
Computer Science Department
University of Valladolid

Valladolid - Spain

Tools to schedule and simulate parallel computations
expressed as directed graphs

Arturo González-Escribano, Arjan J.C. van Gemund2, and Valentín Cardeñoso-Payo1

1 Dept. de Informática, Universidad de Valladolid.
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain
Phone: +34 983 423270, eMail:arturo@infor.uva.es

2 Faculty of Information Technology and Systems (ITS)
P.O.Box 5031, NL-2600 GA Delft, The Netherlands

Phone: +31 15 2786168, eMail:a.j.c.vangemund@tudelft.nl

Abstract Some parallel computations, i.e. sparse-matrix factorizations, may be
expressed as directed graphs. Once the graphs are obtained,they may be sched-
uled or mapped to a parallel machine in different ways. This document describes
tools developed to experiment with these kind of computations, creating trivial
schedulings, and generating MPI programs which simulate their behavior when
executed on real machines. The tools have been used to experiment with some
sparse-matrix factorization graphs on a Beowulf cluster.

Technical Report No. IT-DI-2007-0001

1 Introduction

Many parallel computations may be expressed as directed graphs. Nodes represent com-
putation, and they have a number of floating point operationsassociated. Edges repre-
sent data dependencies or execution order between the computations represented by
the nodes. These directed graphs are a compact and convenient form to represent the
computations. Automatic graph transformation tools may beused to work with them,
testing different implementation options.

To implement the computation it is first needed to schedule the nodes in the number
of real available processors. Data dependencies propagated across different processors
should derive in communications when a real implementationis built.

In this document we describe tools which, from an input graph, may create different
schedulings for different number of real processors. The tools generate all the informa-
tion needed for an MPI program simulator. The simulator executes in each processor
the associated floating point operations for each node, and issues the needed communi-
cations.

The graph transformation tool is integrated with other previous graph tools used to
transform the synchronization structure of the application. See [2,3] for details.

The tools have been used to experiment with some sparse-matrix factorization graphs
obtained from civil-engineering examples with DIANA [1,4]. The simulations has been
tested in a 20 nodes Beowulf cluster.

In sections 3 to 5 we present a description of the tools. In section 6 we describe the
experiments and results obtained for the selected input graphs.

2 Parallel computations expressed as graphs

In this section we describe the semantics of the graphs used to represent the parallel
computations.

2.1 Graphs

A task graphis a directed graphG = (V, E), composed by a set of nodesV and a
set of edgesE ⊂ V × V . Each nodevi represent a sequential computation. It has an
associated number of floating point operations (τ : V → Z), which must be computed
to generate its result. This result is a data structure composed by a number (δ : V → Z)
of floating point elements. Without losing generality, we assume the data structure is a
continuous array. If a transformation to marshall/unmarshall the data is needed, its cost
may be measured and added toτ(vi).

The set of directed edgesE ⊂ V × V associates nodes, creating a partial ordered
set. The order relations express:

– Data dependencies: Lete = (vi, vj) ∈ E be an edge. The computation represented
by vj needs the data computed byvi to proceed.
If vi and vj are assigned to different processors,vj need to wait until the data
computed byvi is ready and it needs to access that data. Data dependencies may
derive on communications of the data computed onvi to all thevj : (vi, vj) ∈ E.

1

For our purposes it is not needed to distinguish between different data sizes on
the data-dependency edges coming from the same node. We assume that all nodes
vj : (vi, vj) ∈ E, need all the data generated invi to proceed. If needed, an integer
value could be associated to the nodes to represent it.
For simplicity, we also assume that the computationvj may not begin until all the
data needed from all predecessor nodesvi : (vi, vj) ∈ E is fully available.

– Synchronizations: Other added synchronizations, which express order but not data
dependency may be also represented by edges. To represent synchronization points
we will use nodes with a special load valuev : τ(v) = − inf. These nodes
do not compute anything. Any edge from/to a synchronizationpoint (vi, vj) :
τ(vi) + τ(vj) = − inf, represent only an order precedence. Synchronizations may
be implement as empty communications or using other synchronization mecha-
nisms.

