
Computer Science Department
University of Valladolid

Valladolid - Spain

A New High Level Parallel Portable Language for
hierarchical systems in Trasgo

Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego R. Llanos

Computer Science Department, University of Valladolid, Spain.
ana.moreton@alumnos.uva.es, {arturo, diego}@infor.uva.es.

Abstract Currently, the generation of parallel codes which are portable
to different kinds of parallel computers is a challenge. Many approaches
have been proposed during the last years following two different paths.
Programming from scratch using new programming languages and mod-
els that deal with parallelism explicitly, or automatically generating par-
allel codes from already existing sequential programs. Using the current
main-trend parallel languages, the programmer deals with mapping and
optimization problems that forces to take into account details of the
execution platform to obtain a good performance. In code generators
that automatically transform sequential programs to parallel ones, pro-
grammers cannot control basic mapping decisions, and many times the
programmer needs to transform the original sequential code to expose to
the compiler information needed to leverage important optimizations.
This paper presents a new high-level parallel programming language
named CMAPS, designed to be used with the Trasgo parallel program-
ming framework. This language provides a simple and explicit way to ex-
press parallelism at a highly abstract level. The programmer does not face
decisions about granularity, thread management, or interprocess commu-
nication. Thus, the programmer can express different parallel paradigms

in an easy, unified, abstract, and portable form. The language supports
the necessary features imposed by transformation models such as Trasgo,
to generate parallel codes that adapt their communication and synchro-
nization structures for target machines composed by mixed distributed-
and shared-memory parallel multicomputers.

Technical Report No. IT-DI-2015-0001

1

1 Introduction

It is increasingly interesting to generate application programs with the ability of
automatically adapt their structure and load to any given target system. Using
current main-trend parallel programming technology for this purpose is challeng-
ing. The polyhedral model is one of the most promising techniques for frame-
works which automatically generate optimized lower-level parallel code from
existing sequential programs. It provides a formal framework to develop auto-
matic transformation techniques at the source code level [Bas04]. The polyhedral
model is applicable to codes based on sequential static loops with affine expres-
sions. However, it does not support dynamic loops dependent on information not
known at compile-time. On the other hand, many successful parallel program-
ming models and tools that explicitly deal with parallelism have been proposed.
Message-passing paradigms (e.g. MPI libraries) have been shown to be very ef-
ficient for distributed-memory systems. Global shared memory models, such as
OpenMP, Intel TBBs, or Cilk, are commonly used in shared-memory environ-
ments to simplify thread and memory management. Many parallel program-
ming models like PGAS (Partitioned Global Address Space) languages (Chapel,
X10, or UPC), present a middle point approach by explicitly managing local
and global memory spaces. The PGAS language more related to our work is
Chapel [CDIC10]. It proposes a separation of domain and mapping modules to
work with distributed arrays. But, the best aggregated-communication methods
presented so far for Chapel abstractions are restricted to specific operations, or
aggregated-communication domain mapping properties.

Thus, the parallel applications programmer still faces many important deci-
sions not related with the parallel algorithms, but with implementation issues
that are key for obtaining efficient programs. For example, decisions about par-
tition and locality vs. synchronization/communication costs; grain selection and
tiling; proper parallelization strategies for each grain level; or mapping, layout,
and scheduling details. Moreover, many of these decisions may change for dif-
ferent machine details or structure, or even with data sizes. Productive parallel-
software development needs a common approach at the programming level, to
simplify the tasks of implementing, testing, and debugging, independently of the
machine details.

In this paper we present CMAPS, a new high-level parallel programming
language for the Trasgo framework [GEL11]. This language supports a wide
range of parallel structures and applications. The programs express coordina-
tion at an abstract level. The programmer reasons in terms of logical processes
using a global memory space, not facing decisions about granularity, thread
management, or interprocess communication. CMAPS approach presents sev-
eral advantages with regard to: (1) polyhedral frameworks which work with
sequential codes as input [Bon13,CG06,KPP+15], as it supports dynamic loops
with conditions dependent on expressions involving data-values, or runtime pa-
rameters and, (2) explicit parallel languages, because it makes transparent to
the programmer the details related to the lower-level programming model. Some
of these details are the integration of mapping techniques or, the adaptation of

2

the code to the architecture and execution platform. Moreover, comparing with
traditional parallel programming models for distributed-memory machines such
as MPI, CMAPS approach reduces the code complexity.

