Departamento de
Informatica

Universidad de Valladolid

Computer Science Department
University of Valladolid
Valladolid - Spain

A New Algorithm for Mapping DAGs
to Series-Parallel Form

Arturo Gonzélez-Escribano!, Arjan J.C. van Gemund?, and Valentin
Cardefioso-Payo!

! Dept. de Informaética, Universidad de Valladolid.
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain
Phone: +34 983 423270, eMail:arturo@infor.uva.es

% Faculty of Information Technology and Systems (ITS)
P.O.Box 5031, NL-2600 GA Delft, The Netherlands
Phone: +31 15 2786168, eMail:a. j.c.vangemund@its.tudelft.nl

Abstract. This report presents a new algorithm technique that trans-
forms DAGs (Direct Acyclic Graphs) into SP (Series-Parallel) form. The
complexity bounds are O(m + n) in space and O(m + nlogn) in time.

Technical Report No. IT-DI-2002-2

1 Introduction

In this report we present a new algorithmic technique that address the problem
of SP-ization: transformation of a DAG (Direct Acyclic Graph) to two termi-
nal series-parallel form (as defined in [1,3,6]) with no task duplication (work
preserving), but only adding dependencies.

The algorithm purpose is to minimize the probabilities of critical path value
increase due to new added dependencies, but using no knowledge of actual work-
load distribution. In this case, a fair assumption is to consider all task loads i.i.d.
(independent identically distributed). Thus, an algorithm that does not increase
the critical path of an UTC (Unit Time Cost per task) graph, has the better
chances of success.

We will compare our algorithm with others: Simple layering (full barrier syn-
chronization between node layers) and a previous less refined algorithm presented
in [4].

This new algorithm present the following interesting features:

— A reduced time complexity: O(m + nlogn) and space complexity O(m + n),
where m is the umber of edges and n the number of nodes of the input graph.

— Local resynchronization of minimum number of nodes, while global informa-
tion is considered.

— It does not increase the critical path for UTC (Unit Time Cost) graphs,
keeping the nodes layering structure of the original graph.

— The solution of the algorithm is the same for a given topology independently
of the input order (node labeling).

2 Graph preliminaries

We present some basic notation used throughout the following sections.

2.1 Basic graph notation

Let G = (Vg, Eg,7) be a DAG (direct acyclic graph) in which Vi is a finite
set of nodes and Eg a finite set of edges (or ordered node pairs) and 7(v € Vi)
the workload distribution function that assigns to every node its load value. We
work with multidigraphs, which allow several instances of the same edge (u,w)
in Eg at the same time. Let indeg(v € Vi) be the number of edges (u,v) for
which v is the target, and outdeg(v € Vi) be the number of edges (v, w) for
which v is the source. R(G) is the set of roots of G (nodes v : indeg(v) = 0), and
L(QG) is the set of leaves of G (nodes v : outdeg(v) = 0).

An StDAG is a DAG with only one root and one leaf (|R(G)| = 1, |L(G)| = 1).
Any DAG can be transformed to an StDAG by a simple algorithm that adds a
new unique root connected to all original roots and a new unique leaf connected
to all original leaves.

A path between two nodes (p(u,w)) is a collection of nodes u, vy, va, ..., Up, w
such that (u,v1), (v1,v2), ..., (Un—1,Vn), (Vn,w) € Eg. The length of a path is

the number of edges determined by the path sequence. The critical path value
(epv(@)) is the maximum, over all possible paths in G, of the accumulated load
along the path.

The depth level of a node (d(v)) is the maximum length of a path from a
root to that node. The mazimum depth level of a graph (d(G)) is the maximum
length of a path from a root to a leaf. We define d-edges as the subset of edges
(u,v) : d(v) — d(u) > 1. We say that a node v is previous to w or w depends on
v (v < w) if there is a path p(v, w). We say that two nodes v, w are connected
(v<>w) if v depends on w or w depends on v.

2.2 Series-parallel graphs

A series reduction is an operation that substitutes a node v : indeg(v) =
outdeg(v) = 1 and its two incident edges (u,v), (v,w) € Eg for an edge (u,w).
A parallel reduction is an operation that substitutes several instances of an edge
(u,w) for a unique instance of the same edge (u,w).

