size. For small graphs, the highest S values are to be dis
arded.S 2 f0:5; 1; 1:25; 1:5; 1:75; 2; 2:5; 3; 3:5; 5; 7:5; 10; 25; 50; 100gFor a given pair of (n; S) values we 
ompute p and generate 100 topologiesbased on a set of 100 seeds in order to guarantee reprodu
ibility of experiments.Thus, more than 1000 topologies are generated for ea
h graph size.ResultsIn this se
tion we present remarks obtained from results observation. Ex
eptwhen it is otherwise stated, the points in the plots represent the 
 for all thetopologies whi
h x axis parameter is in a narrow histogram slot. They are drawnas 
urves to show tenden
ies, and for 
larity when several 
urves are drawn inthe same plot.1. General under-logarithmi
 e�e
t related to graph size:In Fig. 4.2 we show the general under-logarithmi
 
 tenden
y on the numberof nodes. This tenden
y is similar to the one predi
ted with the theoreti
alapproa
h in se
tion 3.6. Nevertheless, ea
h point of these 
urves representsthe mean values of 
 for hundreds of graphs with very di�erent shapes,leading to high deviations. A more detailed study is needed. We wantto know if, as in regular stru
tures, this tenden
y is spe
i�
ally derivedfrom P and S parameters. And if it is possible for a given graph size, tomore a

urately predi
t the 
 values as a fun
tion of P;D; S or relatedparameters.2. Topologi
al parameters dependen
e on S:As we show in Fig. 4.3, in these irregular random topologies, the P andD parameters are highly 
orrelated with S. If S is low, many nodes or
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Figure 4.2: General 
 tenden
y on graph sizesubgraphs are dis
onne
ted after the �rst stage of the generation te
hniqueis applied. Thus, they are parallel se
tions of the 
onstru
ted STDAG(high P and low D). As S in
reases, the probability of more nodes andsubgraphs to be serialized is higher (low P and high D). Thus, the resear
his fo
used to the syn
hronization density related parameters.In these examples we measure the parameter S after transforming thegenerated DAGs to 
onne
ted STDAGs (the graph that is a
tually trans-formed). Although S is similar to the original edge density, it is slightlymodi�ed due to added edges when 
onne
ting the graph in an STDAGform. For very low values of edge density, many edges are added to 
on-ne
t the highly sparse generated graphs.3. Correlation with & (workload model):The plots in Fig. 4.4 show 
 values obtained for medium (a) to big (b) sizedrandom graphs transformed with Algorithm2. Ea
h 
urve on the same plot
orresponds to a di�erent workload model, with & values from unbalan
ed
omputations & = 1 to highly balan
ed 
omputations & = 0:1. The work-load balan
e is a basi
 fa
tor for the impa
t of SP-ization. Low values of& minimize the impa
t of SP-izations be
ause a

umulated path values arevery similar along the graph. Thus, new syn
hronizations have few proba-bilities of serialize parts of two highly di�erent loaded paths. For randomworkload models with high &, unbalan
ed task loads are spread randomlya
ross the whole graph. Thus, added dependen
es may serialize highly un-balan
ed a

umulated loads, modifying the 
riti
al paths and in
reasing
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Figure 4.3: Dependen
e of topologi
al parameters on Stheir values.In the plots, it 
an also be appre
iated how the Algorithm2 SP-izationo�ers good solutions for graphs with an S value lesser than 2 (see alsose
tion 3.6.3).4. General dependen
e on Rs:The plots in Fig. 4.4(a) and (b) 
ome from graphs with di�erent numberof nodes. The 
urves obtained for di�erent sized graphs with the sameworkload model, di�er not in the shape, but in the slope. We use theparameter Rs = jEj=jV j2, that measures the relative number of edges in agraph of jV j nodes, to predi
t the behavior of 
 more independently of thegraph size. In Fig. 4.5 we present smoothed 
urves for mean 
 relative to Rs,for all graph sizes tested and normal workload distribution (& = 1; N(1; 1)).Curves drop to the left due to the improved results obtained with Algorithm2for S values below 2. For bigger graph sizes, the Rs point that 
orrespondto S = 2 is lower. Thus, the maximum 
 value for a given graph size isfound approximately in a value of Rs = 2=jV j.5. Maximum dispersion of values around S = 2. Less predi
tability:In Fig. 4.6 we show one point for the 
 value of ea
h di�erent topology(mean of 25 di�erent workloads). As we may appre
iate, the maximumdispersion of the points is found around an S value of 2, where the 
values are also the highest. This indi
ates that our predi
tions based on 
values are less a

urate for the topologies with S values near 2. Topologi
alstru
tures with S � 2 present many di�erent ways to be transformed to
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Figure 4.4: Dependen
e of 
 on S and &SP form. Only algorithms that make use of the workload information onthe nodes may �nd the best topologi
al transformation. In the 
lass ofalgorithms whi
h work without workload information, our Algorithm2 �ndsa 
ompromise solution by preserving the 
pv for UTC graphs and lookingfor lo
al syn
hronizations where possible.For low deviations (& = 0:1), the dispersion trend is the same, although lessnoti
eable than for high deviations (& = 1). The reason is the in
reasedprobability of regular workload distribution a
ross the topology. The higherthe relative balan
e of the workload, the lower expe
ted 
 values and thehigher a

ura
y of our predi
tions.
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Figure 4.5: General trend dependen
e on RsWe 
on
lude that for random graphs with n nodes, and a 
omplete ran-dom workload distribution, the general trends of SP-ization impa
t at program-ming abstra
tion level (
) may be predi
ted depending only in basi
 parameters:Topologi
al (graph sizes jV j and jEj to 
ompute Rs) and workload based (&).Predi
tions are more a

urate the further the S parameter is from value 2.4.1.3 MeshesMost random topologies may represent highly dynami
 or even no real parallelappli
ation at all. However, parallel appli
ation design methods and paradigmstend to produ
e topology and workload regularities to exploit program s
alabil-ity. A typi
al parallel program is designed in a way that in
reasing the numberof pro
essors more similar parallel tasks are exe
uted to 
ompute a smaller partof the result. Many tasks represent running instan
es of the same 
ode pie
es,working on di�erent data. Thus, a high 
orrelation between the exe
ution timeof tasks and their topology role is found in most parallel appli
ations. Unfortu-nately, it is not possible to realize su
h a 
orrelation only from the task graphtopology. Nevertheless, many appli
ations present, after mapping, high regularstru
tures that repli
ate 
omputation layers, as wide in tasks number as pro
es-sors are available.Consequently, we introdu
e a new 
olle
tion of experiment sets based in graphmeshes of tasks, organized in equal sized layers, 
onne
ted by random and repli-
ated syn
hronization patterns. Motivation for the importan
e of these stru
-tures is found in most appli
ations inside the (NSP,NME,NDS) SA 
lass (seese
tion 2.6).
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Figure 4.6: Results dispersion for random graphsMeshes: de�nitions and notationsWe introdu
e here the de�nitions and notations needed to understand how tobuild a syntheti
 graph mesh from simple parameters.De�nition 4.1.2 We de�ne a Mesh to be a DAG built by a 
olle
tion of Dordered and numbered subsets of nodes (
all layers) of equal size P , with edgesonly between 
onse
utive layers:M = (V;E) : L = PV ; jLj = D; jLij = P;8i = 1; :::;D;8(v; w) 2 E; v 2 Li; w 2 Li+1Mesh sizes are de�ned by P (layer size) and D (number of layers) parametersdire
tly. The edges of a mesh will be de�ned by a fun
tion that maps a node jin a layer i to nodes j1; j2; :::; jn in layer i + 1. Both, random and deterministi
fun
tions are possible.De�nition 4.1.3 Let M = (V;E) be a mesh, L = PV the layers of the mesh,su
h that jLij = P : i = 1; 2; :::;D. Let � : v 2 Li 7! N; �(v) 2 [1; P ℄ be anumbering of the nodes in a layer. We de�ne a Syn
hronization Fun
tion (�) as:� : � ! �a; a 2 [1; P ℄This fun
tion de�nes the set of edges between ea
h 
onse
utive pair of layers inthe mesh: E = f(v; w) : v 2 Li; w 2 Li+1; �(w) 2 �(�(v))gIn Fig. 4.7 we show an example of a mesh generated by P = 4;D = 3 and adeterministi
 �, di�erent for ea
h �(v).
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(4) = { 4 }ρ
(3) = { 1, 3, 4 }

(2) = { 1, 3 }

(1) = { 1, 2 }

ρ
ρ
ρ

D=3

P=4Figure 4.7: Example of a mesh graph de�ned by P;D; �Topologi
al parametersSyntheti
 meshes may be 
onstru
ted depending on D;P and �. The �rst twoparameters de�ne the graph sizes and the third the inter
onne
tion pattern.The syn
hronization density S is equal to the mean arity of the syn
hronizationfun
tion. All these three parameters may be modi�ed while the others are �xed.Thus, we 
an explore the e�e
t of ea
h one independently of the others.In meshes, the edges have sour
e and target nodes in 
onse
utive layers.Thus, a mesh have no transitive edges: (v; w) 2 E ) �h 2 V : v � h � w.The 
onsequen
e is that graph meshes are equal to their transitive redu
tionsM = M�, and S parameter is a highly reliable indi
ator of the amount ofdependen
es propagated through a node, layer by layer.Random meshesIn our �rst set of experiments with meshes we want to 
he
k the e�e
t of P;D; Sparameters on 
, for random syn
hronizations between layers. The random meshgeneration te
hnique 
hosen is based on 
reating the same number of outgoingedges for ea
h node [181℄. The number of edges per node is determined by thevalue of S parameter. The su

essors will be randomly sele
ted among all nodesin next layer, based on an uniform random distribution U [1; P ℄.To assure 
onne
tivity in the graph and a 
orre
t layer organization (nodes inthe same layer must have the same depth level), the �rst outgoing edge for anynode will be the edge (v; w) : �(v) = �(w). Only S � 1 edges will be randomlysele
ted. When S is not an integer, we 
reate edges su
h that all nodes hasbS
 or dSe outgoing edges, and the mean number per node in the layer is asapproximated to S as possible.Formally, the pro
edure to 
reate random meshes may be des
ribed as follows:Let A be the set of node numbers in a layer, and B a random subset of A with
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ardinality: A = [1; P ℄ � N;B � A : jBj = bP � (S � bS
)
The syn
hronization fun
tion sele
ted to build random meshes is:�(�(v)) = f�(v)g [ f
i ; U [1; P ℄; i = 1; :::; sgs = � bS � 1
 if �(v) 62 BdS � 1e if �(v) 2 BFor example, let us suppose a mesh with P = 10 and S = 2:36. The 
ardinal-ity of the B set will be jBj = b10� (2:36� 2)
 = b3:6
 = 3. Let us suppose thatB set is randomly sele
ted to be jBj = f4; 8; 9g. The s value, that represents thenumber of randomly 
hosen edges for a node, is 
omputed as:s = � 1 if �(v) 2 f1; 2; 3; 5; 6; 7; 10g2 if �(v) 2 f4; 8; 9gThus, all nodes will have one predetermined edge (�(v); �(v)), seven of themwill have one random edge and three of them will have two random edges(�(v); U [1; P ℄). There will be 23 edges between ea
h layer. The �nal syn
hro-nization density for one layer will be S = 23=10 = 2:3 � 2:36Chosen parametersWe experimentally test sets of syntheti
 topologies with up to thousand nodeswith the following parameter values and motivation:1. Square meshes, to dete
t the e�e
t of S alone, for a given graph size:(P;D) 2 f(8; 8); (16; 16); (24; 24); (32; 32)gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 3:5; 5:0; 7:5; 10; 25g2. Fixed P , to dete
t the e�e
t of D:P = 16D 2 f4; 8; 16; 24; 32; 64gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 5:0; 8:0; 12:0g3. Fixed D, to dete
t the e�e
t of P :P 2 f4; 8; 16; 24; 32; 64gD = 16S 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 8:0; 12:0; 16:0; 24:0; 32:0; 48:0g



164 CHAPTER 4. EXPERIMENTAL STUDYThe Layering and the improved Algorithm2 transformation te
hniques obtain sim-ilar results for S > 2. In Fig. 4.8 we show an example of how both transformationte
hniques obtain similar results when the high syn
hronization density preventsour algorithm to 
reate small lo
al syn
hronizations, but for
es full barriers be-tween layers. This e�e
t always appears for S values higher than 2. Thus, forthese kind of graphs we 
an use the faster Layering te
hnique safely. We ex-tend our study to huge graphs with up to hundred thousand nodes, that 
an bemanipulated in reasonable time with the Layering transformation te
hnique:1. Square meshes, to dete
t the e�e
t of S alone:(P;D) 2 f(100; 100)gS 2 f2; 3; 4; 5; 10; 20; 30; :::; 100g2. Fixed P , to dete
t the e�e
t of D:P = 100D 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gS 2 f2; 3g3. Fixed D, to dete
t the e�e
t of P :P 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gD = 100S 2 f2; 3gIn all 
ases the workload distributions are 
omputed as des
ribed in 4.1.1.ResultsThe experiments show the following results:1. De
reasing impa
t for higher S values:The e�e
t of high syn
hronization density values (S > 2), is similar asdis
ussed for random topologies in se
tion 4.1.2. In Fig. 4.8 we show thise�e
t for di�erent values of S in a 16� 16 random mesh. In
reasing valuesof S indi
ate more dependen
es already in the graph and shorter distan
eto an SP form. Thus, the impa
t of SP-ization is qui
kly diminished whenS in
reases.In 
omplete random topologies (see se
tion 4.1.2), P andD presented a 
or-relation with S due to the random sampling te
hnique. Spe
i�
ally, valueslower than 2 indi
ated few layers and a 
olle
tion of sparse nodes. Thus,the graph distan
e to SP form was short and 
 was qui
kly de
reasing with
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Figure 4.8: E�e
t of high S values in random meshessmaller values of S. However, in meshes we are �xing P and D parameters,and 
hanging S independently. In Fig. 4.8 and Fig. 4.9 we may appre
iatethe di�erent behavior obtained with Layering and Algorithm2 transforma-tion te
hniques for random meshes. When Layering is applied, 
 