We present the design guidelines of CMAPS in terms of the requirements and
capabilities of the Trasgo framework to generate lower-level code that adapts
their communication and synchronization structures to the target machine. In
particular, these guidelines impose the inclusion of information needed to au-
tomatically generate code that computes exact aggregated communications for
target machines including distributed-memory architectures.

The rest of the paper is organized as follows: Section 2 presents the Trasgo
model and their tools. Section 3 describes the new programming parallel lan-
guage. Section 4 presents the conclusions and future work.

2 Trasgo framework

The Trasgo model [GEL11] proposes the use of a high-level structured and ab-
stract representation of the parallel algorithms. It uses a restricted synchroniza-
tion model (nested-parallelism) at the higher level, letting the transformation
system to generate more efficient and less synchronized parallel structures at
the lower level. The original model is based on the SP (Series-Parallel) process
model [Gem97], and data-distribution algebras, providing clear and well-defined
semantics [LW98], and allowing hierarchical compositions. The model is free of
race conditions, and unexpected stochastic behaviors or dead-locks. The high-
level code uses a global view approach with the possibility of decompose it hier-
archically. The semantics provide clear synchronization points and hierarchical
global states that simplify testing and debugging.

Figure 1 shows the structure of the Trasgo transformation framework. The
left column shows the program representations, and the right columns the trans-
formation layers. A front-end translates the input language to an internal rep-

Figure 1. Structure of the Trasgo transformation framework.

3

resentation in XML. An XML representation has been chosen due to the stan-
dard and powerful tools that exist to identify and locate document features
(XPath), and to apply document transformations (XSLT). These technologies
can be used to write in a compact form code transformation modules. The
main part of the transformation layer is oriented to convert the global address
space into a partitioned address space. It analyses data dependencies and builds
expressions to compute at run-time the communications needed across virtual
processes, in terms of the results of mapping and layout functions. The trans-
formed code is rewritten by a back-end that generates C code with calls to the
Hitmap run-time library [GETFL13]. The resulting sequential code generated for
the local distributed process is finally filtered through polyhedral tools (Pluto
compiler [BHRS08]) to generate tiled and optimized parallel code for shared-
memory using OpenMP (the methodology used to integrate these techniques at
the Hitmap level was described in [MFGEL14]). Finally, the code is compiled
with a native C compiler.

3 The new parallel programming language CMAPS

In this section we describe the proposed parallel language that will be used
as input in the Trasgo framework. This language will allow the programmer
to express parallel algorithms in terms of abstract decomposition and mapping
techniques.

3.1 Design principles

We present bellow guidelines for the design of an input language for the Trasgo
framework.

1. The input language will be a coordination language. Sequential code will
be expressed with a traditional programming language and using runtime
library calls (e.g. Hitmap [GETFL13]) to manage the access to the data
structures. Extensions to a traditional sequential language (new primitives,
programming structures and modifiers) should be used to express the coor-
dination between sequential tasks. Functions containing coordination primi-
tives will be clearly distinguished from the ones containing sequential code.
Inside them, it will be only possible to execute data modifications through
calls to sequential functions.

2. The input language will use a primitive (with clauses) to annotate each
section that we will be executed in parallel. The primitive should allow to
indicate an arbitrary number of logical processes, in terms of constants or
expressions, in terms of parameters or the number of elements in data struc-
tures. This primitive could be nested as many times as needed, even in a
recursive way. Inside the scope of the primitive, a mechanism to associate
logical processes to calls to other coordination or sequential functions should
be provided. This primitive will imply a logical synchronization point of the
processes after the computation performed in parallel.

4

3. The sequential functions will be designed to deal with elements of arbitrary
grain. Thus, it avoids the programmer to take decisions about the problem
granularity according to the machine capabilities.