The minimal series-parallel reduction of a graph, is another graph obtained
after iteratively applying all possible series and parallel reductions. A trivial
graph Gy = (Vai, Egt) is a graph with only two nodes and only one edge con-
necting them (Vg = {u1,u2}, Ege = {(u1,u2)}).

An StDAG is SP (Series-Parallel or Edge Series-Parallel) iff its minimal re-
duction is a trivial graph Gy [1, 6]. The equivalence of Edge Series-Parallel graphs
and Node Series-Parallel graphs is presented in [6].

3 Algorithm description

The algorithm is based in a depth level search, solving non-SP problems while it
traverses the graph. The already processed subgraph is SP. A tree representing
its minimal reduction graph is used to help in the search for resynchronization
handles, transitivity checks and operations that have lesser complexity bounds
in a tree. Evaluation of edges that express dependencies across several layers is
delayed until the targeting layer is processed.

3.1 Initialization phase:

i. Transform the input DAG into an StDAG along the lines previously discussed.

ii. Layering of the graph. Compute a partition of Vi, grouping nodes with the
same depth level.

L; CVg;Li={v € Vg :d(v) =i}

iii. Initialize an ancillary tree T = (Vr, ET) to Lg. This tree will represent the
minimal series-parallel reduction of the step by step processed subgraphs.

3.2 Graph transformation:
For all layers (sorted) i from 0 to d(G) — 1:

a. Split layer in classes of relatives: Let us consider the subgraph S C G
formed by L; U L;y; and all edges from G incident to two nodes in this
subset. We construct the partition of this nodes into connected subgraphs.
We define relatives classes as the subsets of nodes that belong to the same
connected component of S and the same layer, as in Fig. 1.

U, U, Us
W 1'? LI
I-|+1

D, D, D,

Fig. 1. Example of relatives classes induced between two layers

Py = {U1,Us,...,U,} will be the up classes (of nodes in L;) and Pp =
{D1, D, ...,D,} will be the down classes (of nodes in L;;1). Each class U €
Py induces a class D € Pp that belongs to the same connected component
(U — D).

b. Tree exploration to detect handles for classes of relatives: We look in
the tree for handles. For each U class, the U-handle (h'(U)) is the nearest
common ancestor of all nodes in U:

H'(U)={v € Vr:Yw e U,v =<, w}
W ({U)=he HU):Vh' € H(U) : d(h) > d(h')

We define K1 (U) as the set of source nodes to the induced class D (it in-
cludes U and source nodes of d-edges targeting D): Sources of edges showing

transitive dependency to D through the U-handle are to be discarded from
KT(U)Z

Kr(U)={veVr: (v,w) € Eg,w € D,v £, h'({U)}U{h'(U)}
The handle node of class U, h(U) is defined as:
HU)={veVy:Vwe Kr(D),v <, w}
hU)=he HU) :Vh' € HU) : d(h) > d(h')

We also define the forest of a class, as the set of complete sub-trees below
h(U) that include nodes in K7 (U):

SubF(U) ={u € Vr :v 2, u,(h(U),v) € Er,v X, w:w € Kr(U)}

In Fig. 2 we show a diagram of all concepts defined in this section.

Normal nodes

®
@) Nodes transitive through h’(U)
@)

Nodes in K 1

—_— Normal edges or dependencies
- d-edges (Not in T)

Other branches of h(U)

| SubF(U)

|
|
]
T

D l

Fig. 2. Example of handles and forest for an U class

c. Merge classes with overlapping forests: Classes with overlapping forests
are merged in an unique U and D class. They will be synchronized with the
same barrier.

YU,U' € Py : SubF(U") N SubF(U) # 0
U=UUU;Py =Py \U
U—- DU —-DsD=DUD';Pp=Pp\D'

d. Capture orphan nodes: We define orphan nodes as the leaves of the tree
T that are not in any U class (they are nodes in layers previous to ¢ with
only d-edges to layers further than ¢ + 1). These nodes are included in the
U class of the forest they belong to.

Vv € SubF(U),v € L(T),v ¢ U; U =U U {v}

e. Class barrier synchronization: For each final U — D classes:
— Create a new synchronization node by in the graph and the tree.

Vo =Vg U {bU}

Ve =Vru {bU}

— In G, eliminate all edges targeting a node in D. Add edges from every
node in U to by and from by to every node in D (barrier synchroniza-
tion).