2.2 File format

For our tools we are considering a simple file format, in plaintext, to store the task
graphs. You can see an example in Figure 1.

T: 11
R: 2
t0: 5.0000 10 s3: 1 2 3
t1: 3.0000 4 s2: 5 4
t2: 10.0000 12 s1: 4
t3: 2.0000 24 s2: 4 6
t4: 4.0000 5 s3: 7 8 9
t5: 1.0000 9 s1: 7
t6: 11.0000 32 s1: 9
t7: 7.0000 14 s1: 10
t8: 6.0000 8 s1: 10
t9: 1.0000 3 s1: 10
t10: 9.0000 40 s0:

Figure1. Example of a task graph file

The first line indicates the number oftask nodes. The second line indicates the
number ofresourcesor values associated to the task node. We use the resource values
to store the number of floating point operations and number ofdata elements computed.
Other tools may add new resource values to the nodes (see the following sections).

Each node is identified by an integer number. For each node we have a line starting
with t and its identifier. After the first colon we find the values of the resources for that
node. The first one represents the number of floating point operations. We use a floating
point number for compatibility with other previous tools and to easily store the− inf
value for the synchronization nodes. The second resource value is the number of result
data-elements computed.

2

After the resource values there is an "s" followed by the number of successor nodes,
nodesvj : (vi, vj) ∈ E, for whichvi is this node. After the second colon we find the
identifiers of those successor nodes. The line for a node without successors has no data
after the indicator of no successors (s0:).

3 Tool 1: Trivial scheduling algorithm

In this section we describe a tool to generate a trivial list scheduling for an input graph
and a given number of processors.

3.1 Trivial scheduling algorithm

We have implemented a trivial scheduling algorithm. It receives as input a task graphG
and a number of processorsP . It simulates an execution based on the estimated times
of each node, assigning nodes to processors as they are available. No communication or
task-switch times are considered (they are low-level and machine-dependent parameters
we do not want to consider at this stage of the study).

The algorithm uses an auxiliary data structure to keep trackof ready to execute
task nodes, the state of each processor, and the simulated global time. At the start, all
processors are idle.

Each task node enters the ready set and may be assigned to a processor as soon as
all its precedent task are already finished. Nodes without predecessors are available at
the start, and they are put in the ready list at the beginning.When a node is assigned
to a processor, its expected finishing time is computed adding its number of floating
point operations to the global simulation time. Synchronization nodes with− inf time
are considered to have execution time0 (no floating point operation).

After ready nodes are assigned to processors, we search for the minimum finishing
time of a task assigned to a processor. The first task to finish is eliminated and the
associated processors become idle. The successor nodes of the task are checked and
introduced in the ready list when all their predecessors arealready done. When there
are no more nodes in the ready list and all processors become idle, all the computation
has been scheduled and the algorithm ends.

We use two new resources assigned to each node to specify: Thenumber of proces-
sor (p : V → Z), and the number of sequence in that processor (s : V → Z). The output
is the same graph but with the new resource annotations. The algorithm is presented in
Figure 2.

3.2 File format

We use the same file format described above to store the scheduled graphs. We use two
new resource values on each node, one to store the number of the processor assigned,
and another to store the order of sequence in that processor.Numbers of processors are
numbered from0 to P − 1 in the graph. You can see an example of a scheduling for 3
processors in Figure 3.