4. The language should provide a mechanism to invoke modules that implement
partition policies. The inputs will be index spaces. The output will be a map
of indexes to processes. Each element of the input domain will be assigned
to one and only one virtual process, and each virtual process to one and only
one real processing element. The number of virtual processes will be chosen
at run-time. This map can be used to: (1) perform a partition, distribution
and allocation of data structures or, (2) group and schedule logical processes
into virtual processes. The code should be independent of the mapping (par-
tition, distribution, allocation) policies chosen. With this technique it will
be possible to change the partition or allocation policy without modifying
any other part of the code.

5. The computation will have a single global state and a unique logical process
before the first parallel primitive. When the parallel tasks are launched, each
one has a local copy of the global state. In the logical synchronization point
at the end of the parallel computation the global state is consolidated again.
To generate this global state the parallel primitive must provided a way for
reducing correctly different values found in the replicated variables of each
logical process, into the global state.

6. The language should provide a mechanism to analyse the data dependences
between the function calls which are into the scope of different parallel parts.
To find data dependencies can be a complex task at compile time. The lan-
guage should use annotations in the function definition to indicate the in-
put/output role of each parameter in the function interface. This information
will be used to obtain the data dependencies in the Trasgo framework.

3.2 Study cases

To show the features of CMAPS in real programs we will use four cases of
study whose sequential pseudo code descriptions are presented on Fig.2. Each
one presents different features and challenges for a parallel programming model.
The first one is a Jacobi solver. It is a PDE solver using a Jacobi iterative
method to compute the heat transfer equation in a discretized two-dimensional
space. It is implemented as a cellular automata or stencil computation. On each
iteration, each matrix position or cell is updated with the previous values of the
four neighbors. The second one is a Gauss-Seidel program that computes the
same heat transfer equation described above, but using a Gauss-Seidel iterative
method. In this method, the convergence is accelerated using values already
computed during the current time-step iteration following sequential semantics.
The method simply uses one matrix, with no copy for the old values. Thus,
when using the neighbor values of the upper and left matrix positions, values
already updated are used. The third one is a Classical Matrix Multiplication.
It is the typical sequential implementation of the matrix multiplication with
three nested loops. The fourth and last one is Cannon’s Algorithm [Can69] for

5

** Case 1: JACOBI SOLVER
1. While not converge and iterations < limit

converge = true
1.1. For each i,j in M.domain

M2[i][j] = M[i][j]
1.2. For each i,j in M.domain

M[i][j] = (M2[i-1][j] + M2[i+1][j]
+ M2[i][j-1] + M2[i][j+1]) / 4;

1.3. If |M2[i][j] -M[i][j]| > threshold
converge = false

** Case 2: GAUSS SEIDEL SOLVER
1. While iterations < limit

For i = 0 .. M.rows
For j = 0 .. M.columns

M[i][j] = (M[i-1][j] + M[i+1][j]
+ M[i][j-1] + M[i][j+1]) / 4;

** Case 3: MM CLASSICAL ALGORITHM
For i = 0 .. C.rows

For j = 0 .. C.columns
For k = 0 .. A.columns

C[i][j] = C[i][j] + A[i][k]*B[k][j]

** Case 4: MM CANNON’S ALGORITHM
1. Split A,B,C in k x k blocks

AA=Blocking(A), BB=Blocking(B), CC=Blocking(C)
2. Initial data alignment:
2.1. For each i in AA.rows

Circular shift: Move AAi,j to AAi,j-i
2.2. For each j in BB.columns

Circular shift: Move BBi,j to BBi-j,i
3. For s = 1 .. k

3.1. CCi,j = CCi,j + AAi,j * BBi,j
3.2. For each i in AA.rows

Circular shift: Move AAi,j to AAi,j-1
3.3. For each j in BB.columns

Circular shift: Move BBi,j to BBi-1,j

Figure 2. Algorithm expressions of four study cases.

6

matrix multiplication. It works with a partition of the matrices in k × k pieces,
requiring no more than one local piece of the same matrix at the same time, and
using a simple circular block shift pattern to move data across processes. Each
matrix-block product is computed using the classical sequential algorithm.

