Departamento de
Informatica

Universidad de Valladolid

Computer Science Department
University of Valladolid
Valladolid - Spain

Tools to schedule and simulate parallel computations
expressed as directed graphs

Arturo Gonzéalez-Escribano, Arjan J.C. van Gemyrahd Valentin Cardefioso-Pdyo

1 Dept. de Informatica, Universidad de Valladolid.
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain
Phone: +34 983 423270, eMait.t ur o@ nf or . uva. es

2 Faculty of Information Technology and Systems (ITS)
P.0.Box 5031, NL-2600 GA Delft, The Netherlands
Phone: +31 15 2786168, eMail:j . ¢c. vangenund@ udel ft . nl

Abstract Some parallel computations, i.e. sparse-matrix factbama, may be

expressed as directed graphs. Once the graphs are obthiegdnay be sched-
uled or mapped to a parallel machine in different ways. Thisudhent describes
tools developed to experiment with these kind of computaticreating trivial

schedulings, and generating MPI programs which simulai tiehavior when

executed on real machines. The tools have been used to rgnenvith some

sparse-matrix factorization graphs on a Beowulf cluster.

Technical Report No. IT-DI-2007-0001

1 Introduction

Many parallel computations may be expressed as direct@thgrblodes represent com-
putation, and they have a number of floating point operatimssciated. Edges repre-
sent data dependencies or execution order between the tatiops represented by
the nodes. These directed graphs are a compact and conviemiarto represent the
computations. Automatic graph transformation tools maysed to work with them,
testing different implementation options.

To implement the computationit is first needed to sched@atdes in the number
of real available processors. Data dependencies proghgettess different processors
should derive in communications when a real implementasidouilt.

In this document we describe tools which, from an input grapdy create different
schedulings for different number of real processors. Théstgenerate all the informa-
tion needed for an MPI program simulator. The simulator ati&xin each processor
the associated floating point operations for each node,ssn@$ the needed communi-
cations.

The graph transformation tool is integrated with other res graph tools used to
transform the synchronization structure of the applicati®ee [2,3] for details.

The tools have been used to experiment with some sparséxfaatorization graphs
obtained from civil-engineering examples with DIANA [1,4]he simulations has been
tested in a 20 nodes Beowulf cluster.

In sections 3 to 5 we present a description of the tools. Itice€ we describe the
experiments and results obtained for the selected inpphgra

2 Parallel computations expressed as graphs

In this section we describe the semantics of the graphs usesptesent the parallel
computations.

2.1 Graphs

A task graphis a directed grapliz = (V, E), composed by a set of nod&sand a
set of edgedw C V x V. Each node; represent a sequential computation. It has an
associated number of floating point operations { — Z), which must be computed
to generate its result. This resultis a data structure ceegbby a numbed(: V — Z)
of floating point elements. Without losing generality, wewase the data structure is a
continuous array. If a transformation to marshall/unmalighe data is needed, its cost
may be measured and addedte;).

The set of directed edgds C V x V associates nodes, creating a partial ordered
set. The order relations express:

— Data dependencies: Let= (v;, v;) € E be an edge. The computation represented
by v; needs the data computed byto proceed.
If v; andv; are assigned to different processars,need to wait until the data
computed by; is ready and it needs to access that data. Data dependerayjes m
derive on communications of the data computedpto all thev; : (v;,v;) € E.

For our purposes it is not needed to distinguish betweemeréifft data sizes on
the data-dependency edges coming from the same node. Weea#sat all nodes
v; : (v;,v;) € E, need all the data generatedvinto proceed. If needed, an integer
value could be associated to the nodes to represent it.

For simplicity, we also assume that the computatipmay not begin until all the
data needed from all predecessor nogdes(v;, v;) € E is fully available.

— Synchronizations: Other added synchronizations, whigiiess order but not data
dependency may be also represented by edges. To representayization points
we will use nodes with a special load value: 7(v) = —inf. These nodes
do not compute anything. Any edge from/to a synchronizagiomt (v;,v;) :
7(v;) + 7(v;) = — inf, represent only an order precedence. Synchronizations may
be implement as empty communications or using other symitaion mecha-
nisms.