3

TrivialScheduling(G,P), Output G
1. ready ={vj :6 ∃(vi, vj) ∈ E}
2. proc[i] = idle
3. numTask[i] = 0 :i = 1, P

4. endingTime[i] = 0,i = 1, P

5. time = 0
6. while ready6= ∅ and∃ proc[i]6=idle, i = 1, P

6.1. for i=1,P do
if proc[i]=idle and ready6= ∅ then

v = extractNode(ready)
proc[i] = v
if τ (v) 6= − inf then; endingTime[i] = time +τ (v)
p(v) = i
s(v) = numTask[i]; numTask[i] = numTask[i]+1

end-if
end-for

6.2. next = j : endingTime[j]=min(endingTime[i] : i=1,P)
6.3. for all k : (proc[j], k)∈ E

visits(k) = visits(k) + 1
if visits(k) = numPredecessor(k) then; ready = ready∪ {k}

enf-forall
end-while

Figure2. Trivial scheduling algorithm

3.3 Implementation

We have implemented the program in JAVA, using Graph classesand tools already
developed for other experimentation (see [2,3]). In those works we described a struc-
tural transformation calledSP-izationwhich transform the task graph to an equivalent
which may represent a pure nested-parallel structure orSP-graph. The program may ap-
ply such structural transformation before the scheduling.This transformation add new
synchronization nodes (withτ(v) = − inf). In Figure 4 we present the result of the
scheduling of the SP-ization of the graph introduced in previous examples. It has two
new synchronization nodes.

The program also allows to obtain information about the critical path after the
scheduling, some workload and structure parameters of the graphs; before and after
the SP-ization transformation.

4 Tool 2: Generation of message-passing information

This section describes a tool which generates information to implement the scheduled
graph as a message-passing program. The tool receives a scheduled graph as parameter,
and the output is a list of activities to execute on each processor.

The basic types of activities are:

exec <num> <load>Executeload number offlopson the assigned processor. The pa-
rameternumis the number of the task.

4

T: 11
R: 4
t0: 5.0 10 0 0 s3: 1 2 3
t1: 3.0 4 0 1 s2: 5 4
t2: 10.0 12 1 0 s1: 4
t3: 2.0 24 2 0 s2: 4 6
t4: 4.0 5 0 3 s3: 7 8 9
t5: 1.0 9 0 2 s1: 7
t6: 11.0 32 2 1 s1: 9
t7: 7.0 14 0 4 s1: 10
t8: 6.0 8 1 1 s1: 10
t9: 1.0 3 2 2 s1: 10
t10: 9.0 40 0 5 s0:

Figure3. Example of a task graph file

send <target> <size> <tag>Send a message to processortargetwith sizefloating point
elements with the giventag. The tag is the number of the task which has generated
the data, and it will be used in the target processor to retrieve the appropriate data
when needed.

recv <sender> <size> <tag>Receive a message from processortargetwith sizefloat-
ing point elements with the giventag. The tag is the number of the task which has
generated the data we require to proceed.

sendSynch <target> 0 <tag>Send a message from a synchronization node to proces-
sor target with the giventag. The tag is the number of the synchronization task.
Synchronization messages have no data to transfer. Their size value is 0 by conven-
tion at this specification level. We distinguish the synchronization messages from
the normal ones because they may be optimized in a different way. See below.

recvSynch <sender> 0 <tag>Receive a synchronization message from processorsender
with the giventag. The tag is the number of the synchronization task.

4.1 Version 1: Full-Communication

In the first version we consider a model where the tasks sends their generated output to
all the other tasks that need it. In this simple approach, onemessage is generated from
each node to each successor.

Sometimes, successor tasks are scheduled in the same processor as the sender task.
With this first approach we will find messages sent from processori to processori, to
be received by future tasks also scheduled oni. A subset of the successors may also
be scheduled on the same processor. Thus, we may find more thanone message from
processori to j, with the same length and content, to be received by different successor
task scheduled onj.