1 /* Jacobi Solver (Poisson equation): Function to update one cell element */
2 void updateCell(in double up, in double down, in double left, in double right,
3 inout double result, out double diff) {
4 double old = *result;
5 *result = (up + down + left + right) / 4 ;
6 *diff = fabs(*result - old);
7 }
8
9 /* Jacobi Solver (Poisson equation): Parallel solver */

10 coordination void jacobiSolver(inout tile double M[][],
11 in int limit, in double threshold) {
12 double inside[][] = M[1:$-1][1:$-1];
13 Map distribution = Map(inside.shape, blocks, rectangular2D));
14 ArrayMap(inside, distribution);
15
16 double diff, maxDiff;
17 loop(i in [1:limit] and maxDiff > threshold) {
18 resetDiff(maxDiff);
19 parallel (distribution) {
20 do: updateCell(M[pidx(0)-1][pidx(1)],
21 M[pidx(0)+1][pidx(1)], M[pidx(0)][pidx(1)-1],
22 M[pidx(0)][pidx(1)+1], M[pidx(0)][pidx(1)],
23 diff);
24 reduce: MAX(diff, maxDiff);
25 } } }

1 /* Poisson equation: Function to update one cell element */
2 void updateCell(in double up, in double down, in double left, in double right,
3 out double result) {
4 *result = (up + down + left + right) / 4 ;
5 }
6
7 /* Gauss-Seidel Parallel Solver */
8 coordination void gaussSolver(inout tile double M[][], in int limit) {
9 double inside[][] = M[1:$-1][1:$-1];

10 Map distribution = Map(inside.shape, blocks, topRectangular2D));
11 ArrayMap(inside, distribution);
12
13 loop(i in [1:limit]) {
14 parallel (distribution) {
15 do : waitflow(M[pidx(0)-1][pidx(1)], M[pidx(0)][pidx(1)-1])
16 updateCell(M[pidx(0)-1][pidx(1)], M[pidx(0)+1][pidx(1)],
17 M[pidx(0)][pidx(1)-1], M[pidx(0)][pidx(1)+1],
18 M[pidx(0)][pidx(1)]);
19
20
21 } } }

Figure 3. CMAPS code for two Stencils algorithms: Jacobi solver and Gauss-Seidel

7

1 /* Parallel Block Matrix Multiplication: Classical algorithm */
2 coordination void mmProductClassical(in tile double A[][], in tile double B[][],
3 out tile double C[][]) {
4 Map mC = Map(C.shape, blocks, topRectangular2D));
5 ArrayMap(C, mC);
6 ArrayMap(A, Map(A.shape, blocks, topRectangular2D)));
7 ArrayMap(B, Map(B.shape, blocks, topRectangular2D)));
8
9 parallel (mC) {

10 do: mmProductSeq_1(A[pidx(0)][0:$], B[0:$][pidx(1)], C[pidx(0)][pidx(1)]);
11 } }
12
13 /* Parallel Block Matrix Multiplication: Cannon’s algorithm */
14 coordination void mmProductCannons(in tile double A[][], in tile double B[][],
15 out tile double C[][]) {
16 Map mC = Map(C.shape, blocks, topSquare));
17 ArrayMap(C, mC);
18 ArrayMap(A, Map(A.shape, blocks, topSquare)));
19 ArrayMap(B, Map(B.shape, blocks, topSquare)));
20
21 loop(i, [0 : max(mC.size(0), mC.size(1))]) {
22 parallel (mC) {
23 do: mmProductSeq_2(
24 dmap(A, mapidx(0),cyc((mapidx(1) - mapidx(0) - i))),
25 dmap(B, cyc((mapidx(0) - mapidx(1) - i)),mapidx(1)),
26 dmap(C, mapidx(0), mapidx(1)));
27 } } }
28
29 /* Parallel Block Matrix Multiplication: Hierarchical composition */
30 coordination void mmProductCannons(in tile double A[][], in tile double B[][],
31 out tile double C[][]) {
32 Map mC = Map(C.shape, blocks, topSquare));
33 ArrayMap(C, mC);
34 ArrayMap(A, Map(A.shape, blocks, topSquare)));
35 ArrayMap(B, Map(B.shape, blocks, topSquare)));
36
37 loop(i, [0 : max(mC.size(0), mC.size(1))]) {
38 parallel (mC) {
39 do: mmProductClassical(
40 dmap(A, mapidx(0),cyc((mapidx(1) - mapidx(0) - i))),
41 dmap(B, cyc((mapidx(0) - mapidx(1) - i)),mapidx(1)),
42 dmap(C, mapidx(0), mapidx(1)));
43 } } }