2.2 File format

For our tools we are considering a simple file format, in plaixt, to store the task
graphs. You can see an example in Figure 1.

T 11

R 2

t0: 5.0000 10 s3: 1 2 3
t1l: 3.0000 4 s2: 5 4
t2: 10.0000 12 sl1: 4
t3: 2.0000 24 s2: 4 6
t4: 4.0000 5 s3: 789
t5: 1.0000 9 s1:. 7

t6: 11.0000 32 sl1: 9
t7: 7.0000 14 s1: 10
t8: 6.0000 8 si1: 10
t9: 1.0000 3 si1: 10
t10: 9.0000 40 sO

Figurel. Example of a task graph file

The first line indicates the number tdsk nodes. The second line indicates the
number ofresource®r values associated to the task node. We use the resoutmsval
to store the number of floating point operations and numbeéati# elements computed.
Other tools may add new resource values to the nodes (seelltheifig sections).

Each node is identified by an integer number. For each nodewedline starting
with ¢ and its identifier. After the first colon we find the values of tlesources for that
node. The first one represents the number of floating poinmabipes. We use a floating
point number for compatibility with other previous toolsdato easily store the- inf
value for the synchronization nodes. The second resoutae isthe number of result
data-elements computed.

After the resource values there is an "s" followed by the neinolb successor nodes,
nodesv; : (v;,v;) € E, for whichv; is this node. After the second colon we find the
identifiers of those successor nodes. The line for a nodewttuccessors has no data
after the indicator of no successos€)().

3 Tool 1: Trivial scheduling algorithm

In this section we describe a tool to generate a trivial isiesluling for an input graph
and a given number of processors.

3.1 Trivial scheduling algorithm

We have implemented a trivial scheduling algorithm. It reeg as input a task grapgh
and a number of processaks It simulates an execution based on the estimated times
of each node, assigning nodes to processors as they ar@d@allo communication or
task-switch times are considered (they are low-level anchin@-dependent parameters
we do not want to consider at this stage of the study).

The algorithm uses an auxiliary data structure to keep todaleady to execute
task nodes, the state of each processor, and the simulateal gime. At the start, all
processors are idle.

Each task node enters the ready set and may be assigned tceggmoas soon as
all its precedent task are already finished. Nodes withcedgressors are available at
the start, and they are put in the ready list at the begintWfigen a node is assigned
to a processor, its expected finishing time is computed aditinnumber of floating
point operations to the global simulation time. Synchratian nodes with- inf time
are considered to have execution titho floating point operation).

After ready nodes are assigned to processors, we seardiefarihimum finishing
time of a task assigned to a processor. The first task to fisigliminated and the
associated processors become idle. The successor nodes takk are checked and
introduced in the ready list when all their predecessorsaaieady done. When there
are no more nodes in the ready list and all processors beatieyall the computation
has been scheduled and the algorithm ends.

We use two new resources assigned to each node to specifyuiffiger of proces-
sor (p : V — 7Z), and the number of sequence in that processoi{ — Z). The output
is the same graph but with the new resource annotations.[gbgtam is presented in
Figure 2.

3.2 File format

We use the same file format described above to store the deldaghaphs. We use two
new resource values on each node, one to store the numbex pfabessor assigned,
and another to store the order of sequence in that procébsmbers of processors are
numbered fron®) to P — 1 in the graph. You can see an example of a scheduling for 3
processors in Figure 3.