Eg = Eg\ {(v,w) :w € D}

EG:EgU{('U,bU) :’UEU}
Eqg ZE(;U{(bU,U)):U) GD}

— Substitute every d-edge (v, w) with source v € SubF(U) and targeting
anode w € L : k > i+ 1 (a further layer) for an edge (by,w). This
operation eliminate d-edges from the new synchronized SP subgraph,
but avoiding the loss of dependencies in the original graph.

dE(U) = {(v,w) € G:v € SubF(U),w € Ly, k >i+1}

Eg = Eg U{(by,w) : (v,w) € dEU)}
Eq = Eg \ dE(U)

— Substitute the forest SubF'(U) in T for an edge (h(U), by) representing
the minimal series-parallel reduction of the new synchronized SP sub-
graph.

T=T\SubF(U)

Er = Er U{(h(U),bu)}

4 Example

An example of the algorithm applied to a given graph is shown, step by step,
in Fig. 3,4,5. For each step, the first and second columns presents the graph
and tree respectively, as a result of the previous step. For step 1 we present the
original graph with a layering diagram and the root initialized tree. The third
column is a diagram of the exploration phase on the tree. U and D node classes
are shown with different grey shades, showing the graph related edges (not in
the tree) by dashed lines. We also mark with names the orphan nodes, d-edges
to further layers and the transitive, non-transitive over the U-handle property
of the d-edges arriving at D classes. U-handles are marked with h'(U) and final
handles with h(U). Forests under each handle are surrounded by trapezoids.
New added synchronization nodes are represented with smaller circles.

We comment now the remarkable algorithm features in the example. Step
1 presents a case with only one U class with one node in the U class (handle)
and two nodes in the induced D class. A new node 19 is added to the graph to
synchronize over the nodes in the D class. In step 2, there are two U class to
synchronize, being the handles the nodes in U classes. A d-edge appears from a
node in the second class, and it source node 3 is changed in the original graph to
the new synchronization node 21. Exploring phase in step 3, detects node 20 as
the U-handle of the first U class as the nearest common ancestor of all nodes in
U class (4,5). However, a d-edge to a node in the induced D class (21,11), which

€z‘1 sdeag :g wyIode jo ojdurexy g "Siq

deis

L

gz dais

¢ dais

Exploring

h’(1)
h(1) PU

(g’j@PD

h'(1) h'(2)

h(1) . h(2)

O ([®®
d-edge

PU

PD

G‘y sdeag :g wylrodre jo sydwexy ¥ *Srq

v dais

G daig

Exploring

Vo
d-edges

PU

PD

sy 23 9 dojg g wyIod[e jo ojdurexy -G -S1q

}insay

Exploring

source node 21 is not transitive through the U-handle node 20, forces to explore
further. The handle for class 1 is not equal to the U-handle, but the nearest
common ancestor of nodes 20 and 21, namely node 19. Moreover, forests under
the handles of classes 1 and 2 overlaps in node 13, and they are merged and
synchronized together. Notice how the orphan node 12 is included in the merged
U class and synchronized over the new node 22. Step 4 presents a situation
where two U classes have the same handle node 22, but non-overlapping forests.
Thus, they are not merged, but synchronized with different nodes 23 and 24. In
step 5 there is only one U class, because nodes 9 and 10 have only d-edges to
further layers. The U-handle is the same node 16 in U class. Nevertheless, there
are d-edges from previous layers. Edge (22,17) is discarded due to its transitive
property through the U-handle 16. However, edge (23,17) is not transitive. Thus,
the handle node is the nearest common ancestor of nodes 16 and 23, namely node
22. The forest include now orphan nodes 9 and 10. In last step 6, there is only
one U class and two discarded transitive edges. The resulting graph is shown
together with the final tree, that is always a series graph in which each edge
represents the minimal series-parallel reduction of a full SP subgraph.

5 Correctness

Since any tree can be easily transformed to a trivial SP StDAG, any graph which
minimal series-parallel reduction is a tree, will be SP. As can be easily shown
by induction on the depth of the StDAG, the minimal series-parallel reduction
graph at each step is always a tree and, thus, has the SP property.

We define TD AG as the subset of D AG's that are one-rooted connected trees.