ontinuesthe same exponential like in
reasing tenden
y for very small S values. Theappli
ation of our improved Algorithm2 transformation te
hnique 
an
elsthe exponential growing tenden
y, and it a
hieves even de
reasing resultsfor low deviated load distributions. However, it does not a
hieve the highdiminishing e�e
ts like in random topologies. In the plots of Fig. 4.9, we ob-serve the 
 de
reasing e�e
ts only for very small values of S and espe
iallyfor low P values. The reason is the small distan
e from these graphs to SPforms. Re
all the random meshes generation te
hnique used. It 
reates abase SP mesh graph with S = 1 and adds extra randomly 
hosen edges.The number of added edges for ea
h layer is an integer number 
omputedas: bP � (S � 1)
. For small values of the parameters very few edges oreven no extra edges are added to the base SP graph, leading to 
 values
lose to or even 1.2. No appli
ability of Rs parameter alone:A side e�e
t of the previous dis
ussion is that Rs is not a good indi
ator ofthe potential impa
t of an SP-ization in a random mesh. In random graphsP and D were related to S. In random meshes this is not true. Thus, 
values are di�erent for the same value of Rs if P and D values di�er. Onlyvery general tenden
ies may be determined using the parameter Rs alone.We must further explore the e�e
ts of D;P parameters independently.
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eonS,PandDinrandommeshes
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t of D:In Fig. 4.10 we 
an see how 
 stops to grow at a 
ertain value of D. Al-though diÆ
ult to appre
iate for small sized graphs, it 
an be also noti
edin Fig. 4.9. Let us 
onsider the ith-node in layer j. Dependen
es from this
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Random mesh (S=3, P=100)
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.10: Limited e�e
t of D in random meshesnode are propagated to other nodes a
ross layers j + 1; j + 2; :::, until allnodes in a further layer j+
 depends on the original node. At this point, anSP-ization te
hnique is not adding dependen
es from the ith-node of layerj to any other node in further layers j + d; d > 
, be
ause all of them werealready dependent on it. The speed by whi
h dependen
es are propagatedto next layers is dependent on S. The number of nodes in a layer is P .The limiting e�e
t should 
ompletely appear for D > P=(S � 1). The ob-servations show that in general it appears even before. In the original NSPgraph, the number of dependen
es propagated from the ith-node in layer jto other nodes in layers j+1; j+2; :::, is growing through ea
h layer. Thus,the diminishing e�e
t is beginning to work sin
e layer j + 2, rea
hing themaximum at layer j + 
.This limiting e�e
t is 
an
eled in spe
ial 
ases of unbalan
ed syn
hroniza-tion stru
tures des
ribed and dis
ussed below.4. Logarithmi
 like e�e
t of P :In Fig. 4.11 (and also in Fig. 4.9 in a smaller s
ale) we may appre
iate thatfor �xedD and S values, the SP-ization impa
t in
reases with a logarithmi
like fun
tion of P . This e�e
t presents similar slopes for all mesh topologieswith the same S value, and a D value enough to a
hieve its limiting e�e
t
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Figure 4.11: Exponential like e�e
t of P in random meshes(see previous dis
ussion about D e�e
t). The slopes are lower for exampleswith higher values of S, as expe
ted.5. Workload e�e
t:As it may be appre
iated in Fig. 4.10 and Fig. 4.11, the most relevant fa
-tor for the SP-ization impa
t is the variability of the workload &. Graphsrepresenting balan
ed 
omputations (& � 0:2) present almost no relevante�e
t when transformed to SP form. When 
omputations are highly un-balan
ed (& = 1), the probability of serializing highly loaded nodes duringthe SP-ization in
reases. The e�e
t is highly predi
table when the loadsare randomly distributed, as the probabilities in
rease with equal 
han
esa
ross the same topology.Unbalan
ed syn
hronization meshesMotivated by the study of strange 
 e�e
ts in spe
i�
 appli
ation mesh topologies(as e.g. stati
 ma
ro-pipelines, see se
tion 4.2), we have found a new topologi
al
hara
teristi
, with an important impa
t on 
. This 
hara
teristi
 is not dire
tlyrelated with the parameters we have studied previously. This study reveals moredetails about the deep relation of 
 and the way dependen
es are propagateda
ross layers through the edges.The problem appears in meshes were the edges are somehow oriented in thewidth axis, su
h that dependen
es from some nodes are not propagated to anyother part of the graph equally. Let us 
onsider the example in Fig. 4.12. Thenodes in the right side of the graph do not propagate dependen
es to the left
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1 2 43

1 2 43

1 2 43

(4) = { 4 }ρ
(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

D=3

P=4Figure 4.12: Example of unbalan
ed syn
hronization meshside of the graph, no matter how many layers are 
onsidered. This orienta-tion is graphi
ally dependent on the numbering � 
hosen. We must introdu
esome more notation and terminology to formally 
hara
terize this new problem.Be
ause this orientation e�e
t barely appears along several layers in random gen-erated meshes, we fo
us our study to analyti
al measurements in meshes withdeterministi
 � fun
tions.De�nition 4.1.4 For meshes with a deterministi
 � fun
tion, we de�ne the Syn-
hronization 
hara
teristi
 graph of a mesh 
(M) as a dire
ted graph (possibly
y
li
), build as: 
(M) = (V
; E
) :V
 = LiE
 = f(v; w) : v; w 2 Li; �(w) = �(�(v))gFor deterministi
 � fun
tions, the syn
hronization 
hara
teristi
 graph isunique for a given P value, and a 
hange on the nodes numbering fun
tion �,will produ
e an equivalent homeomorphi
 graph. An example of the 
 graph forthe example in Fig. 4.12 is shown in Fig. 4.13.
1 2 43

(4) = { 4 }ρ
(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

Figure 4.13: Example of syn
hronization 
hara
teristi
 graphWhen the syn
hronization 
hara
teristi
 graph of a mesh is dis
onne
ted, itindi
ates that two di�erent subgraphs are 
omposed in parallel. Ea
h subgraph



170 CHAPTER 4. EXPERIMENTAL STUDYshould be studied separately. The Algorithm2 transformation te
hnique dete
tsthe 
onne
ted 
omponents as lo
al NSP problem 
ombinations and syn
hronizethem separately. However, Layering te
hnique would resyn
hronize both sub-graphs together with full barriers in a non-eÆ
ient way. For 
onne
ted 
 graphwe study the presen
e of nodes that 
annot be rea
hed from other nodes.De�nition 4.1.5 We denote by syn
hronization balan
e, !(M), the proportionof edges found in the transitive 
losure of the syn
hronization 
hara
teristi
 graphof a mesh M. Let be 
(M)+ = (V
; E+
 ) be the transitive 
losure of 
(M):!(M) = jE+
 j=jV
j2This value, that will be in the range !(M) 2 [0; 1℄, indi
ates the proportionof nodes that are propagating dependen
es to other nodes independently of thenumber of layers traversed. The value 0 is only possible for 
ompletely dis
on-ne
ted layers. The value 1 is found in graphs were all nodes 
an be rea
hed fromall other nodes. In Fig. 4.14 we show the transitive 
losure and the syn
hro-
1 2 43

E+
V 2 (4) = { 4 }ρ

(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

(M) = 0.625ω
= 10

= 16

Figure 4.14: Example of !(M) measure with the 
 graphnization balan
e value for the previous example mesh. A value of !(M) = 0:625indi
ates that many nodes 
annot be rea
hed from other nodes independently ofthe number of layers 
onsidered.Meshes with 
onne
ted 
 graphs and ! values of 1, do not present any 
 e�e
tdi�erent from the ones previously dis
ussed, based on the topologi
al (P;D,S)and workload (&) parameters. However, meshes with 
onne
ted 
 graphs andlower than 1 syn
hronization balan
e values, will su�er the following pathologi
ale�e
ts:1. Limited e�e
t of S parameter:If we add edges to a mesh, that do not in
rease the syn
hronization bal-an
e, the syn
hronization density in
reases, also the number of dependen
espropagated, but not the number of nodes that are not rea
hed from other
ertain nodes. Thus, the bene�
ial e�e
t of these added edges is highlylimited.
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t, we have designed an experiment in whi
h we produ
emeshes with in
reasing S values, but for
ing the new edges to target neigh-bors already rea
hable in the 
 graph through transitive dependen
es. Wede�ne the following syn
hronization fun
tion for a given P and a new pa-rameter s: �(�(v)) = ft : �(v) < t � (�(v) + s) � PgAn example of meshes generated by this te
hnique are shown in Fig. 4.15.
1 2 43

1 2 43

1 2 43

1 2 43

1 2 43

1 2 43

≈S    2 ≈S    3
(M) = 0.625ω (M) = 0.625ω

s = 2 s = 3

D = 3P = 4 P = 4 D = 3

Figure 4.15: Example of meshes with higher S and the same !The s parameter is very similar to the �nal S of the generated mesh, es-pe
ially when s � P . As we are interested in the e�e
ts produ
ed for Sranging from 2 up, for our experiments we will use P = 100, 
onsideringS = s.In Fig. 4.16 we show how in
reasing the number of edges (indi
ated by theS parameter) in a 
omplete unbalan
ed mesh (plot (a)), does not produ
ethe bene�
ial negative exponential-like de
reasing e�e
t on 
, found inrandom and typi
ally balan
ed meshes of the same sizes (plot (b)). Thee�e
t is 
an
eled after adding approximately 4 or 5 edges (the dependen
esare qui
kly propagated in the only possible dire
tion).2. Non-limited e�e
t of D parameter:In Fig. 4.17(a,b) we show the e�e
t of D in
rease, for unbalan
ed meshes.We present two examples. Both of them have been 
reated with the pre-vious dis
ussed te
hnique. They are stru
tures with unbalan
ed neighboredges with P = 100, and s = 3 and s = 5 respe
tively. Both graphshave the same number of non-rea
hable nodes, ! = 0:505. The plots showhow the limited e�e
t of D, found for other graphs with ! = 1, (
om-pare with Fig. 4.10) does not appear. As ! value is the same, the �naltrend for high D values is the same. What 
hanges from S = 3 to S = 5
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Figure 4.16: Limited e�e
t of S in syn
hronization unbalan
ed meshesis how qui
k the dependen
es are propagated in the only available dire
-tion. Thus, S still measures how qui
k the general trend imposed by ! isa
hieved. In both 
ases, we observe some irregularities in the slope nearthe point D � P=S. At this point, the propagated dependen
es have beenspread along the full layer width, and the limiting D e�e
t 
urve meetsthe general tenden
y 
urve imposed by !. From this point on, both 
urves(S = 2; S = 3) are similar.With values of S lower than 2, the 
 graph is typi
ally dis
onne
ted, andthe subgraphs should be studied separately. For 
onne
ted 
 graphs, the !lower values 
orrespond to graphs with S � 2. We 
onje
ture that the extradispersion of 
 values related to S near 2, observed previously, is produ
ed by
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Figure 4.17: Non-limited e�e
t of D in syn
hronization unbalan
ed meshesthese pathologi
al e�e
ts not previously a

ounted for.The pathologi
al e�e
ts are higher for lower values of !, although no dire
trelation has been yet established, be
ause of the diÆ
ulties found to automati-
ally generate di�erent syn
hronization unbalan
ed topologies with the desired !values. It is an open question if D;P; S; &; ! parameters are enough to a

uratelyestimate 
 for graph meshes.Correlated workload meshesIn the previous study, due to the absen
e of real workload information for syn-theti
 graphs, we are assuming an i.i.d. workload for every node. In real appli-
ations with not 
ompletely regular tasks loads, it is typi
al to �nd some kind
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orrelation between the workload distribution and the topology. Consider, forexample, a mesh representing a ma
ro-pipeline. If one of the pipe stages is moretime 
onsuming than others, we will �nd a 
olumn of tasks more loaded than theothers. If a 
ellular-automata like program needs to 
ompute some more 
omplexintermediate results after some normal iterations, we will �nd a mesh were somerows or layers of nodes are more loaded than the others.To dete
t if the presen
e of this 
orrelation between workload and topologyis bene�
ial or negative for the SP-ization impa
t, we have designed some moreexperiments with random meshes. We will 
onsider meshes with �xed P , D andS values, and we will 
hange the workloads to 
reate su
h verti
al or horizon-tal 
orrelations. The modi�ed load parameters �; � will be proportional to theoriginal ones to keep the same variability a
ross the whole graph.Let us 
onsider the following workload models:Verti
al 
orrelation: The load is modi�ed in a given 
olumn 
 in a given pro-portion p: �(v) = � x; N(�; �) if �(v) 6= 
x; N(p�; p�) if �(v) = 
Horizontal 
orrelation: The load is modi�ed in a given layer r in a givenproportion p: �(v) = � x; N(�; �) if d(v) 6= rx; N(p�; p�) if d(v) = rMultiple verti
al 
orrelation: The load is modi�ed in a given proportion p,in a given number of 
olumns n, distributed along the graph with a �xedstride s = P=n:�(v) = � x; N(�; �) if (�(v) mod s) 6= 0x; N(p�; p�) if (�(v) mod s) = 0Multiple horizontal 
orrelation: The load is modi�ed in a given proportionp, in a given number of layers n, distributed along the graph with a �xedstride s = D=n:�(v) = � x; N(�; �) if (d(v) mod s) 6= 0x; N(p�; p�) if (d(v) mod s) = 0We are interested in dete
ting how the position of 
olumns or rows withmodi�ed load, and the load modi�
ation are a�e
ting 
. Thus, we design thefollowing experiments. Let M be a random mesh with P = D = 64 and S = 3.We 
arry out the following experiments, were some of the parameters have beenadjusted in view of the results dis
ussed below:
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al 
orrelation of one 
olumn, 
hanging the 
olumn position. As thegraph is symmetri
, and the dependen
es are randomly distributed a
rossthe full graph width, we expe
t symmetri
 results moving the 
olumn fromthe 
enter of the mesh to ea
h extreme:p = 2; 
 2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g2. Verti
al 
orrelation of one �xed 
olumn, 
hanging the workload modi�
a-tion. We test both, lower and higher values of the load in the sele
ted
olumn: 
 = 32; p 2 f0:5; 0:8; 0:9; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0g3. Horizontal 
orrelation of one layer, 
hanging the layer position. As the
pv is a

umulated through the graph up-down, we test modi�ed layers allalong the graph:p = 32; r 2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g4. Horizontal 
orrelation of one �xed layer, 
hanging the workload modi�-
ation. In view of the results of our �rst experiments in this 
ategory,we dete
t that we need to in
rease the load mu
h more than in verti
al
orrelations to get representative results:r = 32; p 2 f0:5; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 128:0g5. Multiple 
olumn 
orrelation, with di�erent number of 
olumns to generateall the possible integer strides for P = 64:p = 2; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64g6. Multiple layer 
orrelation, with di�erent number of layers to generate allthe possible integer strides for D = 64:p = 6; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64gAll the experiments will be 
arried out with di�erent workload variabilities& 2 f0:1; 0:2; 0:5; 1:0g, and drawing 25 times random workload distributions forea
h topology. The results obtained from these experiments 
an be summarizeas follows. For the following dis
ussion, keep in mind that 
 is minimum whenthe 
riti
al path of the NSP graph has the more loaded nodes of ea
h layer:
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Figure 4.18: Independen
e of load 
orrelation position1. Independen
e of the 
olumn or layer position:As it is shown in Fig. 4.18, the position of the 
olumn or layer whi
h load ismodi�ed is not really important. In the 
ase of verti
al 
orrelation, as alongas the edges in the mesh are 
hosen randomly, the dependen
es are prop-agated with equal probabilities, independently of the 
olumn position. Inmeshes with deterministi
 syn
hronization fun
tions, it should be possibleto observe little 
 di�eren
es when the modi�ed 
olumn position 
hanges.In the 
ase of horizontal 
orrelation, all full paths must 
ross the layer,independently of the layer position, getting the same probabilities of beinga�e
ted.2. Bene�
ial e�e
t of the verti
al 
orrelation:



4.1. SYNTHETIC GRAPHS 177In Fig. 4.19 we may appre
iate the bene�
ial impa
t of in
reasing the work-load in one modi�ed 
olumn. A lower load than in other 
olumns does notsigni�
antly modify the 
 values, be
ause the more loaded nodes in ea
hlayer are the normally loaded nodes. The maximum a

umulated pathvalue through several edges, is always got from one of the normally loadednodes. On the other hand, when the modi�ed load is in
reased above thenormally loaded nodes, the paths that 
ross the highly loaded 
olumn moretimes, get more and more probabilities to be
ome the 
riti
al path. At thesame time, the nodes in the 
olumn get more and more probabilities tobe the more loaded nodes in the layer, espe
ially when the variability issmall. Thus, the 
riti
al path in the NSP version gets more probabilitiesto have exa
tly the more loaded nodes in ea
h layer, minimizing 
. As it
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Figure 4.19: Bene�
ial e�e
t of the verti
al 
orrelation
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ial e�e
t immediately disappears ifthere are several 
olumns with the same load modi�
ations in the mesh.The reason is that there are more probabilities for the 
riti
al path to 
rossa highly loaded node (in one of the modi�ed 
olumns) whi
h is not exa
tlythe more loaded node in the layer (being in other of the modi�ed 
olumns).Fortunately, in appli
ations with verti
al 
orrelation (like some pipelines)is typi
al that most 
olumns have di�erent mean load values. The existen
eof this small load di�eren
es between 
olumns lead to a middle point onthe bene�
ial e�e
t.3. Bene�
ial e�e
t of the horizontal 
orrelation:In Fig. 4.20 we 
an see that in the 
ase of horizontal 
orrelation, smallmodi�
ations of the load does not a�e
t 
. Although all paths must 
rossthe modi�ed loaded layer, there are not so many probabilities for the 
riti
alpath to 
ross exa
tly the more loaded node in that layer. However, when theload in the modi�ed layer is highly in
reased, in a mu
h bigger proportionthan the other layer nodes, the paths that 
ross exa
tly the more loadednode in that layer have more and more probabilities of being the 
riti
alpath themselves, as the other layers loads be
ome less signi�
ant in thetotal path value. In the same �gure we 
an also appre
iate that in
reasingthe number of loaded layers is potentially bene�
ial until a given point. Thereason is that the e�e
t previously dis
ussed for one layer is applied moreand more times. However, when the number of layers in
reases too mu
h,the extra loaded nodes be
ome too frequent, and they be
ome the normallyloaded nodes. Then, the full paths get the typi
al variability e�e
ts of thenow more 
ommon nodes in the mesh, eliminating the bene�
ial e�e
t ofthe 
orrelation. This workload 
on�guration with many layers more loadedthan a few ones is not so typi
al in appli
ations.The important 
on
lusion about this experiment, is that typi
al 
orrelationbetween topology and workload may produ
e bene�
ial e�e
ts on 
 in many
ir
umstan
es. Thus, our previous predi
tions with i.i.d. workloads 
an be 
on-sidered a worst 
ase for workload distribution, and previous 
 predi
tions 
an be
onsidered upper bounds of the expe
ted 
 in typi
al appli
ation stru
tures.4.1.4 Con
lusions about syntheti
 graph resultsAlthough not being a topologi
al feature, the workload balan
e is the graph
hara
teristi
 with the higher impa
t in the potential performan
e loss measuredwith 
riti
al path analysis (
). Our main study is based on i.i.d. workloads due tothe absen
e of real workload information. Nevertheless, more irregular workloaddistributions with typi
al appli
ation 
orrelation in verti
al and horizontal nodeinstan
es may produ
e even lower expe
ted 
 results.
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Figure 4.20: Bene�
ial e�e
t of the horizontal 
orrelationFor random or irregular graphs, the P and D parameters are typi
ally 
or-related with S. Thus, S and Rs values easily determine the 
 values. Thedispersion of 
 values is maximum around the 
riti
al point of S � 2 where 
values also rea
h their maximum.More stru
tured graphs, whi
h nodes are organized in layers 
onne
ted byrandom or repli
ative syn
hronization stru
tures, do not present a 
orrelationbetween the parameters S and P;D. If the syn
hronization stru
ture a
ross layersis random, or balan
ed (as measured with ! for deterministi
 syn
hronizationstru
tures), the 
 values 
an be estimated with the workload 
hara
teristi
s andthe simple topology parameters P;D; S. The values of 
 rea
h their maximumfor S � 2. Further in
rease of S immediately limits the 
 in
rease. The numberof layers in the mesh is only important until D � P=S. More layers do not
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t the potential performan
e loss. Thus, 
 is highly predi
table as afun
tion of very simple topologi
al and workload parameters.For unbalan
ed syn
hronization stru
tures (! < 1), pathologi
al e�e
ts areobserved in the S and D e�e
ts. Future work should relate these observations to! values.4.2 Real Appli
ationsIn this se
tion we present an study of the performan
e e�e
t of using di�erentSP and NSP programming te
hniques with real appli
ations. Our purpose is todetermine the potential performan
e loss produ
ed at programming level due torestri
t relevant syn
hronization stru
tures to SP form. We 
hoose appli
ationexamples whi
h are representative of important SA 
lasses (see 2.6). We usegraphs to model appli
ations at di�erent detail or abstra
tion levels. Modelingte
hniques and their a

ura
y are studied. Transformation te
hniques and 
 pre-di
tions previously dis
ussed, are studied in stru
tures from real appli
ations. Wepresent results on how 
 is propagated to run-time level in real implementations�. The main trends of this loss are studied before applying any improvementderived from SP programming. Thus, no advantages of SP programming willbe exploited in our experiments during implementation or run-time. Finally, wespe
i�
ally fo
us our study on more irregular appli
ations, showing how typi
alload balan
ing and data-partitioning te
hniques lead to more regular stru
tures,feasible for SP-programming.4.2.1 Experiments designExperiments are 
ondu
ted to 
ompare information obtained from programminglevel 
ost models with real implementations. Results are studied to extra
t pa-rameters non-dependent on the appli
ation whi
h predi
t the mean performan
ee�e
ts of restru
turing programs for SP programming frameworks.We �rst fo
us our study in appli
ations in the NDS 
lasses, where the stru
-ture of the appli
ation is �xed for some simple parameters after mapping (mainlythe number of pro
essors).The experiments are designed as follows:1. Sele
t a representative appli
ation of a stati
 NSP SA 
lass.2. Implement the program in both NSP and SP versions, for di�erent ma
hinear
hite
tures and/or programming models.3. Run programs obtaining load and performan
e measurements.4. Derive programming level graph 
ost models.
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 workloads and statisti
alload measurements.6. Compare estimations with real performan
e measurements. If a

ura
y isnot enough, re�ne 
ost models at a lower implementation level and go ba
kto phase 5.7. Relate appli
ation behavior and SP-ization impa
t to stru
ture parameters.For dynami
 
lasses, stru
ture is data-dependent and 
annot be easily derived.For these 
ases an exhaustive study is not always possible. Availability of simple
odes is limited, appli
ations trend to be mu
h more 
omplex, they typi
allyin
lude hard-wired optimizations based on the ma
hine ar
hite
ture, and �nally,many alternatives of implementation exists for almost any algorithm. Input datamay have a great impa
t in an spe
i�
 stru
ture, as dynami
 s
heduling andmapping te
hniques are used.Thus, our experiments are oriented to exploit available samples of runningtra
es, obtained by exe
ution monitoring. Task graphs are built from the tra
inginformation. The stages of ea
h experiment are:1. Find examples of stru
tures (task graphs) generated by exe
uting existingimplementations of an appli
ation, with di�erent real input data, on spe
i�
ma
hines. If possible, we will gather detailed real workload information inrun-time.2. Apply the Algorithm2 transformation te
hnique, presented in 3.5, to thesample stru
tures.3. Compute and 
ompare performan
e (
pv) in the original and transformedstru
ture and relate it to stru
tural parameters.Appli
ations sele
tedAlong the lines presented in the appli
ations 
lassi�
ation in se
tion 2.6, we sele
tthe following representative examples of relevant NSP 
lasses:1. Stati
 NSP appli
ations:Stati
 ma
ro-pipeline: It is is a good representation of simple stru
-tures 
reated by multiple iterations of a shifting memory a

ess pat-tern. Many parallel non-syn
hronized loops and data mappings 
reatestru
tures similar to this one.This appli
ation also presents the minimum syn
hronization densityS parameter value possible for 
omplete regular appli
ations in whi
h
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essors exe
ute the same pie
e of 
ode with the same 
ommuni-
ation pattern. Nevertheless, ea
h iteration provides a full 
hain NSP
omposition (see 3.3.3), that needs full layering syn
hronization to betransformed into SP form.Moreover, the dependen
es between pro
essors are not propagated inan homogeneous way, but in an spe
i�
 dire
tion of pro
essors num-bering after data partition. It leads to the biggest possible number ofdependen
es added for any S = 2 stru
ture after SP-ization, and itpresents the pathologi
al e�e
ts des
ribed in se
tion 4.1.3 for stru
-tures with ! < 1.Thus, it is a extreme 
ase for SP-ization impa
t.1D Cellular automata: This appli
ation represents the neighbor syn-
hronization stru
tures. Many regular and s
alable appli
ations aremapped to this stru
tures. Is is spe
i�
ally representative of grid
omputations and PDE solvers. Even more 
ompli
ated sten
il basedappli
ations are mapped to this stru
ture if a 1-dimensional data par-tition is used. In fa
t, we have 
hosen to implement a typi
al 2D grid
omputation mapped by rows, to produ
e a 1D 
ellular automatastru
ture with real and representative 
omputation loads (see an ex-ample of modeling this mapping in Fig. 4.23).For this kind of neighbor syn
hronization and grid appli
ations, the1D 
ellular automata kernel present the minimum S parameter value(S � 3), being the appli
ation example most potentially a�e
ted whenit is transformed to SP form.FFT: It is an important kernel in many parallel appli
ations and has beenwidely studied. Its butter
y 
ommuni
ation stru
ture is the most typ-i
al example of solving networks.After the lo
al 
omputation phase, FFT is an intensive 
ommuni
ationappli
ation, as all the lo
al data is sent in ea
h 
ommuni
ation. Inea
h iteration the 
ommuni
ation phase inter
hanges data with furtherremote pro
essors in a linear numbering. However, the binary treepattern may be exploited with spe
ial mappings and implementationsto improve lo
ality in spe
i�
 network models (see e.g. [156℄).LU redu
tion: Most matrix fa
torization algorithms (e.g. QR or Cholesky)presents similar SA. It is a 
omplex appli
ation for graph 
ost modelderivation as dis
ussed in se
tion 4.2.3. At program level it present atriangular syn
hronization stru
ture that must be mapped at imple-mentation level to another di�erent form for regularity and s
alability.This mapping leads to de
reasing task load values along iterations.2. Dynami
 appli
ation 
lasses:
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al or 
hemistry simulationsare based on a PDE iterative sparse-matrix solver. The matrix stru
-ture represents the adja
en
y of the joint points of a 3D mesh whi
hmodels the studied obje
t. For these appli
ations, the syn
hronizationstru
ture generated is 
ompletely dependent on the data mapping,typi
ally based on a graph partitioning algorithm.As example of the stru
tures produ
ed by these appli
ations we gen-erate mapping level task graphs of a simple PDE solver style pro-gram running on graphs already partitioned with a free and state-of-the-art multi-level partitioning software for unstru
tured graphs(METIS [117, 167℄). Example input 3D models are 
hosen from thestru
tural engineering area, from a 
olle
tion of free test data intendedfor use in 
omparative studies of algorithms for numeri
al linear alge-bra (Matrix Market [146℄).Sparse-Matrix fa
torization: This appli
ation is a good representativeof stru
tures generated by dire
t solver te
hniques for sparse-matrix
omputations. As an example of the performan
e impa
t of SP-izationin these 
lass of appli
ations, we have apply our transformation algo-rithm to some graphs generated by monitoring the exe
ution of adomain de
omposition and unstru
tured sparse-matrix fa
torizationsoftware [55, 123, 124℄ for �nite-element problems. The automati
allyobtained graphs are provided with real workloads.These two problems 
overs the typi
al syn
hronization stru
tures generatedby parallel implementations of the main iterative and dire
t solvers forsparse-matrix 
omputations.Ma
hine ar
hite
turesAt implementation level a parallel program is 
ompiled and optimized for an spe-
i�
 ma
hine. When exe
uted, it uses 
ostly me
hanisms to spawn, syn
hronizeand 
ommuni
ate tasks. Implementation details and the underlying ar
hite
tureof the ma
hine be
ome important. For simple appli
ations and kernels we wantto study the main performan
e e�e
ts in di�erent programming models, and alsodi�erent ma
hine ar
hite
tures. We have sele
ted available ma
hines to 
overdi�erent ar
hite
ture models and typi
al 
on�gurations of them:Shared memory ar
hite
tures: The programming te
hniques used in thesema
hines are straightforward, and the programmer is not normally fa
ingthe data distribution or s
heduling details dire
tly.Our study is fo
used on a leading edge te
hnology shared-memory ar
hi-te
ture: CC-NUMA. Our available ma
hine is an Origin2000. CC-NUMA
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hines have representative properties for performan
e evaluation of syn-
hronization te
hniques. The use of memory hierar
hy improves perfor-man
e, while 
a
he-
oheren
e proto
ols and automati
 pro
ess migrationtry to hide ma
hine level details to the programmer. Nevertheless, theeÆ
ient use of memory lo
ality is not an easy task even with 
ompiler as-sistan
e. Delay times for data a

ess and syn
hronizations are less stablethan in other ar
hite
tures, espe
ially for full 
olle
tive 
ommuni
ations,like barriers issued a
ross the whole system [102℄.Distributed memory ar
hite
tures: The main parallel programming modelused for this kind of ma
hines is message-passing. The programmer fa
esproblems as data distribution or s
heduling details inherently, in
reasingthe developing e�ort.We use two key types of distributed memory ma
hines that have represen-tative properties for performan
e evaluation of syn
hronization te
hniques.CrayT3E is a mesh-based 
omputer, with hardware and proto
ol improve-ments to minimize the overhead of distant pro
essors 
ommuni
ation. Thespe
ial-purpose hardware is highly eÆ
ient. A Beowulf system (a 
lusterof PC 
omputers linked by a high speed Ethernet swit
h [176, 177, 151℄)normally presents higher 
ommuni
ation 
osts. As the underlying message-passing tools are prepared to work in generi
/all-purpose networks, theimplementation details 
an 
reate irregularities in the network traÆ
 or
ommuni
ation delays. Both ma
hines are at the budget extremes for highperforman
e 
omputing. CrayT3E is an expensive spe
i�
ally designed ma-
hine, while a Beowulf is an optimized way to 
reate a super
omputer fromgeneri
, all-purpose, and in 
omparison 
heap, 
omputer hardware.Programming models and 
ode generationAfter determining the appli
ations and ma
hines, we must sele
t a 
onvenientprogramming model to 
odify the NSP and SP versions of ea
h program. Theminimum requirement for a programming model to be sele
ted are:1. Codes must be portable with minimum or none modi�
ations to everyar
hite
ture tested.2. A systemati
 