TrivialScheduling(G,P), Output G

1. ready ={v; : A(vi,v;) € E}

2. proc[i] = idle

3.numTask[i]=0i=1,P

4. endingTime[i] =04 =1, P

5.time=0

6. while ready# () and3 proc[il#idle,i = 1, P
6.1. fori=1,P do

if proc[i]=idle and ready- @) then
v = extractNode(ready)

proc[i] = v
if 7(v) # — inf then; endingTime[i] =time +(v)
p(v) =i
s(v) = numTask]i]; numTask[i] = numTask][i]+1
end-if
end-for

6.2. next = : endingTime[j]=min(endingTime[i] : i=1,P)
6.3. forallk : (proc[jl, k)e E
visits(k) = visits(k) + 1
if visits(k) = numPredecessor(k) then; ready = readi}
enf-forall
end-while

Figure2. Trivial scheduling algorithm

3.3 Implementation

We have implemented the program in JAVA, using Graph claaselstools already
developed for other experimentation (see [2,3]). In thoeeke&swe described a struc-
tural transformation calle8P-izationwhich transform the task graph to an equivalent
which may represent a pure nested-parallel structugPegraphThe program may ap-
ply such structural transformation before the schedulitgs transformation add new
synchronization nodes (with(v) = —inf). In Figure 4 we present the result of the
scheduling of the SP-ization of the graph introduced in joev examples. It has two
new synchronization nodes.

The program also allows to obtain information about theicaitpath after the
scheduling, some workload and structure parameters of ridyghg; before and after
the SP-ization transformation.

4 Tool 2: Generation of message-passing information

This section describes a tool which generates informatamplement the scheduled
graph as a message-passing program. The tool receivesdutadhgraph as parameter,
and the output is a list of activities to execute on each msoe

The basic types of activities are:

exec <num> <load>Executdoad number offlopson the assigned processor. The pa-
rametemumis the number of the task.

R 4

t0: 5.0 10 0 0 s3: 12 3
tl: 3.0 4 01 s2: 54
t2: 10.0 12 1 0 sl1: 4
t3: 2.0 24 2 0s2: 46
t4: 4.05 0 3 s3: 789
t5: 1.0 90 2 s1: 7

t6: 11.0 32 2 1 s1: 9
t7: 7.0 14 0 4 s1: 10
t8: 6.0 81 1 s1: 10
t9: 1.0 3 2 2 s1: 10
t10: 9.0 40 0 5 sO:

Figure3. Example of a task graph file

send <target> <size> <tag>Send a message to processogetwith sizefloating point
elements with the givetag. The tag is the number of the task which has generated
the data, and it will be used in the target processor to ketiiee appropriate data
when needed.

recv <sender> <size> <tag>Receive a message from procedsogetwith sizefloat-
ing point elements with the givelag. The tag is the number of the task which has
generated the data we require to proceed.

sendSynch <target> 0 <tag>Send a message from a synchronization node to proces-
sor target with the giventag. The tag is the number of the synchronization task.
Synchronization messages have no data to transfer. Theivalue is 0 by conven-
tion at this specification level. We distinguish the syncfization messages from
the normal ones because they may be optimized in a differant8ee below.

recvSynch <sender> 0 <tag>Receive a synchronization message from processuter
with the giventag. The tag is the number of the synchronization task.

4.1 Version 1: Full-Communication

In the first version we consider a model where the tasks séeisgenerated output to
all the other tasks that need it. In this simple approach,joessage is generated from
each node to each successor.

Sometimes, successor tasks are scheduled in the samegmoagshe sender task.
With this first approach we will find messages sent from preceisto processof, to
be received by future tasks also scheduled.ofs subset of the successors may also
be scheduled on the same processor. Thus, we may find morerkanessage from
processot to j, with the same length and content, to be received by difteneccessor
task scheduled op

The implementation of this version will need to use a bufiesemmunication sys-
tem to allow messages sent franto ¢, and will be barely efficient, as buffers will be
easily saturated by the amount of duplicated messages. (pieation factor is a pa-

T: 13

R 4

t0: 5.0 10 0 0 s3: 12 3

tl: 3.0 40 1 s1: 11

t2: 10.0 12 1 0 s1: 11

t3: 2.0 24 2 0 s1: 11

td: 4.05 1 1 s1: 12

t5: 1.0 9 0 3 s1: 12

t6: 11.0 32 2 1 s1: 12

t7: 7.0 14 0 5 s1: 10

t8: 6.0 812 s1: 10

t9: 1.0 3 2 2 s1: 10

t10: 9.0 40 0 6 sO:

t1l: -Infinity 0 0 2 s3: 546
t12: -Infinity 0 0 4 s3: 7 89

Figure4. Example of a task graph after a SP-ization transformation

rameter of the edge-density of the graph and the number a@epsors. In general it
may lead to buffer saturation and dead-lock conditions easily.