The implementation of this version will need to use a buffered communication sys-
tem to allow messages sent fromi to i, and will be barely efficient, as buffers will be
easily saturated by the amount of duplicated messages. The duplication factor is a pa-

5

T: 13
R: 4
t0: 5.0 10 0 0 s3: 1 2 3
t1: 3.0 4 0 1 s1: 11
t2: 10.0 12 1 0 s1: 11
t3: 2.0 24 2 0 s1: 11
t4: 4.0 5 1 1 s1: 12
t5: 1.0 9 0 3 s1: 12
t6: 11.0 32 2 1 s1: 12
t7: 7.0 14 0 5 s1: 10
t8: 6.0 8 1 2 s1: 10
t9: 1.0 3 2 2 s1: 10
t10: 9.0 40 0 6 s0:
t11: -Infinity 0 0 2 s3: 5 4 6
t12: -Infinity 0 0 4 s3: 7 8 9

Figure4. Example of a task graph after a SP-ization transformation

rameter of the edge-density of the graph and the number of processors. In general it
may lead to buffer saturation and dead-lock conditions veryeasily.

4.2 Version 2: Communications using memory

In this version we optimize the programs eliminating the duplicated and unneeded mes-
sages using local memory buffers.

Communications fromi to i may be easily substituted by the successor task ac-
cessing the data directly if it is still stored in local memory. Moreover, it is perfectly
possible for many equal messages fromi to j to be substituted by only one message.
The first receiving task on processorj may store the data in a local memory buffer. The
last receiving task on processorj may free the local buffer after using the data.

We extent the type of activities to be executed by a processorwith the following
ones:

malloc <num> <size> Allocate a local memory buffer for the data of tasknumwith a
number ofsizefloating-point allocation units.

free <num> Free the local memory buffer for the data of tasknum.

4.3 Optimization of the synchronization messages

Synchronization messages carry no real data. The successors of a synchronization node
which are scheduled on the same processors, do not need to receive anything. They are
already scheduled after the synchronization node. Those synch-messages are eliminated
from the output lists.

When several successors of a synchronization task are scheduled on the same pro-
cessors, it is enough to send one message. The first scheduledsuccessor in that processor
must receive (wait for) it. No other successor task scheduled after need to do anything.

6

As they have been scheduled after the first successor in the processor, and the first suc-
cessor has already receive (wait for) it, they know the synchronization has been already
received. Symmetrically, for predecessors of a synchronization node, only the last one
scheduled on each processor need to send a synchronization message.

As the synchronization messages carry no real data, there isno need to use local
memory buffers or any special activity for them.

4.4 Implementation and output format

We have implemented both, version 1, and version 2 plus the synchronization messages
optimization. They have been included in the same class of the Trivial Scheduling pro-
gram and they may be selected by arguments.

The output is a series of list of activities. Each list contains the activities to do in one
processors. The list starts with the number of the processorand the number of following
activities. Each activity is described in one line, preceding by a tabular. You can see an
example in Figure 5. These lists correspond to the SP-version example graph presented
previously.

5 Tool 3: Execution program

We have developed a program to simulate the execution of the activity lists generated
by Tool 2. The simulation engine is a C program using MPI for the communications.

The program loads the activity list file. Each process discards the input until it finds
the activity list corresponding with its MPI rank. It traslates it to an internal representa-
tion and stores it in a dynamically allocated array of activities.

The basic engine is a loop that iterates on the array of activities index, visiting each
activity sequentially. Inside the loop there is a generalized conditional which selects the
code corresponding to the type of activity and executes it with the given parameters.

Implementation of communicationsThe actual program execute use point to point
buffered communications (MPI_Bsend, MPI_Recv). The buffer is reserved at the start
of the program. Its size should be adapted to use a significantpart of the target ma-
chine memory, trying to avoid deadlock conditions and buffer saturation delays. The
synchronization messages are implemented as point to pointmessages of size 1.

Memory managementThe operate with the local buffers easily, the program allocates
an array of pointers of as many elements as tasks in the graph.When amallocactivity is
found, the pointer of the new allocated local buffer is stored in the element of the array
corresponding to the task which produced and sent the data.

6 Experiments design

The tools have been used to experiment with some sparse-matrix factorization graphs.