ode transformation te
hnique must be devised to derive SPversions from NSP versions of the �nal 
ode.3. A systemati
 te
hnique to extra
t programming or implementation levelgraph models from the 
ode must be devised.4. It must provide similar performan
e as 
ompared with other native or morespe
i�
 models.
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ording to the previous requirements, we 
onsider the MPI message passinginterfa
e as the best 
andidate for our experimental framework for the followingreasons:1. It is a portable API. Programs implemented in MPI 
an be 
ompiled andexe
uted in almost any parallel ma
hine due to standard MPI implemen-tations.2. As MPI is a full standard interfa
e of the well-known message-passingmodel, many appli
ations are already studied and implemented on thismodel (see e.g. [189℄). Real 
odes for some of the sele
ted appli
ations areavailable.3. It is a performan
e eÆ
ient and reliable tool. Most vendors provide theirspe
i�
ally optimized implementations. Generi
 but eÆ
ient implementa-tions (e.g. mpi
h) are also available.4. Message-passing model for
es expli
it 
ommuni
ation. S
heduling, data-partition and any other mapping transformations must be hard-wired inthe 
ode. Thus, a 
omplete monitoring of 
ommuni
ation a
tivities at highlevel is possible. In se
tion 4.2.2 and se
tion 4.2.3 we introdu
e systemati
ways to extra
t task graph models from 
odes in di�erent programmingparadigms. We espe
ially study the message-passing problems and solu-tions, in
luding an example for MPI. Message-passing interfa
es simplifytask and 
ommuni
ation identi�
ation be
ause 
ommuni
ation is alwaysexpli
it.5. Transforming NSP MPI 
odes to SP form is easy be
ause of the expli
it
ommuni
ation. Communi
ation phases are formed by grouping 
onse
u-tive 
ommuni
ation primitives, with no 
omputation 
ode in-between (seese
tion 4.2.2). Syn
hronizing the programs to simulate the added depen-den
es needed for SP-ization may be as simple as adding barrier syn
hro-nizations after 
ommuni
ation phases. Probably, there exist other and bet-ter methods to transform the original 
ode to SP form, but this approa
his simple, systemati
, and a typi
al worst 
ase, where no 
ode manipula-tion is done ex
ept to add dependen
es through barriers. The te
hniqueis suitable to exhibit an appli
ation potential degradation of performan
edue to the extra syn
hronizations when programmed in an SP PPM.6. Message-passing libraries as MPI allow very �ne tuning of the 
odes forperforman
e. The library implementations, spe
i�
ally for MPI, are fastand eÆ
ient.In shared memory ma
hines, there are other interesting and widely knownprogramming models as OpenMP, dire
ted to portable and eÆ
ient devel-
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Figure 4.21: OpenMP vs. MPI implementations in Origin2000opment. We have tested di�erent implementations of several appli
ationswith OpenMP and MPI to 
ompare their relative eÆ
ien
y or dete
t dif-feren
es in the e�e
t of SP-ization for so di�erent programming models.In Fig. 4.21 we show the performan
e obtained in an Origin2000 ma
hinefor a simple 
ellular automata program, implemented in several di�erentways. The plots 
orrespond to the same 
odes 
ompiled with no 
om-piler optimization (-O0), and with aggressive 
ompiler optimization (-O3)respe
tively.The 
odes in
lude: (1) OpenMP SP 
ode that exe
utes the iteration loopinside a parallel region, with full syn
hronization barriers before and af-ter 
opying of frontier shared data; (2) OpenMP SP 
ode whi
h spawns
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ollapses a parallel region inside ea
h iteration, with only one expli
itbarrier needed for syn
hronization; (3) OpenMP NSP 
ode based on 
on-trol variables 
ushed a
ross the memory system, with a
tive waitings; (4)OpenMP NSP 
ode syn
hronized through lo
k variables; (5) MPI NSP
ode based on simple point to point 
ommuni
ations; (6) MPI SP 
odewith a barrier added before 
ommuni
ation; (7) MPI SP 
ode with a bar-rier added between send and re
eive parts of the 
ommuni
ation; (8) MPISP 
ode with a barrier added after 
ommuni
ation, before 
omputationphase. Data sizes are s
aled up with the number of pro
essors to keep thetasks load independent of the number of pro
essors. Task loads are highlyregular for this problem, thus SP-ization impa
t should be negligible. Ourresults indi
ate that OpenMP and MPI implementations are similar in per-forman
e, for both: NSP and SP versions. Results are independently of
ode restru
turing, 
hange of primitives or syn
hronization system, or eventhe barrier pla
ement. MPI shows a more stable behavior than OpenMPversions when we do not allow 
ompiler optimizations, whi
h is interestingfor our study (as we dis
uss below). Code versions using native OpenMPperform better than MPI when aggressive 
ompiler optimization is used.However, the performan
e degradation is a 
onstant delay due to extra pro-
ess 
reation and manipulation in MPI, 
ompared with the eÆ
ient nativethread 
reation system used by the OpenMP implementation. MPI resultsare still eÆ
ient and 
ompletely similar regarding the performan
e trends,and the NSP to SP 
ode restru
turing.On
e the programming model is sele
ted, we dis
uss other implementationdetails. We must be 
areful about 
ode or 
ompiler optimizations. Fine tuningsthat are not portable a
ross ma
hines must be avoided. We are mostly inter-ested in simple dire
t 
odes that implement the basi
 
ommuni
ation s
heme forea
h appli
ation. For eÆ
ient software development we must rely in 
ompileroptimizations and eÆ
ient run-time environments tuned to the spe
i�
 targetma
hine. However, we do not yet have a programming framework that reallyexploits all SP properties for optimization. Moreover, our study is fo
used to de-te
t the potential performan
e loss due to transformations at programming level.Advantages obtained during implementation phase are impossible to be fairlyevaluated nowadays, as they 
an be produ
ed by SP 
ompiler transformations,run-time s
heduling, or even by other non-related 
ompiler optimizations, likebetter sequential 
ode manipulation, 
a
he trashing redu
tion or internal bu�er-ing optimization (partial studies of SP optimization advantages exist, and theypoint to good performan
e advantages obtained due to implementation transfor-mations when restri
ted SAs are used, see e.g. [57℄).Thus, we must avoid aggressive optimizations. Compiler 
ode manipulation(loop reordering, unrolls, bu�ering optimizations), may 
hange the syn
hroniza-
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h a way that: (1) implementation model of the resultingtransformed 
ode is impossible to be known or derive even at run-time; (2) thelow level programs resulting from NSP and SP stru
tures are so stru
turallydi�erent that they are not 
omparable anymore. For these reasons, for our ex-periments we have sele
ted no 
ompiler optimization at all (we in
lude the -O0
ag in all 
ompilation jobs).For ea
h appli
ation 
onsidered we generate an NSP and a related SP versionbased on the same original 
ode:1. MPI, NSP version: Based in point to point or basi
 
olle
tive 
ommuni
a-tions.2. MPI, SP version: The former version with added barriers after 
ommuni-
ation phases.First we program a basi
 NSP version of the appli
ation using simple MPI pointto point 
ommuni
ations. This referen
e version may be re�ned to a se
ondNSP version using 
olle
tive operations1. We 
ompare the NSP 
ode with anSP version 
reated by adding barrier syn
hronizations after the 
ommuni
ationphase of ea
h stage or loop iteration.In the experiments with syntheti
 graphs we made the assumption of i.i.d.task loads for any degree of parallelism. To be able to 
ompare results andtrends obtained from syntheti
 graphs, with results obtained with these new realappli
ation experiments, we use s
aled up problem sizes in order to keep themean of the task loads as independent as possible of the number of pro
essors.Problem sizes are also loosely adapted to the relative hardware speed a
rossma
hines to obtain performan
e results in the same order of magnitude, andsimilar 
ommuni
ation to 
omputation ratios.Measures in
lude the total exe
ution time of the parallel se
tion of ea
h 
ode,as well as the mean and deviation of task and 
ommuni
ation times. We 
onsidera task to be a 
ontinuous sequential 
omputation, from the point after a wait forsyn
hronization has been performed (one or more 
ommuni
ations or a barrier)to the next one (see following se
tions for more details). The experiments are
ondu
ted up to all the available pro
essors (2 to 8 in the Origin2000, 16 to 128in the CrayT3E, and 2 to 16 in the Beowulf system).4.2.2 Appli
ation 
ost models at programming levelAppli
ations may be modeled with di�erent detail level (re
all dis
ussion aboutimplementation traje
tory represented in Fig. 3.25, se
tion 3.6.1). An appli-
ation syn
hronization stru
ture is transformed from its original programming1MPI standard states that 
olle
tive operations may or may not be syn
hronized. It isimplementation dependent [140℄.



4.2. REAL APPLICATIONS 189shape during mapping and implementation phases. At programming level, withno resour
e restri
tion, all possible parallelism 
an be exploited. In the mappingto resour
es phase, data partition may a�e
t the task stru
ture of the appli
a-tion. The implementation of the 
ommuni
ation/syn
hronization me
hanismsmay also 
reate new low level stru
tures. Thus, di�erent task graphs modelswill be used at di�erent implementation levels. From simpler ones at the higherabstra
tion levels, to more 
omplex and detailed ones at lower levels.In this se
tion we introdu
e pro
edures to model real appli
ations with taskgraphs at programming or mapping level. These graphs are 
ost models whenprovided with syntheti
 or real workloads. Our 
ost models will be as simplisti
as possible while they will provide at least asymptoti
ally a

urate performan
epredi
tions.At the programming abstra
tion level, the spe
i�
ation of an algorithm isadapted to the syn
hronization stru
tures available in the programming lan-guage and/or model used. Mapping 
onstraints are not 
onsidered. Thus, theprogram 
ould express all the parallelism available in the appli
ation in a very�ne grain. The syn
hronization stru
ture is derived manually from the algorithmspe
i�
ation or program. A graph representing tasks and dependen
es 
an begenerated to represent it. In the 
ase of MPI model, some mapping de
isions(like data-partitioning among pro
essors and other 
ode adaptations to use a�xed number of pro
essors) are taken by the programmer and hard-wired inthe 
ode. The mapping level graphs 
an be derived from MPI 
odes using theme
hanisms des
ribed in this se
tion.For dynami
 appli
ations where the 
ommuni
ation/syn
hronization stru
-ture is data dependent, the exa
t task graph 
an only be generated at run-time,and will be di�erent for di�erent exe
utions. Moreover, even the simplest andmost regular 
odes are usually parameterized with, at least, the degree of par-allelism or the number of iterations of a parallel repetitive 
omputation. Thus,task graphs are representations of a 
lass; they represent the overall stru
ture pro-du
ed at programming level for a given appli
ation (for any number of pro
essorsor iterations). Simpler stati
 and high regular appli
ations will be modeled by avery small amount of graphs that will have the same syn
hronization patterns,even if depth level and degree of parallelism 
hange. More dynami
 appli
ationsshould be modeled with a higher number of graphs, enough to represent thetypi
al stru
tures that 
an be generated for di�erent data.Graph derivation me
hanismsAt programming or mapping level, 
osts for 
ommuni
ation or syn
hronizationme
hanisms are not an issue to 
onsider. Their stru
ture or 
ost 
annot be eval-uated until lower implementation details are 
onsidered. Thus, a very simplisti
task graph model will be perfe
tly a

urate to represent the stru
ture of the
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ation.Nodes (Tasks): Ea
h node of the graph represents a task. We 
onsider a taskto be an atomi
 a
tivity whi
h 
an be exe
uted independently of the lo
alstate of other a
tivities (tasks).Edges (Dependen
es): Edges will represent only pre
eden
e of tasks imposedby the program semanti
s (data dependen
es or other syn
hronization needs).Mutual ex
lusion: Graph edges represent ordered pre
eden
e 
onstraints be-tween tasks. Thus, they are only appropriate for CS. At programming orhigh abstra
t mapping level, there is not a way to translate ME syn
hro-nizations to dire
ted task graph edges. The ME syn
hronization me
ha-nism is solved in s
heduling time, thus, it is an implementation dependentor run-time matter. In these lower levels, when ME is solved, an exe
utionorder will be for
ed between mutual ex
lusive tasks, but we 
annot predi
tit at high abstra
tion levels.To represent non-ordered syn
hronization (ME) in our programming levelmodel we propose to use a di�erent label or 
olor for mutual ex
lusivenodes. Formally, we use a fun
tion that maps subsets of nodes to mutualex
lusion identi�ers. Nodes asso
iated to the same identi�er must be mu-tual ex
lusive. A node mapped to the empty set represents a node that isnot mutual ex
lusive with any other one. No expli
it ordered dependen
ewill be added with edges between nodes due to mutual ex
lusion.ME = fm1;m2; :::;mng� : V !M � MEIdentifying tasks and dependen
es must be done manually from program spe
-i�
ations, and using the appropriate information asso
iated with the program-ming model. In some models, espe
ially those whi
h use impli
it 
ommuni
ationthrough shared-memory, we must have enough information about the low levelsemanti
s and of su
h tools to determine whi
h memory a

esses or primitives ofthe language are lo
al and whi
h others imply a syn
hronization and thereforethe end of a task and the beginning of another one. In expli
it syn
hronizationmodels as message-passing, it is easy to determine the start and end points of atask. The exe
ution of pie
es of 
ode between 
ommuni
ation dire
tives is a task.In the 
ase of MPI, that exhibits expli
it 
ommuni
ation and syn
hronizationprimitives, the identi�
ation of tasks and dependen
es is dire
t. We 
onsider agroup of 
ommuni
ation primitives with no 
omputation 
ode in-between a 
om-muni
ation phase. A task (graph node) is a sequential 
omputation, beginningat the end of a 
omputation phase, and ending before the next 
ommuni
ation
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es (graph edges) may be extra
ted from the parameters of
ommuni
ation primitives that indi
ate the sour
e and target tasks. When data-dependent parameters are used, the appli
ation is dynami
, and several graphsmust be derived for typi
al data values.Workload informationAfter identifying the tasks, we must 
lassify them regarding their exe
ution time
hara
teristi
s. The graph 
an in
lude as many types of task nodes as ne
es-sary (Vt1; Vt2; :::; Vtn). Nodes with the same type will share the same statisti
alworkload model. However, for simpli
ity it is interesting to redu
e the number ofdi�erent task types. Most of the times, espe
ially for highly parallel and s
alableappli
ations, the kernel of the appli
ation 
an be modeled with only one type oftasks whi
h exe
utes similar 
odes.Formally, we split the tasks set V into di�erent subsets. Nodes in ea
h sub-set will be of a di�erent type. Random workload distributions with di�erentparameters are asso
iated to the load of ea
h node type.T = PV = fT1; T2; :::; Tng;Ti = fv 2 V : �(v); D(�i; �i)gIn 
omplete absen
e of workload information we will assume all tasks to be i.i.d.(independent identi
ally distributed). Thus, if no information about workloaddistribution is available, only one node type will be used.Stati
 regular appli
ations modelingWe des
ribe here examples and notations for modeling stati
 regular stru
tures.We introdu
ed in [183℄ a simple language and an asso
iated tool that allowseasy syntheti
 graph re
onstru
tion, based on the expression of regularities byparameterizable syn
hronization fun
tions. This language may be used to easily
onstru
t the graphs asso
iated with regular appli
ation stru
tures dis
ussed inthis se
tion.Many typi
al s
alable appli
ation stru
tures are 
reated by repli
ating thesame lo
al syn
hronization pattern for every task in ea
h iteration. This appli
a-tions may be modeled by meshes with a spe
ial syn
hronization fun
tion appliedto ea
h node in a layer (see mesh de�nitions and notations in se
tion 4.1.3). Forthese repli
ative interlayer 
onne
tion systems, the syn
hronization fun
tion maybe de�ned as a sten
il or lo
al pattern of 
ommuni
ation (see e.g. [162℄).De�nition 4.2.1 Let M = (V;E) be a mesh. Let � be a syn
hronization fun
-tion. � is a Sten
il i� exists R(�) � Z, 
alled Signature of the Sten
il, su
hthat: R(�) = fri; i = 1; :::; a � Pg :



192 CHAPTER 4. EXPERIMENTAL STUDYE = f(v; w) : v 2 Li; w 2 Li+1; �(w) = �(v) + r 2 R(�)gIn other words, the 
ardinality of layers P , and the sten
il signature R(�), de�nea 
olle
tion of number pairs A, in the range [1; P ℄, that de�ne the numbers ofsour
e and target nodes of edges between two 
onse
utive layers:A = f(a; b) : a; b 2 [1; P ℄; b = a+ r 2 R(�)gE = f(v; w) : v 2 Li; w 2 Li+1; (�(v); �(w)) 2 AgDe�nition 4.2.2 A Sten
il Mesh is a triplet M 0 = (P;D;R(�)), that de�nes amesh graph M = (V;E) with jLj = D; jLij = P and E de�ned by the sten
ilsignature R(�).Sten
ils de�ne syn
hronization fun
tions based on lo
al syn
hronization pat-terns. For example, the signature R(�) = f�1; 0;�1g de�nes the syn
hronizationpattern of meshes representing 1D 
ellular automates or neighbor syn
hroniza-tion stru
tures. Fig. 4.22 shows the sten
il mesh M = (4; 3; f�1; 0; 1g). Theedges between layers are de�ned by the following A set, where the number pairsare de�ned by P = 4 and R(�):A = f(1; 1); (1; 2); (2; 1); (2; 2); (2; 3); (3; 2); (3; 3); (3; 4); (4; 3); (4; 4)g
1 2 43

1 2 43

1 2 43

D=3

P=4
R(  ) = { -1, 0, 1 }ρFigure 4.22: 1D Cellular Automata mesh de�ned by a sten
ilThe numbering of meshes nodes may be extended to Nn , to more 
onve-niently represent syn
hronization stru
tures 
ommonly found in appli
ationsbased on 2D,3D 
ellular automates, quad- and o
t-trees, et
. In those 
ases,the parameter P is represented by an n-tuple of natural numbers (P 2 Nn) andthe signature of the sten
il will be a 
olle
tion of Zn tuples. The A set will