Proposition 1. A tree is SP:

TeTDAG =T e SP

Proof: The StDAG of T (called closure of T') is the original T with an added leaf
by connected to all the leaves L(T'). Applying series reduction to all originally
leaves of T' and parallel reductions where there were several leaves with the same
parent, the result is equal to the closure StDAG of T', being T' the tree obtained
eliminating L(T) from T. Proceed recursively until only the root of T remains
and the reduction is the trivial graph.

Proposition 2. A graph G which series-parallel reduction is a tree is SP.

Proof: Compute the series-parallel reduction of G until it is a tree. As proved
previously the series-parallel reduction of the closure of a tree is the trivial graph.
Thus, the StDAG of the original graph can be series-parallel reduced to the trivial
graph and is also SP.

5.1 Correctness proof:

1. The result does not loose dependencies: No node is eliminated from the
graph. During synchronization, all times an edge (v, w) is eliminated it is sub-
stituted by two edges (v,by) and by, w). Thus, the original dependence is
transitively keep through by. All times a d-edge (v,w) : v € SubF(U),v €
L;j,j <iAw € Ly, k > i+ 1 is moved down to the synchronization node,
the original edge dissapears and another edge (by,w) is added. After adding
edges from U to by, Yu € SubF(U),u < by and v < by < w.

Thus, during the synchronization phase neither, the substitution of edges or
moving down d-edges eliminate original dependencies in G. No other edge
alteration is done in G.

2. The result is SP: We call S; the subgraph of G that includes all nodes in
layers Lg, Ly, ..., L; and all G edges incident to both nodes in S;.

When the algorithm begins (for ¢ = 0) T is initialized with the root of G.
So is a one node tree. For i = 1 the closure of T' and Sy is computed and
nodes in L; are hanged from the new synchronization node. T' and Sy are
trees and, thus, they are SP.

In each subsequent iteration (for ¢ = ¢ + 1), we compute Py, Pp and their
handles. Then we merge classes with overlapping forests. Each forest is com-
posed by trees that represent the series-parallel reduction of a subgraph of
S;. Eliminating in G edges from U to D and d-edges from SubF(U) for all
classes, S; gets disconnected from the rest of the graph, being a tree (or a
graph that is a tree after series-parallel reductions). New synchronization
nodes and edges are added to closure every tree in 7' and G included in a
forest of an U class. Thus, after synchronization, S;;1 is a tree or a graph
that is a tree after series-parallel reductions. S;41 is SP. T represents the
series-parallel reduction of S;11.

Proceed by induction until the last iteration. In last iteration (for i = d(G)—
1), L;;1 is formed by the only one leaf of G. There is only one U class and
one D class. All resting sub-trees in T' (and G) are closed together with only
one synchronization node and only one node (the leaf of G) is added hanging
from that new node. T', that represents the series-parallel reduction of G is
a series of nodes, its series reduction is the trivial graph. Thus, G is SP.

6 Critical path property for UTC graphs

An interesting feature of the algorithm is that it does not increase the critical
path value if the original graph has unit time cost per node. Transforming a graph
to SP form, this property minimizes the possibilities for critical path increment
when no knowledge of the task load distribution is available.

Proposition 3. For an UTC (Unit Time Cost) input graph G, the result G' is
not UTC (nodes added by the algorithm carry no load), but despite the added
dependencies, the critical path is not increased.

10

Proof: For UTC graphs, the critical path value of G is equal to the mazimum
number of nodes that can be traversed from a root to a leaf (cpv(G) = 1+ d(Q)).

The algorithm adds zero loaded synchronization nodes between layers. The
only way of increasing the critical path is due to added dependencies that make
a node from a layer i dependent on a node from layer j, being j > i. However,
the algorithm keeps the layers structure.

Mowving d-edges sources to a node in a layer previous to the target node layer,
does not change the depth level of any node. Substituting edges from nodes in
U classes to nodes in D classes to include by mnodes keeps the depth level of U
nodes and adds one to the depth level of every node in D classes.

In the resulting graph, all even layers are populated by zero loaded nodes and
odd layers by nodes in the original layers. The longest path from the root to the
leaf alternatively crosses nodes with unit and zero time cost. The number of unit
time cost nodes in the longest path is at most 1 + d(G), and, thus, the critical
path value in G' is the same as in G.