7

NumTasks: 13 p1: 22
NumProc: 3 malloc 2 12
p0: 34 recv 0 10 0

malloc 0 10 exec 2 10.0
exec 0 5.0 sendSynch 0 0 11
send 1 10 0 free 0
send 2 10 0

malloc 4 5
malloc 1 4 recv 0 4 1
exec 1 3.0 recv 2 24 3
send 1 4 1 recvSynch 0 0 11
free 0 exec 4 4.0

send 0 5 4
recvSynch 1 0 11 send 2 5 4
recvSynch 2 0 11 sendSynch 0 0 12
exec 11 -Infinity free 1
sendSynch 1 0 11 free 2
sendSynch 2 0 11 free 3

malloc 5 9 malloc 8 8
exec 5 1.0 recvSynch 0 0 12
free 1 exec 8 6.0

send 0 8 8
recvSynch 1 0 12 free 8
recvSynch 2 0 12 free 4
exec 12 -Infinity
sendSynch 1 0 12 p2: 19
sendSynch 2 0 12 malloc 3 24

recv 0 10 0
malloc 7 14 exec 3 2.0
recv 1 5 4 send 1 24 3
exec 7 7.0 sendSynch 0 0 11
free 4 free 0
free 5

malloc 6 32
malloc 10 40 recvSynch 0 0 11
recv 1 8 8 exec 6 11.0
recv 2 3 9 sendSynch 0 0 12
exec 10 9.0 free 3
free 10
free 7 malloc 9 3
free 8 recv 1 5 4
free 9 recvSynch 0 0 12

exec 9 1.0
send 0 3 9
free 9
free 4
free 6

Figure5. Example of a program activity lists

8

Input graphs: These graphs have been obtained from civil-engineering examples us-
ing the DIANA tools [1,4]. These graphs includes tasks for the domain decomposition
and for the factorization of the corresponding sparse-matrix. The tasks related to in-
put/output tasks have been eliminated. Our set of examples has 6 different graphs with
a wide range of sizes.

Nodes
58

211
772

2014
3142
3541

Table1.Parameters of the 6 example graphs

Task workload:The tasks of the input graphs include the number of flops to execute in
the task, and the number of floating-point elements generated.

The simulations has been executed using three different scenarios. When the num-
ber of flops per task is very low the communication costs may dominate the computation
and determine the performance of the simulation. When the number of flops per task is
very high, it may dominate and determine the performance. Thus, we have used three
different multipliers of the number of flops per task to generate three different cases.
The first case uses the number of flops included in the originalgraphs. The experiments
show that the number of flops per task is low for the speed of themachines used for the
experiments. The other two ones are hypothetical cases generated to produce the other
situations.

Case 1: Number of flops in taskv = τ(v)
Case 2: Number of flops in taskv = 100 × τ(v)
Case 3: Number of flops in taskv = 500 × τ(v)

SP-ization transformations:We have conducted all experiments with the normal and
the SP-ized versions of the 6 example graphs. The results allow us to compare the
impact of the SP-ization on the performance of the simulatedprograms. The study has
been complemented with the critical path values obtained onthe scheduled graphs for
the original and SP-ized versions. These measures only takeinto account the number of
flops per task, with no communication costs. It may be used as reference.

Platform and execution details:We have run simulations of the scheduled graphs in a
20 nodes Beowulf cluster. Each node is a PC with a i686, 1.8MHzAMD Athlon(tm) 64
Processor 3000+, with 512 Mb of RAM memory, running a Linux Gentoo distribution
based on a 2.6.17 kernel. They are connected by a 100Mbit Ethernet through a single
HUB.

9

The graphs have been scheduled and executed for 2,4,6,8,10,12,14,16,18, and 20
processors.

For each graph, number of processors, and load multiplier, we have executed the
simulation program three times. We present mean results of the three executions.

7 Results

In this section we present tables containing the results of the experiments. Tables 2 and 3
show the critical path measured after the trivial scheduling of the graphs. The original
ones, and the SP-ized versions respectively. The numbers are the sum of the number of
flops to execute by the tasks in the critical path of the graph.