4.2. REAL APPLICATIONS 193be formed by pairs of n-tuples. For example, 
onsider the following 2D mesh:M = ((4; 4); 3; f(�1; 0); (0; 1); (0;�1); (0; 1); (0; 0)g). This mesh represents 3 it-erations of a 5-star sten
il 2D 
ellular automata with 4� 4 nodes in ea
h layer.The nodes and the syn
hronization pattern are shown in Fig. 4.23.
1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

5-star stencilLayer Numbering

Layer interconectionFigure 4.23: 2D Cellular Automata mesh de�ned by a sten
ilFor sten
il fun
tions, S is related to the number of elements in the sten
ilsignature: S � jR(�)j. Boundary nodes may have less leaving edges than sig-nature elements be
ause the target numbers may be outside of the numberingrange: (�(v)+ r 2 R(�)) 62 [1; P ℄. However, for large sizes of P , S be
omes 
loserto the signature 
ardinality: limP!1 S = jR(�)j. Thus, we 
onsider S � jR(�)jas a good approximation.We present now the sten
il mesh models for the two highly regular stati
appli
ations sele
ted for our experimental framework in se
tion 4.2.1:Stati
 ma
ro-pipeline: This simple stru
ture is 
reated by a 2 elements sten
ilsignature (S � 2): M = (P;D;R(�)) : R(�) = f0; 1g1D Cellular automata: This appli
ation has been used as example previously.The signature has 3 elements (S � 3):M = (P;D;R(�)) : R(�) = f�1; 0; 1gIn both 
ases, the 
omputation to exe
ute in ea
h task is the same. Thus, allnodes will be of the same type for workload modeling. At programming level,
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h task 
omputes one data element with the lo
al data and the remote datare
eived (one or two elements depending on the appli
ation). At mapping level,a big amount of data is partitioned among P pro
essors. If the input data size isn, let k = n=P be the number of data elements to be pro
essed lo
ally for ea
hpro
essor. Let 
 be the 
omputation time needed to pro
ess one data element:8v 2 V : �(v) � k � 
Other typi
al appli
ation stru
tures are represented by graphs de�ned bysyn
hronization fun
tions that are 
hanging with the number of layer i or node�(v), or where the P parameter is also variable along the layers. We des
ribehere the graph models of other stati
 appli
ations sele
ted for our experimentsin se
tion 4.2.1. They present regularities that allows to express them withparameterizable and more 
omplex syn
hronization fun
tions:Butter
y networks (FFT): For this kind of stru
tures, D parameter is de-pendent on P , be
ause the number of iterations needed to 
omplete anFFT algorithm depend on the data size: D = 1+ log2 P . The syn
hroniza-tion fun
tion for this stru
ture is dependent on the number of the layer.Let Li; Li+1; i = 1; :::;D � 1 be two 
onse
utive layers of the mesh. Wede�ne the butter
y fun
tion fi : [1; P ℄! f�1;+1g as:fi(a) = 1� 2� b(((a� 1) mod 2i)=2i+1)
The syn
hronization fun
tion may be de�ned as:�i(�(v)) = f�(v); �(v) + fi(�(v)) � 2i�1gAn example of this stru
ture for P = 4 is shown in Fig. 4.24. The lo
al FFTfun
tion always uses one element of lo
al data and one element of remotedata. For this stru
ture the syn
hronization density value is exa
tly S = 2.At programming level, ea
h node represents the exe
ution of the FFT fun
-tion for two data elements, and all nodes are of the same type for workloadmodeling. However, at mapping level, when data is partitioned among a�xed number of pro
essors, the nodes in the �rst layer exe
ute the full FFTalgorithm for the lo
al pie
e of data. If data pie
es have k elements, thelo
al 
omputation 
omplexity is k � log2 k. The nodes in following layersexe
ute only one FFT iteration, with lo
al and re
eived data as input. The
omputation 
omplexity is only k. Thus, at mapping level, in this kind ofappli
ation we must distinguish two types of nodes for workload modeling.For n data elements, let k = n=P and let 
 be the 
omputation time topro
ess one data element:8v 2 L1 : �(v) = k � log2 k � 
8v 62 L1 : �(v) = k � 
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1 2 43

1 2 43

1 2 43

(a) = { a, f(a) x 2     }i-1ρ

L1

L2

L3

D=3

P=4Figure 4.24: FFT butter
y networkMatrix fa
torization (LU redu
tion): We study the stru
ture of a LU for-ward redu
tion algorithm without pivoting (see e.g. [79℄). The stru
tureof this appli
ation represents most fa
torization methods for dense matri-
es, like Cholesky or QR fa
torizations. A triangular shaped syn
hroniza-tion stru
ture is generated. The 
ode, parallelized by rows, is presentedin Fig. 4.25. Given the sizes of the input matrix (n� n), at programming(1) // LU ALGORITHM(2) DO k=1,n-1(3) PARALLEL DO i=k+1,n(4) li;k = ai;k=ak;k(5) DO j=k+1,n(6) ai;j = ai;j � li;kak;j(7) END-DO(8) END-DO(9) END-DOFigure 4.25: LU forward redu
tion algorithmlevel P = n�1 and D = n. The stru
ture presents layers with a de
reasingnumber of nodes (
olumn elements to be updated) along iterations (rowupdatings). In ea
h iteration, a node 
omputes the row that is needed forall the nodes in next iteration to update their rows. Syn
hronization pat-terns are: one to all from �rst node in a layer to all nodes in the next layer;and one to one for the rest of nodes. Thus, the syn
hronization fun
tion isdi�erent for di�erent nodes in a layer.The graph model of matrix fa
torizations is de�ned by the following de
-



196 CHAPTER 4. EXPERIMENTAL STUDYlarations (let n be the dimensions of the input matrix Mn�n):D = n;P = n� 1Pi = � 1 if i = 1n� i+ 1 if i 6= 1�(�(v)) = � fa : a 2 [1; Pi+1℄g if �(v) = 1f�(v) � 1g if �(v) 6= 1

... ... ... ...

...

...

...

...

...

...

...

... ... ... ... ...

(b)

Programming level

(a)

Mapping level (P=4)

Figure 4.26: LU redu
tion: Programming level and mapping level graphsAn example of the stru
ture generated is shown in Fig. 4.26(a). The greynodes represent the tasks that 
ompute the row that must be made a

es-sible to all other nodes in next iteration. For this appli
ations S parametermay be analyti
ally determined from the syn
hronization des
riptions. The



4.2. REAL APPLICATIONS 197S value is dependent on the P value:jV j = (n2 � n)=2jEj = n2 � 2n+ 1S = 2n2�2n+1n2�nS < 2; limn!1 S = 2Matrix fa
torizations present syn
hronization stru
tures with a very low Sparameter values.Although this stru
ture is similar to other fa
torization algorithms (as e.g.Cholesky fa
torization), the workload distribution will be di�erent for ea
hfa
torization algorithm. In fa
t, grey nodes in Cholesky fa
torization domore 
omputation operations than the rest in the same layer. For our LUforward redu
tion algorithm ea
h node in the same layer does the samenumber of element updates, but the number of updates is de
reasing alongiterations. Let be 
 the 
omputation 
ost of one data element update:�(v 2 Li) = � 0 if i = 1
� (n� i+ 2) if i 6= 1LU redu
tion is a problem with many di�erent possible mappings and im-plementations that heavily 
hange the syn
hronization pattern of the orig-inal program model shown in Fig. 4.26(a). For example, a typi
al imple-mentation a
hieves load and 
ommuni
ation balan
ing by distributing rowsof the matrix to pro
essors, with a stride equal to the number of pro
essors.Thus, for P pro
essors, pro
essor i will store the following set of matrixrows: Ri = fri; r(P+i); r(2P+i); r(3P+i); :::gCommuni
ation balan
ing is 
reated be
ause in ea
h iteration a di�erentpro
essor 
omputes and sends the row that all of them need to updatethe rest of their data in the following iteration. Cy
ling the pro
essorsthat send one row to the others, 
hanges the graph topology. Now, it isdetermined by n and P parameters:D = n;Pi = 8<: 1 if i = 1P if 1 < i � n� P + 1n� i+ 1 if i > n� P + 1



198 CHAPTER 4. EXPERIMENTAL STUDY�(�(v)) = 8<: fa : a 2 [1; P ℄g if �(v)� 1 = (i� 1) mod Pf�(v)g if �(v)� 1 6= (i� 1) mod P ; i < n� P + 1f�(v) � 1g if �(v)� 1 6= (i� 1) mod P ; i � n� P + 1An example of the resulting mapping level graph for P = 4 is shownin Fig. 4.26(b). For these mapping level graphs, the load is not so regularfor nodes in the same layer, due to the di�erent number of rows that ea
hnode may be pro
essing. Thus, the workload model is more 
ompli
ate.Let us assume (n mod P ) = 0 for simpli
ity:�(v 2 Li) = 8<: 0 if i = 1b(n� i+ 1)=P 
 � row if i 6= 1; �(v) � 1 < (i� 1) mod Pd(n� i+ 1)=P e � row if i 6= 1; �(v) � 1 � (i� 1) mod Prow = 
� (n� i+ 2)We 
on
lude that extra
ting graph models from programming level spe
i�-
ations is a simple task for typi
al stati
 programs, where the syn
hronizationpatterns are regularly repeated for s
alability. Mapping level graphs may memore 
ompli
ate and highly di�erent from the 
orresponding programming levelgraphs. As the data is spread a
ross pro
essors in di�erent patterns, the syn
hro-nization stru
tures are adapted to these new patterns. Nevertheless, it is stillan a�ordable task. The graph models obtained 
learly represent the task andsyn
hronization stru
tures of the appli
ations, and may be used with automati
SP-ization te
hniques to obtain equivalent SP versions of the original appli
ation.4.2.3 Appli
ation 
ost models at implementation levelWhen implementing an appli
ation for an spe
i�
 ma
hine model, new 
on-straints appear. The 
ommuni
ation/syn
hronization stru
tures must be adaptedto the low level me
hanisms of the sele
ted target ma
hine model. ME may betransformed to stati
 dependen
es through s
heduling in some models, while oth-ers will relay this task to run-time 
ontention in 
ommuni
ation systems. Thus,the implementation of 
ommuni
ation/syn
hronization me
hanisms may trans-form the task graph, adding new details. Communi
ation stru
ture and 
om-muni
ation delays are now an important issue. They are introdu
ed as nodes oftheir own spe
i�
 type. We will distinguish as many node types as needed (tasks,point to point 
ommuni
ations, barriers,...). Nodes of the same type will sharea 
ommon workload distribution.The 
ommuni
ation graph stru
ture is dependent on the implementation ofthe underlying 
ommuni
ation layer and parallelization tools sele
ted. For ex-ample, di�erent implementations of a message passing library (as MPI) mayimplement the 
ommuni
ation stru
ture of a broad
ast 
olle
tive operation in
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hronized vs. non-syn
hronized, one to all point to point 
om-muni
ations vs. a tree). Programming tools may also in
lude spe
i�
 s
hedulingalgorithms that produ
e di�erent transformations to the graph stru
ture. Thus,knowledge of all the low level details of the programming model 
hosen for im-plementation is needed to derive a

urate graph 
ost models.Deriving implementation level graphsWe des
ribe a general approa
h to derive task graphs from a program des
riptionin a given ma
hine and implementation model. This approa
h may be done au-tomati
ally for some models and programs. We spe
i�
ally 
omment foundationfor automati
 
onstru
tion of task graphs in message passing systems.Tasks identi�
ation: Tasks are identi�ed in the same way as it was done atprogramming level (see se
tion 4.2.2). The exe
ution of sequential 
odebetween two 
ommuni
ation or syn
hronization operation (or 
olle
tion ofoperations without 
omputation in-between) is 
onsidered a task.Communi
ation model: For our graph models we must use a very simplisti

ommuni
ation representation. Otherwise, the graph will be too 
omplexto derive or handle. The details of 
ommuni
ation 
an be di�erent inany parallel programming tool and even in ea
h implementations of it. Ingeneral we must simplify as mu
h as possible but with enough detail to geta trustful approximation.We present here a simple modelization of 
ommon operations in the 
om-muni
ation layer of the MPI interfa
e. We 
onsider two di�erent imple-mentations. One for CrayT3E and other for a Beowulf system (mpi
h).Both implementations share 
ommon 
hara
teristi
s that let us model oursimple 
ommuni
ation s
hemes in the same way. A graphi
 representationof ea
h 
ommuni
ation form dis
ussed is shown in Fig. 4.27.� Four types of 
ommuni
ation nodes will be used (V
1; V
2; V
3; Vb)� When a point to point 
ommuni
ation appears alone, it 
an be 
on-sidered as a whole in only one node (V
1).� In the situation where a program is issuing several point to point
ommuni
ations one after the other, all of them should be divided intwo nodes:1. The �rst phase node (V
2) will 
orrespond to bu�ering the messageand initiating the real 
ommuni
ation. This phase will also delaythe beginning of the next 
ommuni
ation.2. The se
ond phase node (V
3) will 
orrespond to real 
ommuni
a-tion and re
eption for the message, and it will delay only the startof the re
eiving task.
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point2point comm.

Isolated

synchronization
Barrier

Broadcast

Detailed point2point comm.
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(b) (a) Initiating comm.
(b) Real comm.

Figure 4.27: Communi
ation models for MPI� A broad
ast 
ommuni
ation will be represented by p (the number ofpro
essors) simultaneous point to point 
ommuni
ations (V
1). Thiswill 
omply with the MPI interfa
e that states that the implemen-tation of a broad
ast operation 
an or 
annot be syn
hronized. Im-plementations of the broad
ast operations 
an distribute the messagespawning it through pro
essors in di�erent ways, being typi
al a vir-tual tree stru
ture. Nevertheless, for simpli
ity we will 
onsider allthe nodes to have the same workload distribution. Measures in realma
hines support the a

ura
y of this simpli�
ation. A 
ommuni
a-tion node will also 
onne
t the 
ommuni
ation initiating task with thenext task in the same pro
essor, to represent the 
ost of issuing thebroad
ast.� Barrier syn
hronizations will be modeled with a new type of nodes(Vb). In message-passing interfa
es the barriers are typi
ally imple-mented with a tree like 
ommuni
ation stru
ture. The 
ost is variablewith the number of nodes involved in the barrier. Thus, a di�erenttype of node should be use for barriers with di�erent number of pro-
essors. However, the tree-like stru
tures have a logarithmi
 e�e
ton the 
ost when the number of pro
essors is in
reased. For simpli-�
ation, only one type of node will be introdu
ed for ea
h range ofpro
essors number between powers of 2 (Vb2; Vb4; Vb8; Vb16; :::). Bar-rier times are easily predi
ted by dire
t measurement for any givennumber of pro
essors.Our model is simple enough to easily derive the implementation level task graphs,and a

urate enough to get asymptoti
 predi
tions of the appli
ation behavior ifproper workload models are provided for both, tasks and 
ommuni
ations.
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tion we show an example of how to use these simpli�ed 
ost models topredi
t important information about the e�e
ts of SP-ization te
hniques whendi�erent MPI implementations of an algorithm are 
onsidered.We have 
hosen the LU redu
tion appli
ation be
ause it shows di�erent per-forman
e e�e
ts when SP-ization is applied to di�erent implementations of thesame algorithm. These e�e
ts are not dete
ted when using a programming levelmodel, but they are predi
ted and explained with our simple implementationlevel graph 
ost models.We dis
uss implementations of the forward redu
tion algorithm, mapped byrows interleaving as presented in se
tion 4.2.2. Two implementations for the
ommuni
ation stage have been 
onsidered (See algorithms in Fig. 4.28):IMP-1: A simple loop of point to point 
ommuni
ations.IMP-2: A broad
ast operation.SP versions of both implementations are easily 
onstru
ted adding a full barriersyn
hronization after the 
ommuni
ation stage of ea
h iteration.(1) // LU IMP-1(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) DO pro
=1,p(6) IF p 6= myself THEN(7) Send(pro
,row)(8) END-IF(9) END-DO(10) ELSE(11) Re
eive(row)(12) END-IF(13)(14) Barrier (ONLY SP VERSION)(15)(16) // COMPUTING: UPDATE ROWS(17) ...(18) END-DO