7 Complexity

7.1 Space complexity

Let n be the number of nodes and m the number of edges in the original graph.
The number of nodes in the graph increases with one more node for each U
class. Every node appears just once in an U class over the full algorithm run.
Thus, the total number of nodes is upper bounded by 2n. The number of edges is
upper bounded because the processed subgraph (after each iteration) is SP, and
the number of edges in an SP graph is bounded by m < 2(n — 2) (see proof in
appendix A). Other ancillary structures (as the tree) store graph nodes and/or
edges.
Thus, space complexity is:
O(m + n)

7.2 Time complexity

StDAG construction can be done in O(n) and getting layers information in O(m)
with a simple graph search.

Classes of relatives for two consecutive layers can be computed testing a
constant number of times each edge. Thus, all the classes along the algorithm
run are computed in O(m).

Exploration of the tree for handles can be self-destructive: Nodes are elimi-
nated during the search. While searching for the handle of a class, all the forest
can be eliminated and orphan nodes and other classes to be merged detected
(see section 8 for a description of such an implementation).

Check and eliminate a transitive edge can be done in O(1) if appropriate data
structures are used for the tree [2], but assuming tree modifications are done in
O(logn). O(n) nodes and edges are inserted and eliminated in the tree. Thus,
all tree manipulation has a time complexity O(nlogn).

11

The synchronization phase adds O(n) nodes, eliminate O(m) edges and add
a bounded number of edges (O(n) because it is an SP graph). The movement of
d-edges can be traced in O(nlogn) with a tree-like groups joining structure to
avoid real edge manipulation (see 8 for details).

Thus, time complexity is:

O(m + nlogn)

8 Implementation

We propose an implementation for the tree exploring phase. This implementation
is based in a self-destructive search of the tree that eliminates the forests from
the tree and detect handles with only one check per node. This implementation
is needed to bound the time complexity as explained in section 7.

Searching for handles: For any given U class, we create an exploration structure
call explorers (E). This structure stores nodes in sets indexed by depth level.

E = (m, VE);m € N, Vg = {Vl,Vz, ...,Vm}
We initialize it with the nodes in any chosen U class.
Yo e U : Vd(v) = Vd(v) U {’U}

m =maxd(v) :v €U

For all nodes in E with maximum depth, we eliminate them from the tree,
and we add the parent of the eliminated node to the explorers structure (avoiding
repetition by marking the parent node when first visited).

To eliminate a tree node, we check previously if it is a leaf. If it is not, we
proceed to eliminate all sub-trees hanging from it. The leaves of these sub-trees
will be orphan nodes (that we immediately add to U) or nodes in other U classes.
In this last both classes are merged, adding the new U nodes to the explorers
structure.

When the explorers structure has only one node, this node is the U-handle
h'(U). Then we check the transitive condition of all d-edges arriving at D in the
tree with h'(U) to compute K7(U). Non-transitive d-edges sources are added
to explorers and the search is continued until the structure has again only one
node. This last node is the handle h(U), and is marked in the tree (a node can
be handle of several classes at the same time).

During exploration, a node that is processed to be eliminated can also be
marked as handle of other previously explored class or classes. In this case these
classes are also merged with the one being explored.

When this exploring operation is performed for all U classes, all handles have
been detected and marked, related classes already merged, and forests SubF(U)
deleted from the tree.

12

Tracking of d-edges: During the elimination of tree nodes we keep track of d-
edges from these nodes to further layers. Each class maintains a set of these
source nodes. When classes are merged, these sets are also merged. When a class
is synchronized, this set will provide information for d-edges to be moved to the
new synchronization node.

To keep track of d-edges movements without performing modifications in
the graph, we use a tree-like set joining structure. The structure will map a
node label to the node label of the final source of associated d-edges. A joining
operation of a pair of node labels (i,) will indicate that d-edges with source 7
are to be mapped to source node j. The structure has the property that for any
sequence of joining operations (i1, j1), (42, J2), -+, (in, jn) Where 41 # is # ... # iy
all joining operations take O(nlogn) to be performed, and any mapping query
takes O(1).