4.2 \ersion 2: Communications using memory

In this version we optimize the programs eliminating thelaaped and unneeded mes-
sages using local memory buffers.

Communications from to ¢ may be easily substituted by the successor task ac-
cessing the data directly if it is still stored in local memadvioreover, it is perfectly
possible for many equal messages froto j to be substituted by only one message.
The first receiving task on procesgomay store the data in a local memory buffer. The
last receiving task on processpmay free the local buffer after using the data.

We extent the type of activities to be executed by a procesghbrthe following
ones:

malloc <num> <size> Allocate a local memory buffer for the data of taskmwith a
number ofsizefloating-point allocation units.
free <num> Free the local memory buffer for the data of tamkm

4.3 Optimization of the synchronization messages

Synchronization messages carry no real data. The sucsegspsynchronization node
which are scheduled on the same processors, do not neectieeraaything. They are
already scheduled after the synchronization node. Thosshsgnessages are eliminated
from the output lists.

When several successors of a synchronization task aredeldesh the same pro-
cessors, itis enough to send one message. The first scheduatabsor in that processor
must receive (wait for) it. No other successor task scheflatier need to do anything.

As they have been scheduled after the first successor in ticegsor, and the first suc-
cessor has already receive (wait for) it, they know the syortization has been already
received. Symmetrically, for predecessors of a synchetiniz node, only the last one
scheduled on each processor need to send a synchroniza@izage.

As the synchronization messages carry no real data, there ieed to use local
memory buffers or any special activity for them.

4.4 Implementation and output format

We have implemented both, version 1, and version 2 plus thehsgnization messages
optimization. They have been included in the same classeoftivial Scheduling pro-
gram and they may be selected by arguments.

The output is a series of list of activities. Each list congthe activities to do in one
processors. The list starts with the number of the processbthe number of following
activities. Each activity is described in one line, preogdiy a tabular. You can see an
example in Figure 5. These lists correspond to the SP-veesiample graph presented
previously.

5 Tool 3: Execution program

We have developed a program to simulate the execution ofdtietg lists generated
by Tool 2. The simulation engine is a C program using MPI fer¢bmmunications.

The program loads the activity list file. Each process ds#ne input until it finds
the activity list corresponding with its MPI rank. It tratda it to an internal representa-
tion and stores it in a dynamically allocated array of atithgi.

The basic engine is a loop that iterates on the array of detvindex, visiting each
activity sequentially. Inside the loop there is a geneealizonditional which selects the
code corresponding to the type of activity and executesth thie given parameters.

Implementation of communication¥he actual program execute use point to point
buffered communications (MPI_Bsend, MPI_Recv). The uiffegeserved at the start
of the program. Its size should be adapted to use a signiffzamtof the target ma-
chine memory, trying to avoid deadlock conditions and bus&turation delays. The
synchronization messages are implemented as point to peisgages of size 1.

Memory managementhe operate with the local buffers easily, the program alles
an array of pointers of as many elements as tasks in the giépén amallocactivity is
found, the pointer of the new allocated local buffer is stidrethe element of the array
corresponding to the task which produced and sent the data.

6 Experiments design

The tools have been used to experiment with some sparsexifiaatiorization graphs.