Tables 4 and 5 present the mean execution time of the simulation program in the
Case 1. The number of flops executed by the tasks are the same asindicated in the
graph nodes. The numbers indicate that the amount of computation is too low for the
speed of the machines. This motivates the experiments on Cases 2 and 3.

Tables 6 and 7 present the mean execution time of the simulation program in the
Case 2 (tasks execute 100 times the indicated number of flops). Tables 8 and 9 present
the mean execution time of the simulation program in the Case3 (tasks execute 500
times the indicated number of flops).

8 Conclusion

In this report we present a collection of tools developed to experiment in a real PC clus-
ter with computations described as task graphs. The task graphs are scheduled using
a trivial scheduling algorithm to a given number of processors. A simulation program
allows to execute the scheduled graph. It simulates the expected number of flops on
each task and uses MPI communications to move the virtual results of the computa-
tions across nodes when needed. The programs are integratedwith other previous graph
transformation tools.

We have use the tools to experiment with some graphs representing real parallel
sparse-matrix factorizations. The graphs have been scheduled and simulated for differ-
ent number of nodes in a Beowulf cluster of up to 20 nodes.

The results obtained will be used to further study the performance effects produced
on an application due to the graph restrictions imposed by the synchronization structure
used at the programming level.

10

Graph nodes
Procs 58 211 772 2014 3142 3541

1 32313456247132971632135542872267863731734287477
2 17326233295 66842725 6807001113646247 868474159
4 12450142411 34366067 3475783 60974764 479147805
6 12450120408 28967179 2383178 44433166 353894396
8 12450110103 21687211 1903853 37141516 308279167
10 12450107170 21370920 1609029 33586779 293185713
12 12450105180 21167752 1406953 32433667 287589904
14 12450104675 21165963 1299434 32120865 282222258
16 12450104665 21165963 1219408 31652597 283291651
18 12450104660 21165963 1186161 31493900 282902143
20 12450104655 21165963 1173987 31420779 280883165

Table2.Critical path values (flops) for original graphs

Graph nodes
Procs 58 211 772 2014 3142 3541

1 32313456247132971632135542872267863731734287477
2 17336241755 66697323 6795796114495632 874410638
4 12450144510 34290955 3494233 59850748 455541044
6 12450122556 29475250 2446434 45078568 355133030
8 12450114767 21576084 1949297 38989165 307132290
10 12450112951 21390671 1670218 34796009 293627472
12 12450112412 21406328 1490235 32933454 288198865
14 12450112403 21386680 1381599 32368844 284071841
16 12450112400 21379416 1325015 31952869 281905479
18 12450112393 21372299 1303281 31629323 280220263
20 12450112390 21372299 1291758 31462675 279950761

Table3.Critical path values (flops) for SP-ized graphs

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.00040.0026 0.52570.0652 0.9456 6.9297
2 0.00730.0243 3.73830.2972 4.390215.2156
4 0.00930.0338 7.85500.3984 8.547023.9968
6 0.01230.039911.16900.4341 8.907934.1140
8 0.01310.054713.41990.487012.275040.6763
10 0.01400.059315.10390.521314.317242.6729
12 0.01440.102014.93580.615914.788050.1490
14 0.03380.140816.52490.684817.011056.2432
16 0.09540.252116.96720.731217.950959.6822
18 0.04280.159215.61960.913718.348166.0759

Table4.Execution times (sec.) for original graphs, Case 1

11

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.00040.0026 0.52570.0652 0.9456 6.9297
2 0.00770.0241 3.77010.3024 4.506615.1302
4 0.00950.0345 8.66100.4266 8.783225.6282
6 0.02290.045711.67510.471810.947331.7380
8 0.01380.060413.50190.542313.234837.1039
10 0.01690.089713.50910.674015.024638.9399
12 0.02290.095415.89590.752016.594846.4865
14 0.02350.102617.16880.804618.883751.5815
16 0.03580.194616.41860.984521.891955.5240
18 0.04240.117716.40421.072721.873462.0420