(1) // LU IMP-2(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) Copy row in sending position(6) END-IF(7) Broad
ast(row,mod(iteration,p))(8)(9) Barrier (ONLY SP VERSION)(10)(11) // COMPUTING: UPDATE ROWS(12) ...(13) END-DO
Figure 4.28: LU redu
tion message-passing algorithmsThe 
orresponding graph models for a mapping in 4 pro
essors are shownin Fig. 4.29 The key to distinguish the types of nodes follows:
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ommuni
ation V
1 Bla
k nodesFirst phase 
ommuni
ation V
2 Big dark grey nodesSe
ond phase 
ommuni
ation V
3 Small dark grey nodesBarriers Vbp Light grey nodes with dashed lineTasks are exe
uting updates on less data as iterations pass by. The meanload time of tasks is de
reasing with the layer depth. In the mapping modelwe presented a workload model that was quite 
ompli
ate; dependent on thenumber of layer (iteration) and number of node inside the layer (pro
essor). Wehave tested other simpli�ed workload models. For our example we have 
hosento derive a very simplisti
 task graph with only one type of node for all tasks.We will use the same Gaussian random distribution to 
al
ulate the load in ea
hnode. Modeling any task load with the same random distribution is a very roughapproximation. However, we �nd that using statisti
al information from sampleexe
utions, for mean and deviation parameters, the a

ura
y is enough for ourpurposes. It is the 
ommuni
ation pattern the one whi
h plays the importantrole in the results.The statisti
al workload information 
an be obtained from sample exe
utionsor by any known predi
tion method. The results obtained will be highly sensibleto the workload information a

ura
y, espe
ially be
ause we are using su
h arough approximation of the real workload model. The mean and deviations usedfor task and 
ommuni
ation nodes have been statisti
ally obtained, from dire
tmeasures when exe
uting 
odes of the MPI implementations dis
ussed here. Fortasks we use the overall mean and deviation when all tasks are 
onsidered to-gether. Two ma
hines with di�erent 
ommuni
ation times and 
hara
teristi
sare 
onsidered; a CrayT3E and a Beowulf system.The graph models obtained are used to simulate performan
e behavior of theSP and NSP versions of ea
h implementation. The results obtained from themodels 
an be used to determine whi
h implementation may be safely translatedto SP (asymptoti
 behavior is not modi�ed).We present �rst an a

ura
y study, 
omparing predi
tions obtained from thegraph models with exe
ution times of real implementations in a CrayT3E and aBeowulf system. To supply graph models with workloads, we gather statisti
alinformation about mean and deviation values for the load on di�erent types ofnodes, from experiments with real 
odes. The size of the problem is s
aled upwith the number of pro
essors, using matri
es of double data size when doublingthe number of pro
essors. The initial matrix size has been empiri
ally 
al
ulatedfor ea
h ma
hine to obtain similar task times. Table 4.1 shows the estimated pa-rameters in the two ma
hines 
onsidered, for the number of pro
essors available.The load values have been rounded up before using them for graph simulations.CrayT3E has faster mean 
ommuni
ation times with lower deviations, even



4.2. REAL APPLICATIONS 203
IMP-2 SP versionIMP-2 NSP versionIMP-1 NSP version IMP-1 SP version

Figure 4.29: Implementation models of LU redu
tion with distributed rows
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1 V
2 V
3 VbpPro
. � �2 � �2 � �2 � �2 � �216 19 0.28 0.66 0.00001 0.22 0.00001 0.44 0.00001 0.104 0.00000132 19 0.28 0.88 0.00001 0.22 0.00001 0.66 0.00001 0.143 0.00000164 19 0.28 1.32 0.00001 0.22 0.00001 1.10 0.00001 0.175 0.000001128 19 0.28 2.22 0.00001 0.22 0.00001 1.98 0.00001 0.224 0.000001BeowulfVt V
1 V
2 V
3 VbpPro
. � �2 � �2 � �2 � �2 � �22 19 0.31 1.00 0.0001 1.00 0.0001 0.00 0.0001 0.50 0.000014 19 0.31 2.00 0.0005 1.00 0.0001 1.00 0.0001 1.00 0.000108 19 0.31 6.00 0.0007 1.00 0.0001 5.00 0.0001 3.00 0.0010016 19 0.31 9.00 0.0010 1.00 0.0001 8.00 0.0001 6.0 / 2.0� 0.00100Table 4.1: Load estimated times (millise
onds)for a large number of pro
essors. Thus, the results of the simulations will be morereliable. The barrier syn
hronization system is also more eÆ
ient when s
alingup. It is noteworthy the strange e�e
t of barrier times for 16 pro
essors in theBeowulf system. After a group of point to point 
ommuni
ations, full barriertime still grows up (6.00ms). However, after a broad
ast operation, the time iseven smaller than with less pro
essors (2.00ms). It seems that an optimizationof either the MPI implementation or the hardware is 
arried out when a barrieris issued after a broad
ast with all the pro
essors in the system. Communi
ationmean times in the Beowulf are in general not so mu
h reliable, as unexpe
tedpeaks are 
ommonly found.Comparative results from real exe
ution times and predi
tions with the graphsare shown in Fig. 4.30. In all 
ases the performan
e predi
ted times are similarto the real measures, and they show the same slope tenden
ies.The �rst e�e
t observed is that IMP-2 s
ales better than IMP-1. The graphmodel 
an be used to explain the e�e
t. IMP-1 
reates a strange 
ommuni
ationpattern, that is not well balan
ed. The loop is always sending messages topro
essors in stri
t numbering order while the origin of 
ommuni
ations is 
y
ling.In Fig. 4.28 (NSP IMP-1), we 
an see that the �rst phase of ea
h point to point
ommuni
ation, a

umulated for all send primitives, is not evenly distributed toother pro
essors. Depending on how signi�
ant is the mean load of the V
2 nodes
ompared to V
3, the overall performan
e 
an be badly a�e
ted. Moreover, asmore pro
essors get involved, the delay grows higher. The relative importan
e ofV
2 vs. V
3 loads is higher in the Beowulf system than in the CrayT3E, as shownin Table 4.1. However, we use many more pro
essors in the CrayT3E. Thus,the �nal e�e
t is even more noti
eable in CrayT3E. The broad
ast primitive ofIMP-2 s
ales 
learly better than the IMP-1 for both NSP and SP version.Changing the loop indexes to 
y
le with the pro
essor initiating the 
om-
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Figure 4.31: 
 
omparison: Real times 
 vs. predi
ted times 
muni
ations will alleviate part of the problem. However, the SP version thatadds a barrier after the 
ommuni
ation stage is always delaying all pro
essesup to the a

umulation of all 
ommuni
ations �rst phase. When the number ofpro
essors grows, the problem gets linearly worse. Fig. 4.31 shows the valuesof 
 (performan
e loss due to SP-ization) for real and predi
ted results. It 
anbe seen that IMP-2 is perfe
tly suitable for SP programming, as the 
 valueskeep almost 
onstant when the appli
ation is s
aled up. The loss of performan
ein SP version of IMP-2, 
learly seen in the Beowulf 
ase, is generated by thetimes needed for barrier syn
hronizations when the number of pro
essors growup. Better barrier syn
hronization me
hanisms will diminish this loss. The peeksin 
ommuni
ation/syn
hronization times in the Beowulf also helps this grow.We must also point out the 
urve slope di�eren
es between measured and
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ted 
 values. Sin
e we used simpli�ed graph models in our simulations,some irregularities appear, espe
ially in the 
entral part of the number of pro-
essors axis. In general, predi
ted results are higher than real measures, whi
h isa 
onsequen
e of the rounded up approximations we have used. As the numberof pro
essors (and thus the exe
ution time) grows, the relative importan
e of a
-
umulated rounding errors is smaller. All this 
ould perfe
tly explain the shapedi�eren
es of the 
 predi
tion 
urves.With the predi
tions obtained with our simpli�ed graph models we 
an re
-ognize that IMP-2 is in general better than IMP-1 due to the implementation onthe underlying message-passing library. IMP-1 is espe
ially not well suited forSP-ization with full barrier syn
hronization. On the other hand, IMP-2 behaves
orre
tly in SP version, providing a very small loss of performan
e.Con
lusionThe previous study shows how very simple graph models 
an be used to asymp-toti
ally predi
t performan
e e�e
ts produ
ed by syn
hronization stru
ture mod-i�
ations. For simpler appli
ations, graph 
ost models derived at programminglevel will be a

urate enough. When more 
omplex mappings are used, moredetailed models must be derived, at mapping or even implementation abstra
-tion levels. However, very simple graph modelation te
hniques, that 
an be evenautomated to extra
t stru
ture from 
odes, turn up to be a

urate enough.4.2.4 Stati
 appli
ations resultsIn this se
tion we dis
uss the results of our study of 
 and � for stati
 appli
a-tions. The experimental framework design was dis
ussed in se
tion 4.2.1. First,we obtain experimental measures of � from the exe
ution times obtained withreal MPI implementations of the NSP and SP versions of the sele
ted appli
a-tions for di�erent ma
hines. We extra
t workload information by monitoring theappli
ations exe
ution. Using statisti
al information about the real workload, weexperimentally estimate 
 with the 
ost models dis
ussed in previous se
tions,to validate the simple graph modeling te
hniques for ea
h appli
ation sub
lass.We 
ompare our � results with 
 predi
tions and general trends obtained forsyntheti
 graphs, presented in se
tion 4.1.We more pre
isely de�ne here the relative performan
e indi
ator we use for�. Our referen
e programming model will be the MPI with point to point (orbasi
 
olle
tive) 
ommuni
ations implementation.De�nition 4.2.3 Let TMPI be the exe
ution time of the NSP version with pointto point (or basi
 
olle
tive) 
ommuni
ations. Let TMPI+Barriers be the exe
u-tion time of the SP version generated adding barrier syn
hronizations after ea
h



208 CHAPTER 4. EXPERIMENTAL STUDY
ommuni
ation phase. Then: � = TMPI+BarriersTMPIThe following results are exposed:1. Performan
e e�e
ts predi
ted with the graph models are similar to thoseobtained with syntheti
 graphs:In the 
ase of Ma
ro-Pipeline and 1D Cellular automata, the graph modelsare inside the syntheti
 meshes graph 
lasses studied in se
tion 4.1.3. Infa
t, Ma
ro-Pipeline was used as foundation for the unbalan
ed syn
hro-nization meshes experiments. The 1D Cellular automata is also similarto the random graph meshes generated with S = 3. However, in ran-dom meshes, the edges were not propagating dependen
es only to neighbornodes, but to further nodes with the same probability. In neighbor sten-
il based graphs, the dependen
es are spread a
ross layers slower than forrandom syn
hronization fun
tions, and the SP-ization should produ
e alittle higher impa
t. In Fig. 4.32 we show that using random distributedworkloads with the 1D Cellular automata graph model, we obtain verysimilar predi
tions as for S = 3 syntheti
 meshes. However, the 
 resultsare slightly higher (
ompare with plot slopes in Fig. 4.10 and Fig. 4.11).The FFT appli
ation graph model present a low syn
hronization densityparameter S = 2, and a number of layers dependent on the degree ofparallelism D = log2 P . Thus, the number of layers is always low, and the
riti
al parameter is the layers size P . In Fig. 4.33 we show the resultsof experiments with FFT graph models supplied with random workloads.The results 
on�rm the same logarithmi
 like e�e
t of parameter P on 
,for butter
y network stru
tures.The LU redu
tion graph model derived at programming level, present inter-esting features. The S; P;D parameter values are dependent on the inputmatrix size n. Thus, the topology has always a similar triangular shape,more di�erent from the syntheti
 meshes than the previous appli
ationsstudied. Moreover, the workload model is dependent on the number oflayer. For experiments with random workloads we propose a random work-load model where �i is determined as a fun
tion of the layer index by theworkload model proposed in se
tion 4.2.2 for LU, and � is 
omputed as afun
tion of �i and a 
hosen variability:�i = �i � & : & 2 f0:1; 0:2; 0:5; 1gIn Fig. 4.34 we show the e�e
t produ
ed on 
 when we s
ale up the pro-gramming level stru
ture. For this graph model, P;D parameters are equal
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Figure 4.32: 
 results for random workloads in 1D Cellular automata modeland determined by the input matrix size n. The S parameter is very low(below 2) and the full barrier syn
hronization 
annot be avoided by theSP-ization te
hniques. Thus, as expe
ted, worse results than for other ap-pli
ations are obtained. Although the plot slopes are higher than for otherappli
ations, the same logarithmi
 tenden
ies are observed.The mapping level graph model has been also supplied with random work-loads. In this 
ase, n determines D but P is only restri
tion by P � D.Thus, we have 
ondu
ted experiments to test the e�e
t of both parametersseparately with huge graphs (up to half million nodes). In Fig. 4.35 weshow the 
 plots for both experiments. As the minimum value of D is thesame as P , the limited e�e
t of this parameter, found in syntheti
 meshes,
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Figure 4.33: 
 results for random workloads in FFT graph modelappears immediately, even in the lower possible values. However, we ob-serve some irregularities and a very small in
reasing of 
 when the inputmatrix size in
rease. The reason is the presen
e of a very small pathologi
albehavior due to some unbalan
ing in the syn
hronization patterns, as dis-
ussed in se
tion 4.1.3. The e�e
t of P parameter is following the generallogarithmi
 tenden
y, ex
ept for the irregularities produ
ed by both: thesmall unbalan
ing in the syn
hronization patterns (as found in syntheti
meshes) and the 
hange of shape experimented by the graph with the Pvalues. The pathologi
al e�e
t due to unbalan
ed syn
hronization patternis produ
ing the slope irregularity around D=4, but the triangular part ofthe graph dominates the behavior after P = D=2, produ
ing another slope
hange.It is interesting to noti
e that, 
onsidering the full range of results, theworkload balan
e is mu
h more important than the type of appli
ationor S parameter value. The big di�eren
es on 
 among all the appli
ationsstudied, are produ
ed for big values of &. For & = 0:1 the 
 values are small,and the slopes are very similar (with less than 20% of di�eren
e among allappli
ations and syntheti
 meshes), even for the biggest P values tested.2. Task workload balan
e in stati
 appli
ations:A prin
iple design of parallel appli
ations is to distribute load a
ross pro-
essors. For all stati
 appli
ations tested, the workloads are very well bal-an
ed. All task in these examples are exe
uting the same pie
e of 
odefor the same amount of data. As dis
ussed in se
tion 4.2.2, FFT or LU



4.2. REAL APPLICATIONS 211

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500 600 700 800 900 1000

γ

n (P,D)

LU reduction (S<2) Programming level
G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.34: 
 results for random workloads in LU programming level modelappli
ations present this 
hara
teristi
 only layer by layer, that is perfe
tlyenough to talk about a well-balan
ed 
omputation.Thus, as predi
ted at programming level when modeling the workloads (seese
tion 4.2.2), the task loads are highly regular, showing in most 
ases a neg-ligible deviation (see Table 4.2). In the table we 
an appre
iate performan
ee�e
ts introdu
ed in a very low level by the ma
hine ar
hite
ture. The ex-e
ution times of tasks (sequential 
odes) be
ome unstable only when theuser task is sharing the pro
essor time with operative system tasks. Thise�e
t never happens in the CrayT3E, as the operative system laun
hes theuser jobs in other free pro
essors. In the Origin2000 (a 