NumTasks: 13 pl: 22

NunmProc: 3 mall oc 2 12
p0: 34 recv 0 10 O
mall oc 0 10 exec 2 10.0
exec 0 5.0 sendSynch 0
send 1 10 O free O
send 2 10 O
malloc 4 5
malloc 1 4 recv 0 4 1
exec 1 3.0 recv 2 24 3
send 1 4 1 recvSynch 0
free O exec 4 4.0
send 0 5 4
recvSynch 1 0 11 send 2 5 4
recvSynch 2 0 11 sendSynch 0
exec 11 -Infinity free 1
sendSynch 1 0 11 free 2
sendSynch 2 0 11 free 3
malloc 5 9 mal l oc 8 8
exec 5 1.0 recvSynch 0
free 1 exec 8 6.0
send 0 8 8
recvSynch 1 0 12 free 8
recvSynch 2 0 12 free 4
exec 12 -Infinity
sendSynch 1 0 12 p2: 19
sendSynch 2 0 12 mal loc 3 24
recv 0 10 O
mal |l oc 7 14 exec 3 2.0
recv 154 send 1 24 3
exec 7 7.0 sendSynch 0
free 4 free O
free 5
mal |l oc 6 32
mal | oc 10 40 recvSynch 0
recv 1 8 8 exec 6 11.0
recv 2 39 sendSynch 0
exec 10 9.0 free 3
free 10
free 7 mal loc 9 3
free 8 recv 1 5 4
free 9 recvSynch 0
exec 9 1.0
send 0 3 9
free 9
free 4
free 6

Figure5. Example of a program activity lists

8

Input graphs: These graphs have been obtained from civil-engineerinmpbes us-
ing the DIANA tools [1,4]. These graphs includes tasks fa domain decomposition
and for the factorization of the corresponding sparsedimalhe tasks related to in-
put/output tasks have been eliminated. Our set of example$ lifferent graphs with
a wide range of sizes.

Nodes
58
211
772
2014
3142
3541

Tablel.Parameters of the 6 example graphs

Task workload: The tasks of the input graphs include the number of flops towgren
the task, and the number of floating-point elements gererate

The simulations has been executed using three differenasics. When the num-
ber of flops per task is very low the communication costs mawidate the computation
and determine the performance of the simulation. When thebeuw of flops per task is
very high, it may dominate and determine the performancasTe have used three
different multipliers of the number of flops per task to gexterthree different cases.
The first case uses the number of flops included in the origirsgdhs. The experiments
show that the number of flops per task is low for the speed ofithehines used for the
experiments. The other two ones are hypothetical casesajeddo produce the other
situations.

Case 1: Number of flops in tagk= 7(v)

Case 2: Number of flops in tagk= 100 x 7(v)

Case 3: Number of flops in tagk= 500 x 7(v)

SP-ization transformationsWe have conducted all experiments with the normal and
the SP-ized versions of the 6 example graphs. The resuti& als to compare the
impact of the SP-ization on the performance of the simulptedrams. The study has
been complemented with the critical path values obtainetherscheduled graphs for
the original and SP-ized versions. These measures onlyrttkaccount the number of
flops per task, with no communication costs. It may be usedfasance.

Platform and execution detailsVe have run simulations of the scheduled graphs in a
20 nodes Beowulf cluster. Each node is a PC with a i686, 1.8MMD Athlon(tm) 64
Processor 3000+, with 512 Mb of RAM memory, running a Linuxh@e distribution
based on a 2.6.17 kernel. They are connected by a 100Mbitrigthiarough a single
HUB.

The graphs have been scheduled and executed for 2,4,4,8,10,16,18, and 20
processors.

For each graph, number of processors, and load multipliethawe executed the
simulation program three times. We present mean resultedhree executions.

7 Results

In this section we present tables containing the resultseékperiments. Tables 2 and 3
show the critical path measured after the trivial schedudihthe graphs. The original

ones, and the SP-ized versions respectively. The numbete@sum of the number of
flops to execute by the tasks in the critical path of the graph.

Tables 4 and 5 present the mean execution time of the simnlptogram in the
Case 1. The number of flops executed by the tasks are the saméicded in the
graph nodes. The numbers indicate that the amount of comnuia too low for the
speed of the machines. This motivates the experiments agsQaand 3.

Tables 6 and 7 present the mean execution time of the simalgtiogram in the
Case 2 (tasks execute 100 times the indicated number of flogsles 8 and 9 present
the mean execution time of the simulation program in the Ga@asks execute 500
times the indicated number of flops).