Table5.Execution times (sec.) for SP-ized graphs, Case 1

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.01460.203250.33305.945389.7590644.6169
2 0.01200.114530.03743.198953.0208383.5885
4 0.01350.076021.47341.689932.8978263.0631
6 0.01710.083923.35741.209026.3883213.3361
8 0.01740.086121.83401.068925.2242182.2359
10 0.01990.095620.89640.943228.6459169.8299
12 0.02090.163221.02410.952925.6299173.6611
14 0.02360.140222.41630.991229.3823169.9251
16 0.10080.257922.04491.088629.3822175.6892
18 0.13150.176422.35471.185028.3800164.6466
20 0.07870.224822.35231.322128.3724173.1850

Table6.Execution times (sec.) for original graphs, Case 2

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.01460.203450.13035.947289.7590644.6169
2 0.01320.115629.48703.186652.5162371.3238
4 0.01330.081922.87571.800133.7676253.9873
6 0.01690.091124.01151.350329.4902214.0679
8 0.01800.099521.65281.151528.6315155.9000
10 0.02170.119518.59721.070228.7325159.6572
12 0.02550.122721.39551.093627.6039158.4761
14 0.02790.143522.40911.123928.9869154.9551
16 0.04230.201921.97471.341331.2409156.9554
18 0.04940.177921.96951.483931.2689157.1160
20 0.05690.241321.43941.632330.6010160.2695

Table7.Execution times (sec.) for SP-ized graphs, Case 2

12

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.06190.8709285.275226.0715470.81323740.9639
2 0.03520.4531161.928713.6828266.62132257.5166
4 0.02930.2851 92.9841 6.9767154.96881559.5437
6 0.03200.2614 88.1184 5.0146120.22211220.7146
8 0.03370.2711 69.6818 4.2194106.8767 998.3038
10 0.03720.2551 56.8591 3.4229111.7432 879.9780
12 0.03900.2560 55.9663 3.2657 93.3055 884.5915
14 0.05050.3723 59.4718 3.1095100.0617 851.0053
16 0.11760.3934 57.9675 3.0377 95.4795 842.4235
18 0.06670.3588 56.5620 3.0921 87.2268 819.9980
20 0.09300.4285 59.2632 3.1043 92.4381 825.1205

Table8.Execution times (sec.) for original graphs, Case 3

Graph nodes
Procs 58 211 772 2014 3142 3541

1 0.06190.8709285.275226.0715470.81323740.9639
2 0.03640.4713156.667013.6033269.03092191.8169
4 0.02990.2988 97.7383 7.1975159.67581477.7560
6 0.03340.2731 89.3556 5.0961121.55311224.7509
8 0.03510.2605 67.8374 4.3686110.6939 887.6477
10 0.03960.2933 55.4447 3.5921105.3672 839.5077
12 0.03870.2814 57.0753 3.4164 94.1481 831.6882
14 0.04820.3078 57.8287 3.2136 96.5626 762.3328
16 0.05280.3581 57.0839 3.2737 93.8339 768.3052
18 0.06690.4039 56.0482 3.5136 89.3808 753.8629
20 0.07900.5276 55.8891 3.4426 83.2551 756.1538

Table9.Execution times (sec.) for SP-ized graphs, Case 3

13

References

1. DIANA FE Program. WWW, Jan 2000. On http://www.diana.tno.nl/.
2. A. González-Escribano.Synchronization Architecture in Parallel Programming Models. Phd

thesis, Dpto. Informática, University of Valladolid, Jul 2003.
3. A. González-Escribano, A.J.C. van Gemund, and V. Cardeñoso. A new algorithm for map-

ping DAGs to series-parallel form. Technical Report IT-DI-2002-2, Dpto. Informática, Univ.
Valladolid, Apr 2002.

4. H.X. Lin. A general approach for parallelizing the FEM software package DIANA. InProc.
High Performance Computing Conference’94, pages 229–236. National Supercomputing Re-
search Center. National University of Singapur, 1994.

14