-NUMA ma
hine)it is noti
ed only when the number of pro
essors used is equal to the max-imum installed in the ma
hine. The operative system is typi
ally runningin only one pro
essor. Hen
e, only when this last pro
essor must be sharedwith user pro
esses, awful e�e
ts that degrades the user tasks performan
eappear (
a
he trashing, pro
esses migration a
ross pro
essors, et
.). TheBeowulf, representative of NOWs and low 
oupled systems, is the worst
ase. In these ma
hines, most of the operative system tasks, and the MPIdaemon operations, are exe
uted lo
ally in ea
h node. Thus, the user tasksmust share time with them. As the amount of pro
essors in
reases, more
ommuni
ation and syn
hronization operations share the limited networkbandwidth. Thus, their times in
rease. Moreover, the 
omplexity of lowlevel 
ommuni
ation tasks also in
reases (
olle
tive operations, as barriersare a good example). Thus, the time of exe
uting the same pie
e of 
odewith the same data in
reases and be
omes less predi
table. This e�e
t, typ-
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Figure 4.35: 
 results for random workloads in LU programming level modeli
al in low 
oupled systems (for whi
h Grid 
omputing is the extreme 
ase),enfor
es an idea related to SP SA: potential bene�
ial e�e
ts 
an be ob-tained using hierar
hi
al division of 
omputations, in lo
ally syn
hronizedsubparts (see e.g. [119, 118℄).However, the real workload variability, statisti
ally measured, is really smalleven for the worst 
ases (saturated Beowulf):& < 0:024; & � 0:005This leads to extremely low performan
e losses for the SP versions.
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ro-Pipeline Cellular automataPro
. � �2 � �22 23 <0.001 28 <0.0014 23 <0.001 28 <0.0016 23 <0.001 28 0.0018 23 0.002 29 0.003CrayT3EMa
ro-Pipeline Cellular automataPro
. � �2 � �216 52 <0.001 27 <0.00132 52 <0.001 27 <0.00164 52 <0.001 27 <0.001128 52 <0.001 27 <0.001BeowulfMa
ro-Pipeline Cellular automataPro
. � �2 � �22 21 0.003 27 <0.0014 22 0.105 27 <0.0018 23 0.136 28 0.00216 23 0.288 28 0.002Table 4.2: Statisti
al workload information for highly regular appli
ations (ms.)3. Very low performan
e degradation:In Fig. 4.36 we show the � plots that summarize the results obtained withreal appli
ation 
odes in di�erent ma
hine ar
hite
tures. We observe thegeneral logarithmi
 tenden
ies when the appli
ations s
ale up, predi
tedwith the programming level models. However, with extremely low slopesdue to the small relative deviation of the task loads. Irregularities in theplots are produ
ed by di�erent low level ma
hine e�e
ts des
ribed below.4. Ma
hine ar
hite
ture independen
e, and side e�e
ts:Di�erent irregularities and strange e�e
ts in � plots are observed a
rossma
hines (see e.g. the performan
e upgrading of LU redu
tion appli
ationsin CrayT3E and Origin2000 for some spe
i�
 number of pro
essors). All ofthem are easily explained by the di�erent nature of ma
hine ar
hite
tureand operating system a
tivities, that a�e
t every appli
ation run.We observe that the most regular results are obtained in the CrayT3E,where the task loads are more stable and the 
ommuni
ation 
osts arelower. The performan
e loss is less than 2% in the worst 
ase for 128pro
essors. In the Origin2000, the barrier 
osts are 
omparatively higher,and it a�e
ts the performan
e. We also see the high impa
t of runningthe appli
ations with the maximum number of pro
essors available in thema
hine (8 pro
essors in this 
ase), when the user tasks share resour
es



4.2. REAL APPLICATIONS 215(as CPU) with the operative system tasks, that are typi
ally running inonly one pro
essor. In the Beowulf system we appre
iate the in
reasing
osts that appear due to irregularities produ
ed by task, operative system,and 
ommuni
ation overlapping in every node. However, the performan
edegradation is still very low (less than 5% for the worst 
ases).A remarkable 
ase previously dis
ussed is the LU redu
tion appli
ation.Re
all the implementation 
onsiderations exposed in se
tion 4.2.3. Even ifno 
ompiler optimization is used, the 
ommuni
ation layer performs run-time optimizations when a 
olle
tive 
ommuni
ation primitive is followedby a barrier. This e�e
t is observed for spe
i�
 numbers of pro
essors in theCrayT3E and Origin2000. In these ma
hines, the MPI implementations areoptimized by the vendor for the ar
hite
ture and low-level hardware details.An improvement of performan
e, around 2%, is obtained in some 
ases.Apart from this predi
table irregularities, the performan
e degradation dueto added dependen
es is proportional to hardware speed a
ross ma
hines.Spe
i�
 ma
hine e�e
ts with high impa
t in performan
e, a�e
t in the sameway to the NSP and the SP versions. For example, in the Beowulf system,we observe 
ompletely di�erent 
ommuni
ation time response when appli-
ations s
ale up from 6 to 8 pro
essors (see Fig. 4.37). Nevertheless, theydo not modify, or even improve, � results (the relative performan
e impa
tis de
reased when a 
onstant is added to both: NPS and SP exe
utiontimes).Thus, di�erent ar
hite
ture models do not 
reate unexpe
ted di�eren
es inthe � tenden
ies. The general 
on
lusions obtained from the results arethe same in all 
ases. The real performan
e e�e
ts produ
ed by 
hangingthe programming style or model to a restri
ted PPM, is independent of thema
hine ar
hite
ture.We 
on
lude that: (1) General tenden
ies (e.g. logarithmi
 e�e
t when s
alingup) observed with syntheti
 graphs are found in real appli
ations; (2) stati
, s
al-able appli
ations are, in general, well balan
ed appli
ations. Thus, as predi
tedwith syntheti
 graphs, and the appli
ation spe
i�
 graph models, the potentialperforman
e e�e
t when programming these appli
ations in SP programmingmodels is extremely low; even when no SP spe
i�
 optimization or run-time en-vironment is exploited. For some appli
ations (as LU redu
tion implementedwith broad
ast), highly stru
tured syn
hronization is exploited by implementa-tions at run-time level, even by non-spe
i�
 NSP programming models as MPI.4.2.5 Dynami
 appli
ations resultsIn this se
tion we dis
uss the results of our study of 
 and � for dynami
 ap-pli
ations. Re
all the experimental framework design dis
ussed in se
tion 4.2.1.
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Figure 4.37: Exe
ution times of some appli
ations in the Beowulf systemDue to the data-dependent nature of these appli
ations, we 
an only explore 
as a fun
tion of stru
tures generated by spe
i�
 appli
ations for a given inputdata. Hen
e, we use example stru
tures, representative of the typi
al stru
turesgenerated by a given appli
ation. These example stru
tures 
an be obtained atrun-time by monitoring existing appli
ations, or 
an be derived manually fromthe data stru
ture and the 
ode. The se
ond method is 
lumsy, una�ordablefor 
omplex appli
ations, and impossible when run-time de
isions (as some MEor s
heduling solutions) are inherent to the original 
ode. For our experimentswe have sele
ted several available examples of task graphs generated manuallyor during run-time for two typi
al appli
ations, representative of important andlarge appli
ation 
lasses dete
ted in the 
lassi�
ation presented in se
tion 2.6.Both are based on �nite element solvers, and they represent the stru
tures gen-
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al iterative and dire
t solvers for sparse-matrix 
omputations.Iterative solvers and graph partitioningMany �nite element and PDE problems are solved by iterative methods appliedto the sparse adja
en
y matrix that represents the problem graph. Stru
turalengineering, 
hemi
al and physi
al phenomena simulations, and many other prob-lems use these methods. The problem graph is distributed among the availablepro
essors by a partitioning algorithm that try to balan
e the load and minimizethe 
ommuni
ation due to links between graph nodes allo
ated in di�erent pro-
essors. The solver algorithms apply the same 
omputation for ea
h iterationon the lo
al nodes, and 
ommuni
ate the 
omputed values that other pro
essorsneed before the next iteration. Hen
e, for these problems, the 
omputational loadof a task is proportional to the number of nodes allo
ated in a given pro
essor.Given example input graphs and a partitioning algorithm, we 
an 
omputethe data distribution for any number of pro
essors. Thus, we 
an re
onstru
t themapping level graph asso
iated with the 
omputation, in
luding load estimations.The graphs 
an be used to estimate 
 values for this 
lass of appli
ations.We have sele
ted six example graphs from the stru
tural engineering �eldas study 
ases. The graphs are obtained from the Everstine's 
olle
tion2, to befound inside the Harwell-Boeing 
olle
tion of sparse-matri
es [58℄. This publi

olle
tion is available on the Matrix Market home page [146℄. We have sele
tedsix graphs that present di�erent stru
ture patterns, and 
over a wide range ofnodes number, from the available in the full set (87,209,607,1005,1242,2680).From now on, we add the number of nodes after the name of ea
h example for
larity. In Fig. 4.38 we show 3D models of the obje
ts from whi
h the matri
esare obtained, and in Fig. 4.39 we show the sparse-matri
es stru
tures.The graph partitioning algorithm sele
ted is METIS (see e.g. [167℄), that is afree and state-of-the-art multi-level partitioning software for unstru
tured graphs,that 
an be found in the METIS/ParMETIS home page [117℄. We have used thissoftware to partition the input graphs for 4,8,16,32,64 number of pro
essors. Theobtained data is pro
essed to re
onstru
t the mapping level graphs, and to obtainthe statisti
al information needed.From the 
olle
ted data we observe the following results:1. Good load-balan
e:As the 
omputational load is typi
ally proportional to the number of nodesallo
ated in the lo
al pro
essor we 
an estimate the mean load and deviationwith the number of nodes in ea
h part. In Table 1 we show the workload2These patterns were 
olle
ted from various US military and NASA users of NASA's stru
-tural engineering pa
kage NASTRAN for use as a ben
hmark 
olle
tion for variable bandwidthreordering heuristi
s. They have been widely used in ben
hmarks.
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Figure 4.38: 3D models of the stru
tural engineering examples
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Figure 4.39: Sparse-matri
es stru
ture of the stru
tural engineering examples
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h example with a given number of pro
essors.The graph partitioning methods are designed to 
reate a well-balan
ed dataExample # Pro
s.4 8 16 32 64Tower - 87 .0199 .1747 .2053 .1658 .5723Console - 209 .0249 .0127 .1469 .1875 .1457Wankel rotor - 607 .0505 .0267 .0422 .0466 .3334Baseplate - 1005 .0183 .0199 .0212 .0442 .0663Sea 
hest - 1242 .0204 .0190 .0176 .0176 .0680Destroyer - 2680 .0155 .0172 .0241 .0243 .0306Table 4.3: Estimated & for partitioned iterative solver task graphspartition. We observe very low variabilities, as the partitioning method isperforming quite well. The only 
ases where the values are higher thana very small bound & > 0:1, are found when the number of nodes perpro
essor is very low, and the parallelism exploitable is very poor (see e.g.the smaller example, Tower-87). For normal real 
omputational problems,the load will be well distributed, leading to minimum performan
e e�e
twhen SP-ization is applied.2. Regular stru
tures:In Fig. 4.40 we present an example of a small mapping level graph gen-erated for some iterations with the Sea 
hest-1242 example, mapped for 8pro
essors. Re
all that redu
ing the number and load of 
ommuni
ationsamong pro
essors, and promoting some neighborhood, is an obje
tive of thepartitioning algorithms. Hen
e, we �nd that the stru
tures obtained arevery similar to the syntheti
 meshes studied in se
tion 4.1.3. The shape ofthese mapping level task graphs is highly regular. They have a �xed num-ber of nodes per layer (the number of pro
essors for whi
h the partition is
omputed) and ea
h layer represents an iteration of the solver. The numberof edges per node is determined by the partition 
omputed. In Fig. 4.41we show the S parameter measured for the generated graphs. Its valuesare found in a narrow range, and the general trend is that S in
reases log-arithmi
ally with the number of pro
essors. When the number of nodesper pro
essor is very low, we �nd again a 
ase where there is not enoughparallelism available and the number of 
ommuni
ations de
rease (see e.g.the Tower-87 example plot). Thus, the in
rease of P values is somehow
ompensated by the in
rease of S. This e�e
t together with the small loadvariability observed, predi
t very low 
 values for this appli
ations type.3. Load distribution 
orrelation:There exists an important 
orrelation in how the loads are distributed
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Figure 4.40: Example task graph: Sea Chest-1242, 8 pro
essors, 8 iterationsa
ross the graph. Di�erent layers represent di�erent iterations of the same
omputations. Thus, when the partition assigns di�erent number of modelnodes to di�erent pro
essors, the load distribution has a verti
al 
orrelationwith the topology. If an implementation level graph is 
onsidered, where
ommuni
ation 
osts are a

ounted, the 
orrelation 
an be even more no-ti
eable. This 
orrelation may produ
e a bene�
ial 
 redu
tion, espe
iallyin these 
ases of low workload variability along several iterations (see se
-tion 4.1.3).4. Negligible performan
e degradation:In our set of experiments with these graphs, using the loads estimated withthe number of nodes allo
ated to ea
h task in the partition, with havefound no 
riti
al path value in
rease due to SP-ization ex
ept in 
ases ofassuming high load variabilities for nodes. This will not be the 
ase forthis kind of appli
ations, where a pro
essor is repli
ating exa
tly the sametask in ea
h iteration. The real loads have extremely low variabilities indi�erent instan
es of the same node. In this 
ase, the SP-ization e�e
t istypi
ally negle
ted.The 
on
lusion is that if the partitioning algorithm is produ
ing a good par-tition and no other run-time or ma
hine details severely a�e
t the load balan
e,
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Figure 4.41: S parameter for partitioned iterative solver task graphsiterative solvers for this kind of sparse-matri
es 
an be programmed in nestedparallelism programming models with negligible loss of performan
e. The ex-tra syn
hronizations and barrier 
osts are not a

ounted, but SP programmingadvantages are also not 
onsidered. For example, the knowledge of the global
ommuni
ation stru
ture may still be exploited to improve 
ommuni
ation per-forman
e (see e.g. [57℄).Domain de
omposition and sparse-matrix fa
torizationThe DIANA software [55℄ is oriented to the stru
tural engineering �eld. It in-
ludes several methods, based on dire
t solvers for sparse-matri
es, to 
omputesolutions to �nite-element problems. The software in
lude domain de
ompositionand sparse-matrix fa
torization modules [123℄. Our example task graphs were ob-tained during the resear
h 
ondu
ted to parallelize the DIANA software pa
kage.They represent examples of domain de
omposition and sparse-matrix fa
toriza-tions of real data with di�erent input sizes. The fa
torizations were implementedusing a tool for parallel exe
ution of unstru
tured problems (Tgex [124℄).For ea
h of these graphs we apply the Algorithm2 SP-ization te
hnique, andwe measure 
 