8 Conclusion

In this report we present a collection of tools developedkfmeeiment in a real PC clus-
ter with computations described as task graphs. The tagihgrare scheduled using
a trivial scheduling algorithm to a given number of processé simulation program

allows to execute the scheduled graph. It simulates thectagperumber of flops on

each task and uses MPI communications to move the virtualtsesf the computa-

tions across nodes when needed. The programs are integiittierther previous graph

transformation tools.

We have use the tools to experiment with some graphs repiegeral parallel
sparse-matrix factorizations. The graphs have been st#kdnd simulated for differ-
ent number of nodes in a Beowulf cluster of up to 20 nodes.

The results obtained will be used to further study the pertorce effects produced
on an application due to the graph restrictions imposed &égyhchronization structure
used at the programming level.

10

Graph nodes
Procg 58 211 772 2014 3142 3541

1 |3231345624713297163213554287226786373173428747)
2 17326233295 66842725 680700111364624F 868474159
4 12450142411 34366067 3475783 60974764 479147805
6 (12450120408 28967179 2383178 44433166 353894396
8 |12450110103 21687211 1903853 37141516 30827916}
10 (12450107170 21370920 1609029 33586779 293185718
12 12450105180 21167752 1406953 32433667 287589904
14 (12450104675 21165963 1299434 3212086% 282222258
16 (12450104665 21165963 1219408 31652597 283291651
18 |12450104660 21165963 1186161 31493900 282902143
20 12450104655 21165963 1173987 31420779 280883165

Table2. Critical path values (flops) for original graphs

Graph nodes
Procg 58 211 772 2014 3142 3541
1 |32313456247113297163P13554287226786373173428747
2 |1733624175% 66697328 6795796114495632 87441063
4 112450144510 3429095% 3494233 59850748 45554104
6 [1245Q0122556 29475250 2446434 45078568 35513303
8 (124501147671 21576084 1949297 3898916%5 30713229
10 |1245011295] 21390671 1670218 34796009 29362747
12 112450112412 21406328 149023% 32933454 28819886
14 |12450112403 21386680 1381599 32368844 28407184
16 (12450112400 21379416 132501% 31952869 28190547
18 (12450112393 21372299 1303281 31629323 28022026
20 |12450112390 21372299 1291758 3146267% 27995076

PO =0 v OO =00 =<1

Table3. Critical path values (flops) for SP-ized graphs

Graph nodes

Procs 58 211 7720 2014 3142 3541
0.00040.0026 0.52570.0652 0.9456 6.9297
0.00730.0243 3.73830.2972 4.390215.215¢
0.00930.0338 7.85500.3984 8.547(023.9964
0.01230.039911.16900.4341 8.907934.114(
0.01310.054713.41990.487012.275040.6763
10 |0.01400.059315.10390.521314.317242.6729
12 |0.01440.102014.93580.615914.788(50.149(
14 10.03380.140816.52490.684817.011056.2437
16 |0.09540.252116.96720.731217.950959.6821
18 |0.04280.159215.61960.913718.348166.0759

o RANPE

Table4. Execution times (sec.) for original graphs, Case 1

11

Graph nodes
Procs 58 211 772 2014 3142 3541
1 |0.00040.0026 0.52570.0652 0.9456 6.9297
2]0.00770.0241 3.77010.3024 4.506615.130%
4 0.00950.0345 8.66100.4266 8.783225.628
6 |0.02290.045711.67510.471810.947331.738(
8 10.01380.060413.50190.542313.234837.1039
10 |0.01690.089713.50910.674015.024638.9399
12 |0.02290.095415.89590.752016.594846.48641
14 0.02350.102617.16880.804618.883751.5815
16 |0.03580.194616.41860.984521.891955.524(
18 |0.04240.117716.40421.072721.873462.042(

Table5. Execution times (sec.) for SP-ized graphs, Case 1

Graph nodes
Procg 58 211 772 2014 3142 3541
0.01460.203250.33305.945389.7590644.6169
0.01200.114530.03743.198953.0208383.588%
0.01350.076021.47341.689932.8978263.0631
0.01710.083923.35741.209026.3883213.3361
0.01740.086121.83401.068925.2242182.2359