Figure 4. CMAPS code for a multilevel Matrix Multiplication.

8

3.3 Notations and definitions

A Trasgo input programming language can be designed in several ways, as far
as it complies with the Trasgo model semantic (which derives in the guidelines
presented on section 3.1). We have designed a coordination language extension
of classical C language named CMAPS. CMAPS has been created to express
parallel algorithms in a simple, explicit and intuitive way for C programmers.

Domains, mapping policies and data structures The CMAPS language
provides the native data types of the original sequential language (C), and tile
types for more complex data structures, such as arrays. Manipulation of native
data types is direct. Data in tiles will be managed in the sequential functions
using the Hitmap library tile access functionalities [GETFL13]. Domain dec-
larations and subselection of tile domains, are expressed with an extended C
array notation similar to the Fortran90 colon notation inside square brackets
[begin:end:stride].

The language provides a Map constructor (see line 13 of Jacobi solver code
in Fig. 3). It receives three parameters: An index domain to be mapped, the
name of a partition and layout technique, and the name of a virtual topology
building policy. Layout and topology policies are plug-in modules in the run-
time system [GETFL13]. Map objects transparently map an index domain to
the devices of a target system (guideline 4). The ArrayMap function is used to
map a tile to virtual processes according to the results in the Map object. The
language supports a symbol to represent the last index of the global index space
in a dimensional domain ($). For example, in the Jacobi and Gauss examples
in Fig. 3, the inner part of a matrix (without the border rows and columns) is
selected.

Functions CMAPS supports two different kinds of functions, sequential and
coordinated. Both will use a compulsory modifier for the formal parameters that
makes explicit their input/output behaviour (see line 2 of Jacobi solver code of
Fig. 3). These modifiers will be used to derive the dependencies between paral-
lel tasks (guideline 6). All data modification statements should be encapsulated
into classical sequential C void functions, that are called from the coordination
code. Each call to a sequential function is done in a logical process. Coordina-
tion functions are the functions where parallelism and synchronization can be
expressed. They are specified adding the coordination modifier in its definition
(see line 10 of Jacobi solver code of Fig. 3). Nested parallelism is exploited by
encapsulating each parallelism level in a coordination function (guideline 1).

Trasgo allows to generate codes with several levels of parallelism. Figure 4
shows the implementation of the two matrix-multiplication algorithms. Cannon’s
algorithm can be used at the upper level to reduce the memory usage in a dis-
tributed memory platform, and the classical one at the shared memory level
for reducing synchronization time. Making a hierarchical composition of the two

9

algorithms in CMAPS is trivial. Simply substituting the name of the sequen-
tial function in the Cannon’s algorithm (see Fig.4 line 39) by the name of the
Classical’s parallel algorithm also written in CMAPS.

Coordination primitives CMAPS supports into the coordination functions
several kind of primitives. An unified parallel primitive, iterative primitives (loop,
while), and conditional primitives (if, else). Statements such as assignments are
not allowed in the predicates or bodies of the coordination primitives. The loop
primitive substitutes the functionality of the classical for primitive that are
controlled by counter, and added generic conditions with a restricted syntax
(see line 17 of Jacobi solver in Fig 3).