omparing the 
pv of both graphs. First, we apply di�erent syn-theti
 random workloads to the nodes. Then, we 
ompare the results, with �estimations obtained when real workloads (measured at run-time) are 
onsideredin the nodes.The number of nodes in our example graphs are: 59, 113, 212, 528, 773and 2015. In Fig. 4.42 we showed the 113 nodes graph before and after thetransformation. The �rst part of the graph, before it a
hieves its maximum
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omposition phase. The rest of the graph represents thesparse-matrix fa
torization. An indi
ation of the real workload distribution isshown; darker and bigger nodes represent more loaded nodes.After experiments with these graphs the following results are exposed:1. Topology regularities:Due to the nature of the appli
ation, the topologies present some regu-larities. Fig. 4.43(a) shows 
 measures for the six example graphs whenusing modeled workloads with Gaussian distributions, as a fun
tion of therelative syn
hronization density (Rs) parameter. They approximately fol-low the expe
ted tenden
y dete
ted with syntheti
 random topologies inse
tion 4.1.2; 
 de
reases with Rs. However, if we 
ompare these plotswith the equivalent plots for syntheti
 random topologies (see Fig. 4.5), wefound that the points are below the expe
ted mean values for 
ompletelyrandom samples. The topologies of these sparse-matrix 
omputations arenot 
ompletely irregular, and they are not in the worst 
ase topologies.2. Workload distribution regularities:In Table 4.4 we show statisti
al information about the real task loads. We�nd that the workload is highly deviated. Few nodes 
on
entrates thebiggest part of the overall load. Nevertheless, we 
an see in the graphi
al# nodes &59 2.1113 3.0213 1.4528 2.0773 7.12015 2.6Table 4.4: Statisti
al information of real workloads for sparse dire
t solver.representation of the graphs that the highly loaded nodes are not randomlydistributed (see e.g. the position of darker nodes in the example graph pre-sented in Fig. 4.42). We �nd some of them distributed among the beginningnodes of the domain de
omposition phase, and some other ones at the �rstlayers of the fa
torization phase. In Fig. 4.43(b) we show � estimationsfor the graphs 
onsidered with real workloads measured during exe
ution.Information about the number of nodes n and the relative deviation (&) isadded to ea
h point.Measured real workloads showed higher deviations than any of the Gaus-sian models used for ea
h topology. However, � values are very low, andmu
h better than expe
ted. The reason for this is that real workloadsare not 
ompletely distributed at random a
ross the task nodes. They are
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Figure 4.43: Results for sparse dire
t solver example graphs.highly unbalan
ed, but there still exists a high 
orrelation between topologystru
ture (layers and lo
al syn
hronization patterns) and workloads. This
orrelation produ
es a bene�
ial impa
t on 
, similar to the one presentedfor 
orrelated workload meshes in se
tion 4.1.2.Workload parameters �; � are not enough to get an a

urate estimationof the impa
t of SP-ization on a given unstru
tured topology. In general,the 
orrelation between highly loaded nodes and layers will produ
e an im-provement in performan
e when mapping to nested parallelism stru
tures.For this set of experiments we �nd that sparse-matrix solvers generate taskgraphs with enough topology and workload regularities to minimize the perfor-man
e impa
t of SP-ization. However, workload parameters are not enough to
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urate estimation of the impa
t of SP-ization on a given unstru
turedtopology. In general, the 
orrelation between highly loaded nodes and layers willprodu
e an improvement in performan
e when mapping to nested parallelismstru
tures.4.2.6 Con
lusions about real appli
ation resultsIn this se
tion we have tested several types of real appli
ations, 
omparing thereal performan
e � in di�erent ma
hine ar
hite
tures with tenden
ies observedduring the 
 study of their stru
tures. A �rst 
on
lusion is that the main 
 ef-fe
ts dete
ted with syntheti
 graphs (e.g. logarithmi
 e�e
t when s
aling up) arepresent in real appli
ations. At the same time we �nd that they are propagatedto the run-time level. However, the real appli
ations present high regularitiesthat minimize the performan
e impa
t of programming them in an SP parallelprogramming model. Even typi
al irregular appli
ations use load-balan
ing ormapping te
hniques that 
reate important topologi
al and workload regularities.The small performan
e e�e
ts introdu
ed at the programming level are indepen-dent of the underlying ar
hite
ture. In many 
ases, implementation details andlow-level ma
hine e�e
ts appear to have more impa
t on the �nal performan
ethan the 
hoi
e of a restri
ted SP parallel programming model.4.3 SummaryIn this 
hapter we have presented an experimental framework to determine em-piri
ally the potential and real impa
t of using a nested-parallel SP program-ming model. First, we have dis
ussed how to build syntheti
 workload distri-butions, based on i.i.d. random workloads, that 
an be used with any syntheti
or real topology generated along the experimental study. We have introdu
edthe methodology to 
onstru
t random graphs in order to test a sample of thegraph spa
e, and syntheti
 meshes of nodes that represent regular appli
ations.The graph meshes are used to systemati
ally test the 
 e�e
ts related to sim-ple graph parameters that represent 
hara
teristi
s inherent to the appli
ation(syn
hronization density) or typi
al mapping variables (degree of parallelism ornumber of iterations). The study of the graph meshes in
ludes the identi�
ationand analysis of other impa
t fa
tors (as syn
hronization unbalan
e or workloadto topology 
orrelation).For real appli
ations, we have presented a 
riteria to sele
t representativestudy 
ases, and to sele
t ma
hine models for a real performan
e study; alongwith the implementation te
hniques and tools to allow the NSP to SP stru
ture
omparisons. We have dis
ussed the modeling te
hniques to: (1) extra
t taskgraphs from real appli
ations at di�erent levels of detail, and (2) 
onstru
t graphsrepresenting irregular or dynami
 appli
ations from the input-data stru
tures.



4.3. SUMMARY 227Finally, we have introdu
ed the framework to 
arry out a 
pv study on all thegenerated or extra
ted graphs to obtain 
 results and 
ompare them with real �measures.The results obtained in this study point out that the expe
ted values of 
, usedas an indi
ator of the potential performan
e impa
t of using an SP PPM, followpredi
table tenden
ies. Indeed, these tenden
ies are determined by simple andeasily measurable graph parameters. The in
rease of the degree of parallelism,measured with P , produ
es a general under-logarithmi
 in
rease on 
. The graphdepth level, measured with D, has a 
ompletely limited e�e
t on 
, ex
ept inpathologi
al stru
tures, for whi
h we present a formal des
ription and a possibleindi
ator of the potential pathology fa
tor (!). The syn
hronization densityrepresented by S (or Rs) is the topologi
al parameter with the higher impa
t on
. For the very small values found in sparse random or highly irregular graphs(S < 2), SP-ization te
hniques that exploit lo
al syn
hronization te
hniques, asAlgorithm2, may produ
e SP-forms with small 
pv in
rement. Values of S > 2have a qui
k negative exponential limiting e�e
t on 
. However, around valuesof S = 2, the SP-ization te
hniques studied present the worst results, and thelower predi
tability for random topologies. As dis
ussed in se
tion 3.3.1, these
ould be the stru
tures more suitable for other mixed transformation te
hniquesbased on both, added dependen
es and dupli
ation of nodes. Nevertheless, theworkload distribution is the 
riti
al fa
tor for SP-ization performan
e impa
t.Its variability and possible 
orrelation with topology highly determine the main
 tenden
ies. A well-balan
ed workload distribution immediately redu
es oreven negle
ts the potential in
rease of the 
pv after an SP-ization. Moreover,most of the tenden
ies previously dis
ussed are only fully appre
iated for highlydeviated workloads. Fortunately, real appli
ations present very good workload
onditions for SP-ization. In other 
ase, the s
alability and 
exibility of theparallel appli
ation would be 
ompromised. The experimentation shows that realworkloads are usually well balan
ed and 
orrelated with the graph topology. Thevalues found present better 
hara
teristi
s than the syntheti
 workload modelsused during the �rst phase of our study, leading to negligible performan
e impa
twhen using SP form syn
hronization stru
tures to program real appli
ations.All these tenden
ies are propagated to the run-time low level. Even some
lasses of important irregular appli
ations use data-partition and load-balan
ingte
hniques to produ
e s
alable 
odes. These te
hniques 
reate enough topologyor workload regularities to negle
t the potential performan
e degradation whenprogrammed with a nested-parallel, SP, programming model. Indeed, some ma-
hine e�e
ts derivated from di�erent hardware or parallel tools implementationsappear to have more impa
t on the performan
e than using SP-restri
ted syn-
hronization stru
tures. We 
on
lude that our experimental study 
learly pointsout that using an SP parallel programming framework is a safe 
hoi
e for mostparallel appli
ations, and potentially bad study-
ases 
an be easily predi
ted.
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Chapter 5Con
lusion The line it is drawnThe 
urse it is 
astThe slow one nowWill later be fastAs the present nowWill later be pastThe order isRapidly fadin'.And the �rst one nowWill later be lastFor the times they are a-
hangin'.The Times They Are a-Changin', 1963Bob DylanThe �eld of parallel programming appears to be not yet mature enough toprodu
e a 
onsistent and established software development methodology. Par-allel ar
hite
tures and programming models still la
k a 
ommon developmentdire
tion based on a standard ma
hine and programming model (like Von Neu-mann's in sequential programming). While ma
hines and low level programminginterfa
es are oriented to exploit the maximum parallelism and performan
e inan appli
ation, more abstra
t programming models a

ept restri
tions of expres-sive power, in terms of their SA, to obtain those analyzability 
hara
teristi
sthat help in the design, programming, mapping, implementation and debuggingtasks. This expressiveness vs. analizability trade-o� needs to be 
arefully ana-lyzed in order to establish whi
h 
hara
teristi
s of a model are responsible for itsgood and bad properties of it, in terms of software development, implementationportability, and performan
e.Being the determining fa
tor of a programming model that 
hara
terizes theabove trade-o�, in this dissertation we have studied the SA 
on
ept and its rela-tion to the properties of PCMs at di�erent abstra
tion levels. We have 
lassi�ed229



230 CHAPTER 5. CONCLUSIONthe SA of well-known models and appli
ations, and we have proposed and studiedan important 
lass: the SP, also known as Series-Parallel, or Nested-ParallelismSA. We have found that in the design of a PCM, the de
ision to restri
t or notto restri
t SA to SP 
lass, is a 
riti
al one. SP vs. Non-SP is the SA barrierwhere important analyzability properties appear or disappear. Consequently, wehave presented an in-depth study on the impa
t of the expressive restri
tionsasso
iated to SP programming models to support our thesis that SP restri
tedmodels are the best 
hoi
e to obtain both: highly bene�
ial software development
hara
teristi
s, and a good level of expressive power for general-purpose parallelprogramming.We have used a three-way approa
h to study the relevan
y of the SA 
on
eptand the SP restri
tion for parallel programming models: (1) A 
on
eptual studyof SA, where existing programming models and appli
ations are studied; (2) atheoreti
al approa
h, where the SP vs. NSP stru
tures are deeply studied with theaid of graph theory; and (3) an experimental study, where empiri
al results arepresented to validate our hypothesis about the potentially negative performan
eimpa
t of using restri
ted SP models. In our study of SAs from these three pointsof view, we have made several 
ontributions and we have produ
ed signi�
antresults, obtaining relevant 
on
lusions in support our thesis.5.1 ContributionsIn parti
ular, the following 
ontributions are made in this dissertation:� SA des
ription and 
lassi�
ation.We have introdu
ed the SA 
on
ept, and we have shown how it is relatedwith the expressive power (EP), software engineering (SEC) and analyzabil-ity (AC) 
hara
teristi
s of a PCM/PPM, through a 
on
eptual review and
lassi�
ation of well-known existing models at di�erent abstra
tion levels.� Appli
ations 
lassi�
ation in terms of SA.We have 
lassi�ed parallel appli
ations in terms of the SA they naturallymap to. The 
lassi�
ation is useful for dete
ting appli
ation types thatdo not map dire
tly to restri
ted syn
hronization PPMs, and to 
hooseexample appli
ations, representing their SA 
lasses, for further study ofthe appli
ation to PPM mapping te
hniques. Some mapping strategies arealso dis
ussed for the relevant 
lasses.� NSP vs. SP graph theoreti
al study.In order to assess the performan
e loss asso
iated with the 
hoi
e of anSP-restri
ted PPM for an inherently NSP problem, we have performed agraph theoreti
al study of the SP and NSP stru
tures. We have presented



5.2. CONCLUSIONS 231a number of te
hniques to transform NSP stru
tures to SP approximationsthat introdu
e minimum 
hanges in topology or performan
e, in
ludingnew full graph algorithms. Methods and metri
s to measure the impa
t ofsu
h transformations in topology and potential in
rease of the 
riti
al pathhave been proposed.� Analysis framework for performan
e impa
t of SA transformations.We have introdu
ed an analysis framework to predi
t the performan
e lossat the programming abstra
t level as a fun
tion of SA. Given the rela-tive importan
e of 
ondition syn
hronization, we have spe
i�
ally appliedthe approa
h to predi
t the performan
e di�eren
es of using NSP vs. SP-restri
ted programming models. The framework is based on the use ofgraph theory, topology 
lasses, and task workload metri
s. We have mea-sured performan
e di�eren
es (
) in terms of 
riti
al path.� Simple graph modeling te
hniques for appli
ations.We have introdu
ed methods to model appli
ations and workload withgraphs, at di�erent detail levels. The signi�
an
e of the 
ontribution is toshow that very simple graphs, easily derived from spe
i�
ations or evenfrom real 
ode, are a

urate enough to predi
t tenden
ies and behavior ofappli
ations when syn
hronization stru
tures are transformed to map themto di�erent SA 
lasses.� Full experimental study using real appli
ations.The study 
onsists on a 
omparison of using programming models or lan-guages in di�erent SA 
lasses to implement real appli
ations, in
luding thee�e
ts of typi
al implementation traje
tories. Here we do not restri
t our-selves to the highest abstra
tion levels (
), but we use the above frameworkto dis
uss the performan
e e�e
ts of various mappings and implementationissues at lower level (�).5.2 Con
lusionsThe 
ontributions presented strongly suggest the SP SA as the most promisingdesign 
on
ept for new portable, eÆ
ient and easy-to-use parallel programmingmodels. PPMs in the SP SA 
lass o�er important advantages in terms of soft-ware engineering and analyzability 
hara
teristi
s, not available for less restri
tedmodels in the NSP 
lass, with a modest trade-o� regarding expressive power. The
on
lusions of this thesis are:� SP SA leads to formal methods of software development and veri�
ation.SP restri
ted models and stru
tures are asso
iated with SP algebras and



232 CHAPTER 5. CONCLUSIONan extended automata theory. At the same time, more eÆ
ient s
heduling,
ompiling and mapping te
hniques exist for SP restri
ted stru
tures thanfor NSP stru
tures.� From the study of SA of existing parallel programming models we havefound that only PPMs/PCMs that restri
t CS stru
tures in
lude an easy-to-use and a

urate 
ost model that may help in automati
 mapping de
isions.This is 
riti
al for portability of programs to di�erent ar
hite
ture models.� Many appli
ation 
lasses and parallel programming paradigms dire
tly mapto SP stru
tures. For those appli
ation 
lasses that do not dire
tly mapto SP models, systemati
 transformation te
hniques that minimize the po-tential performan
e impa
t have been proposed. Many examples of how touse them have been presented for syntheti
 and real appli
ation stru
tures.� Simple appli
ation parameters, like the maximum degree of parallelism, aswell as workload 
hara
teristi
s may be used to predi
t the impa
t of anNSP to SP transformation, at di�erent levels of detail with very simple
ost models. Su
h predi
tions are a

urate enough to predi
t the perfor-man
e asymptoti
al behavior of di�erent mappings of an appli
ation to SPprogramming stru
tures.� The performan
e degradation asso
iated with SP programming is mainlyrelated to poorly balan
ed and unstru
tured 
omputations, that are dif-�
ult to program, verify and debug. In our appli
ation 
lassi�
ation andexperiments we �nd that these stru
tures are far from typi
al or even in-appropriate for parallel programming in general. High performan
e un-stru
tured 
omputations are programmed with hard-wired s
heduling andload-balan
ing te
hniques that transform them in more stru
tured and well-balan
ed 
omputations, more suitable for SP programming.The Syn
hronization ar
hite
ture 
on
ept, and this study, validate some re-sear
h dire
tions previously introdu
ed in restri
ted SA models (as e.g. BSP).Many previously intuitive ideas about the impa
t of SP programming have beenformally or empiri
ally veri�ed in this study. This may help to fo
us the atten-tion of parallel programming languages and models designers to the SP 
on
ept.SP, or nested-parallelism may lead to a more fo
used resear
h dire
tion to �llthe gap between the two extreme points of the parallel programming world: ma-
hine ar
hite
ture vs. high-level programming. The development of new and moreabstra
t languages for SP restri
ted models may in
lude new 
ompiling and map-ping te
hniques that exploit many bene�
ial features nowadays s
attered amongdi�erent programming models and their implementations.
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