Definition 1. We define the Joining structure J = (f, W,g), where I, W are
arrays of indezxes and S is an array of sets of node labels (we define N as the
set of all possible node labels). Let n = |Vg|:

N ={i:Ni €[l.2n]}
f, W: N
§:8%".8; C{v:N}
The J structure is initialized as follows:
I =W, =148, = {i}
It supports a joining operation indicating that i must be mapped to j defined as:

It (i,§): J = J5J=(L,W,8),J =@, W',35";

Towy = Tw;)
big = {Wz’ if |Sw:| > |Sw; |

W; otherwise

Wi if |Swil < |Sw;]

W; otherwise

small = {

W! =W! = big
;n'g = Sbig U Ssmali
Vk € Ssmanr : W,é = big

The query function is defined as:

J:VG—)VT;J(i):Wi

13

9 Improvement: Non-necessary synchronization nodes

Some synchronization nodes can be eliminated. In situations where the U class,
the induced D class, or both, have only one node, the new synchronization node
is not necessary. The lonely node can play that role. This reduces the number of
nodes and edges added, producing a completely equivalent graph result in terms
of dependencies between nodes from the original graph.

We modify the algorithm synchronization phase along the following lines. For
each final U — D classes:

— Detect/create synchronization node, and eliminate/add edges:
1. U = {u}, by = u:
In G, eliminate all d-edges targeting a node in D.

Eg = Eg\ {(v,w) :w € D,d(v) < i}

2. Elseif D = {d}, by = d:
In G, eliminate all d-edges targeting a node in D.

Eg =Eg\{(v,w) : w € D,d(v) < i}

3. Else (normal case where |U| > 1,|D| > 1): Proceed as in the original
algorithm creating a new synchronization node by, eliminating in G all
edges targeting a node in D, and adding edges from every node in U to
by and from by to every node in D (barrier synchronization).

— Substitution of d-edges with source v € SubF(U), as in the original algo-
rithm.

— Substitute the forest SubF(U) in T for an edge (h(U), by), as in the original
algorithm.

In Fig. 6 we show the solutions obtained with the normal and improved algo-
rithms for the same graph example used previously. The dependencies structure
on the original graph nodes is the same, although the improved algorithm uses
less nodes and edges.

10 Comparison with other algorithms

Other algorithms for the SP-ization problem used in our study are:

— Simple layering technique: Resynchronization by full barriers between each
layer of nodes [5].
— Previous SP-ization algorithm introduced in [4].

Comparative characteristics discussed in this section are summarize in Table 1.

Layering technique is very simple and has a reduced time complexity (O(n +
m)). It also maintains the layering structure of the original graph and has the
property of not increasing the critical path value. However, it does not exploit
the possibility of local resynchronization. The amount of dependencies added by

14

Normal Algorithm Improved Algorithm

Fig. 6. Solutions obtained by the normal and improved algorithms

Algorithm Space Time UTC-cpv Regular graphs Irregular graphs
Layering O(m+mn) O(m+n) Yes Good Bad
Previous SP-ization|O(m +n) O(m x n) No Good Good
New algorithm O(m +n) O(m +nlogn) Yes Good Good

Table 1. Algorithms comparison

the new algorithm is lesser or equal to the number of dependencies added by
layering technique. For high edge density or high regular graphs, the solutions
of both techniques are similar, if not the same. However, for low edge density or
irregular graphs, the new algorithm finds highly improved solutions.

The previous SP-ization algorithm were based in iterative detection and
resynchronization of local non-SP problems. The search for nodes implicated in
such a problem was complex. Thus, time complexity bounds where much worse
(O(n xm)) and needed a transitive reduction of the original graph for high edge
density graphs (O(n?8!)). The new algorithm uses the tree that represents the
already SP processed subgraph to reduce the complexity order of searchs and
transitive edges elimination. The previous algorithm uses a technique dependant
on the searching order, thus, having the possibility of obtaining different solu-
tions for the same graph topology depending on the node labeling. The new
algorithm produce always the same solution for any input order of the same
topology. The quality of the solutions is similar for both algorithms. However,
the previous algorithm does not keep the layering structure in many situation,
and may increase the critical path of UTC graphs due to added dependencies.

15

11 Conclusion

An efficient algorithm for the SP-ization problem is presented and analyzed in
this report. The algorithm presents good features: A tight bounded complexity,
local resynchronizations where possible and it maintains the layering structure
of the graph, not increasing the critical path value for UTC graphs.

We conclude that this new algorithm improves solutions offered by previ-
ous algorithms studied (layering, and our first SP-ization technique), with tight
complexity bounds.