The parallel primitive performs computations in parallel (guideline 2). The
parallel primitive receives a Map object as parameter. It spawns as many logical
processes as indicated in the domain used to build the Map object and they are
assigned to virtual processes according to the information contained in the Map
object. Virtual processes are automatically scheduled to real processors following
the policies used to build the Map object. The primitive contains do clauses. In
these clauses scope we can write coordination code with function calls to be
executed by the logical processes (see line 20 of Jacobi solver in Fig.3). They can
be followed by optional reduce clauses. Each logical process works in a virtual
copy of the tiles. The transformation system is responsible of generating copies
of data parts, and temporal buffers, if needed to preserve the parallel semantics;
even when several logical processes are mapped to the same real process, and
consequently should be executed sequentially in the same real process scope
(guideline 5). The do clauses may be followed by waitflow(...) clauses to express
data-flow restrictions during the parallel execution. For example, in the Gauss-
Seidel study case each logical process needs to wait for the data produced by its
upper and left logical processes (see line 15 of Fig. 3).

The calls in the do clauses of a parallel primitive can use two types of in-
dexes to build subdomains expressions and select the subtiles used as real pa-
rameters in the function calls. They both allow to deal with locality in different
ways. First, pidx(<dim>), which is the dimensional index of the logical pro-
cess. Logical processes are grouped automatically in virtual processes by Trasgo
framework, avoiding the programmer to take decisions about the problem gran-
ularity (guideline 3). The second is midx(<dim>). The expression midx(<dim>)
represents the index of the virtual process in the active processes topology in a
chosen dimension. It is possible to use the function cyc() in expressions built with
midx(<dim>). It returns the virtual process dimensional index in a periodic way
in the active processes topology. The function dmap(<tile>, <processes>) re-
turns the subdomain of the tile specified as the first parameter, which is mapped
to the virtual process indicated as the second parameter (see line 23 of Cannon’s
matrix multiplication CMAPS code). Loop indexes and invariant parameters
can also be used in expressions involving the pidx(<dim>) and midx(<dim>)
functions.

10

3.4 Example

This section describes the way to use CMAPS to derive a parallel code from
a given algorithm already expressed in sequential C code. To accomplish this
task we use an illustrating example, the Jacobi 2-D solver. We show a simple

1 void updateCell(double up, double down, double left, double right, double *result,
2 double *diff){
3 double old= *result;
4 *result = (up + left + right + down)/4;
5 *diff = fabs(*result - old);
6 }
7 /** Sequential Jacobi solver */
8 void jacobiSolver(double a[][], double b[][], int limit){
9 int maxDiff, t, i, j;

10 for (t=0; t<limit && maxDiff < threshold; t++) {
11 maxDiff=0;
12 for (i=1; i<N-1; i++)
13 for (j=1; j<N-1; j++)
14 a[i][j]=b[i][j];
15 for (i=1; i<N-1; i++)
16 for (j=1; j<N-1; j++) {
17 updateCell(a[i+1][j], a[i-1][j], a[i][j+1], a[i][j-1], &(b[i][j]),
18 &diff);
19 if (diff > maxDiff) maxDiff=diff;
20 }
21
22 } }

Figure 5. Sequential code of Jacobi solver

sequential C implementation of the Jacobi solver in Fig. 5. The first step in
the main jacobiSolver function is to declare the necessary variables. Thus, in
CMAPS (code of Jacobi solver of Fig. 3) we do the same. In CMAPS, we have
to distribute the arrays to perform a parallel computation. To distribute the
domain of the array, we use the Map constructor. We have to choose the index
domain that we want distribute. In this case, it is the domain of the whole
array except its borders (1 : $− 1). We choose a plug-in layout that performs a
classical partition by balanced two-dimensional blocks, and a plug-in to generate
a rectangular 2D topology. We use the ArrayMap function to allocate the array
across the processor topology using the domain partition resulting of the Map.
The sequential program executes some loop iterations until it achieves a limit
or until it reaches the convergence criteria (line 10 of Fig. 5). In CMAPS we use
the loop primitive.

On each iteration, each position of the array will be updated with the previous
values of its neighbors. The sequential code first updates a copy of the original
array values. Then, the inner array elements are traversed. The sequential func-
tion updateCell is executed for each element using the old values contained in
the copy of the array and checking if the element has converged.