)

|

|

oA NEPE

10 |0.01990.095620.89640.943228.6459169.829¢4
12 |0.02090.163221.02410.952925.6299173.661]
14 10.02360.140222.41630.991229.3823169.9251
16 |0.10080.257922.04491.0886429.3822175.6892
18 |0.13150.176422.35471.185028.3800164.646¢
20 |0.078710.224822.35231.322128.3724173.185(

Table6. Execution times (sec.) for original graphs, Case 2

Graph nodes

Procg 58 211 772 2014 3142 3541
1]0.01460.203450.13035.947289.7590644.6169
2 10.01320.115629.487(3.186652.5162371.323
4 10.01330.081922.87571.800133.7676253.987
6 |0.01690.091124.011%1.350329.4902214.067
8]0.01800.099521.65281.151528.631%155.900
10 |0.02170.119518.59721.070228.7325159.657
12 |0.02550.1227%21.39551.093627.6039158.476
14]0.02790.143522.40911.123928.9869154.955
16 |0.04230.201921.97471.341331.2409156.955
18 |0.04940.177921.96951.483931.2689157.116
20 |0.05690.241321.43941.632330.6010160.269

Table7. Execution times (sec.) for SP-ized graphs, Case 2

12

58

211

Grap
772

h nodes
2014

3142 3541

10
12
14
16
18
20

0.06190.8709
0.03520.4531
0.02930.2851
0.03200.2614
0.03370.2711
0.03720.2551
0.03900.2560
0.05050.3723
0.11760.3934
0.06670.3588
0.09300.4285

285.275%
161.928]

92.9841
88.1184
69.681¢
56.8591
55.9663
59.4718
57.9674
56.562(
59.263%

?26.0715
[13.6828

470.81323740.963

266.62132257.516¢
6.97671154.96881559.543]
5.0146120.22211220.714¢

4.2194106.8767 998.303
3.4229111.7432 879.978
3.2657 93.305% 884.591
3.1095100.0617 851.005
3.0377 95.4795 842.423
3.0921 87.2268 819.998
3.1043 92.4381 825.120

Table8. Execution times (sec.) for original graphs, Case 3

58

211

Graph nodes

772

2014

31421 3541

10
12
14
16
18

0.0619
0.0364
0.0299
0.0334
0.0351
0.0396
0.0387%
0.0482
0.0524
0.0664

20

0.079(

0.8709
0.4713
0.2984
0.2731
0.2605
0.2933
0.2814
0.3074
0.3581
0.4039
0.5276

285.275226.071%4
156.667(13.60332

97.7383
89.3554
67.8374
55.4447
57.0753
57.8287
57.0839
56.0487
55.8891

7.19751
5.09611
4.36861
3.59211

3.4164 94.1481 831.6882

69.03092191.816
59.67581477.756
21.55311224.750
10.6939 887.6471
05.3672 839.507]

70.813?740.963
1

<5

N0 SO

3.2136 96.5626 762.332

3.2737
3.5136
3.4426

93.8339 768.305
89.3808 753.862
83.2551 756.153

Table9. Execution times (sec.) for SP-ized graphs, Case 3

13

References

1. DIANA FE Program. WWW, Jan 2000. On http://www.diana.tib

2. A. Gonzalez-Escriban@ynchronization Architecture in Parallel Programming Md&l Phd
thesis, Dpto. Informatica, University of Valladolid, JW@3.

3. A. Gonzélez-Escribano, A.J.C. van Gemund, and V. Castefiéd new algorithm for map-
ping DAGs to series-parallel form. Technical Report IT-2002-2, Dpto. Informatica, Univ.
Valladolid, Apr 2002.

4. H.X. Lin. A general approach for parallelizing the FEMtsadre package DIANA. IrProc.
High Performance Computing Conference'@ages 229-236. National Supercomputing Re-
search Center. National University of Singapur, 1994.

14