16

Appendices

A Upper-bound of the number of edges in SP graphs
In this appendix we proof a result about SP graphs that we use to simplify the
complexity measures.

Proposition 4. Let G = (V, E) be an SP multidigraph, and Gt a trivial graph.
The parallel composition of G and Gt introduce a new edge in G from the root to
the leaf (Rg, L) that is redundant (it was already in G) or is a transitive edge.

Proof: If (Rg, Lg) € E, the parallel composition with Gt introduces a redundant
edge (Rg, Lg) by construction. If (Rg, Lg) € E, the parallel composition with Gt
introduces the edge (Ra, Lg) by construction, which is a transitive edge because
any G € SP is connected and thus, there exists a path p(Rg,Lg) in G.

Proposition 5. An SP digraph, different from the trivial graph Gt with no re-
dundant and/or transitive edges cannot be derived from a parallel composition
with o trivial graph Gt.

Proof: From previous result. Any parallel composition with o trivial graph Gt,
introduces a redundant or transitive edge.

Proposition 6. Let G = (V, E) be an SP multidigraph, different from the trivial
graph Gt, with no redundant edges,

V(v,w), (v, w') € E;jv #v' Vw #u'

and no transitivities:
G =G
The cardinality of the edges set is bounded by:
|E| <2(]V]-2)
Proof: From previous result, an SP digraph with no redundant and/or transitive

edges can be derived only from series compositions of any SP digraphs (included
trivial graphs), and parallel compositions of non-trivial graphs.

1. Let G = (V, E) an SP digraph obtained by series composition of k = 2,3, ...
trivial graphs Gt. The number of edges in G is by construction:

|E|=V]-1<2(V]-2)

2. Let G = (V,E) an SP graph obtained by series composition of any SP di-
graph graph G1 = (V1, E) = |E1| < 2(|Vi| — 2) with a trivial graph Gt. By
construction, the cardinality of V and E in G are:

VI=Wl+1LI|E|=|E|+1
Thus,
|E| = [Er] + 1 <2(Vi] =2) +1 < 2(W| = 1) =2(]V| = 2)

17

3. Let Gy = V1, E1),Go = (Va, Es) be two SP digraphs such that:
[Ey| <2(1Vi| = 2), [Ea| < 2(|V2| —2)

The series composition G = (V, E), by construction has the following number
of nodes and edges:

V=il +[Va| = 1, |E| = |Ex| + | E»|
Thus,
|E| = |Ey| + | Ez| < 2([Va] = 2) +2(|Va| = 2) = 2(|Va] + [Va| = 4) <2(|[V] - 2)
4. Let Gy = (V1,E1),Gy = (Va, E2) be two SP digraphs such that:
|Ey| <2(Vi] = 2), |B2| < 2(|V2] - 2)

The parallel composition G = (V, E), by construction has the following num-
ber of nodes and edges:

V| = V1| + |Va| = 2, |E| = |Ey| + | Es
Thus,

|E| = [Er|+|Ez| < 2(V1] = 2) +2(|V2] = 2) = 2([Va[+ [V2| = 4) = 2(|V[- 2)

References

1. W. Bein, J. Kamburowski, and F.M. Stallman. Optimal reductions of two-terminal
directed acyclic graphs. SIAM Journal of Computing, 6:1112-1129, 1992.

2. H. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proc. Workshop
on Graph-Theoretic Concepts in Computer Science, 1994.

3. R. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis
and Applications, 10, 303-318 1965.

4. A. Gonzélez-Escribano, V. Cardefioso, and A.J.C. van Gemund. On the loss of
parallelism by imposing synchronization structure. In Proc. 1st Furo-PDS Int’l
Conf. on Parallel and Distributed Systems, pages 251-256, Barcelona, July 1997.

5. A. Gonzéilez-Escribano, A.J.C. van Gemund, V. Cardefioso-Payo, J. Alonso-Lépez,
D. Martin-Garcfa, and A. Pedrosa-Calvo. Measuring the performance impact
of SP-restricted programming in shared-memory machines. In V. Hernandez
J.M.L.M. Palma, J. Dongarra, editor, VECPAR 2000, number 1981 in LNCS, pages
128-728, Porto (Portugal), June 2000. Springer.

6. J. Valdés, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs.
SIAM Journal of Computing, 11(2):298-313, May 1982.

18