On the other hand, CMAPS does not need a copy of the old values. In
CMAPS logical processes work with a virtual copy of the global state. So, we

11

only have to perform the computation (using the updateCell function) on one
element of the array in each logical process. Each logical process can access to the
old values of its neighbors in his local state independently of the real execution
order. We accomplish this using the parallel primitive. We launch as many logical
process as indicated by the shape or domain used to build the Map object. In
this case, we launch a logical process for each element in the array except for
the global borders (see line 12 of code CMAPS of Jacobi solver). Each logical
process executes the updateCell function updating an element, using its four
neighbours (see line 20-22 of code CMAPS of Jacobi solver). The convergence
check is performed using the reduce clause. This reduce chooses the maximum
value of the evaluated convergence check of each element. An internal copy of
the old values will be managed automatically by Trasgo if needed to preserve
the CMAPS parallel semantics.

4 Conclusions

This paper describes a new high level parallel programming language, CMAPS.
It is designed to be a front-end language for a parallel code generation frame-
work named Trasgo. It allows to express coordination at a highly abstract level,
supporting a wide range of parallel structures and applications. We describe the
design principles needed in a Trasgo input language and we present our approach
to create CMAPS, an extension of the classical C language that complies with
the required principles. We review the syntax of CMAPS showing examples of
real study cases that show the features of the language, how it manage domains,
mappings, and data structures in parallel, in an abstract way.

Acknowledgements

This research has been partially supported by MICINN (Spain) and ERDF
program of the European Union: HomProg-HetSys project (TIN2014-58876-
P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action
IC1305: Network for Sustainable Ultrascale Computing (NESUS).

References

[Bas04] C. Bastoul. Code generation in the polyhedral model is easier than you
think. In Proc. PACT’04, pages 7–16. ACM Press, 2004.

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral program optimization system. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), June 2008.

[Bon13] U. Bondhugula. Compiling affine loop nests for distributed-memory par-
allel architectures. In Proc. SC’2014, Denver, CO, USA, 2013. ACM.

[Can69] L.E. Cannon. A cellular computer to implement the kalman filter algo-
rithm. Doctoral dissertation, Montana State University Bozeman, 1969.

12

[CDIC10] B.L. Chamberlain, S.J. Deitz, D. Iten, and S-E. Choi. User-defined distri-
butions and layouts in Chapel: Philosophy and framework. In 2nd USENIX
Workshop on Hot Topics in Parallelism, June 2010.

[CG06] Michael Claßen and Martin Griebl. Automatic code generation for dis-
tributed memory architectures in the polytope model. In Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pages 7–pp. IEEE, 2006.

[GEL11] A. Gonzalez-Escribano and D.R. Llanos. Trasgo: A nested-parallel pro-
gramming system. The Journal of Supercomputing, 58(2):226–234, 2011.

[Gem97] A.J.C. van Gemund. The importance of synchronization structure in paral-
lel program optimization. In Proc. 11th ACM ICS, pages 164–171, Vienna,
Jul 1997.

[GETFL13] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D.R. Llanos. An exten-
sible system for multilevel automatic data partition and mapping. IEEE
TPDS, 25(5):1145–1154, 2013. (doi:10.1109/TPDS.2013.83).

[KPP+15] Martin Kong, Antoniu Pop, Louis-Noël Pouchet, R Govindarajan, Albert
Cohen, and P Sadayappan. Compiler/runtime framework for dynamic
dataflow parallelization of tiled programs. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 11(4):61, 2015.

[LW98] K. Lodaya and P. Weil. Series-parallel posets: Algebra, automata, and
languages. In Proc. STACS’98, volume 1373 of LNCS, pages 555–565,
Paris, France, 1998. Springer-Verlag.

[MFGEL14] A. Moreton-Fernandez, A. Gonzalez-Escribano, and D.R. Llanos. Ex-
ploiting distributed and shared memory hierarchies with Hitmap. In Proc.
HPCS’2014, pages 278–286, Bologna (Italy), 2014.

